JPH04313046A - Method and apparatus for observing broken state of sheet-shaped material - Google Patents

Method and apparatus for observing broken state of sheet-shaped material

Info

Publication number
JPH04313046A
JPH04313046A JP10361191A JP10361191A JPH04313046A JP H04313046 A JPH04313046 A JP H04313046A JP 10361191 A JP10361191 A JP 10361191A JP 10361191 A JP10361191 A JP 10361191A JP H04313046 A JPH04313046 A JP H04313046A
Authority
JP
Japan
Prior art keywords
stress
sample
sheet
observing
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10361191A
Other languages
Japanese (ja)
Inventor
Masatoshi Yamamoto
正俊 山本
Seiji Kato
加藤 清司
Masafumi Watanabe
渡辺 賢文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP10361191A priority Critical patent/JPH04313046A/en
Publication of JPH04313046A publication Critical patent/JPH04313046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To perform the processing for obtaining a conduction and observation under the state wherein stress is applied by using a material testing apparatus which can be attached to an ordinary electron microscope and wherein stress can be changed. CONSTITUTION:A sheet-shaped sample 4 is held with pushing plates 3a and 3b to a fixing stage 1 and moving stage 2. The sample 4 is fixed with sample fixing screws 5a and 5b. Then, a stress adjusting screw 6 is adjusted, and the distance between the fixing stage 1 and the moving stage 2 is changed. Stress is applied on the sample 4 in this way. With this state being maintained, the processing for conducting the sample 4 is performed, and the sample is observed with an ordinary electron microscope.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はシート状物の破壊形態を
観察、解析するため試料に任意の応力を加えた状態での
顕微鏡観察によるシート状物の破壊形態観察方法および
装置に関するものである。
[Field of Industrial Application] The present invention relates to a method and apparatus for observing the fracture form of a sheet-like object by microscopic observation while applying an arbitrary stress to a sample in order to observe and analyze the fracture form of a sheet-like object. .

【0002】0002

【従来の技術】一般の材料試験機でシート状物に応力を
加えた後電子顕微鏡で観察するときは、材料試験機から
外し応力をフリーにしないと導電化はもとより、電子顕
微鏡での観察はできなかった。文献の成形加工  第3
巻  第1号  1991  P7  の中に”従来は
ゴムを含有するポリマーアロイの変形のようすを明らか
にするために変形の途中で負荷を中断した試験片、ある
いは破壊後の試験片から超薄切片を切り出し、ゴム粒子
を酸化オスミウムで染色してコントラストを与え透過型
電子顕微鏡を用いて、クレイズあるいはボイドの状態を
観察していた。”と記してあるように材料試験機で試料
を破壊、または部分破壊した後負荷を中断し取り出して
導電化を施し、電子顕微鏡内の試料台に取付け観察して
いた。
[Prior Art] When applying stress to a sheet-like material using a general material testing machine and then observing it using an electron microscope, it is necessary to remove it from the material testing machine and release the stress. could not. Molding processing of literature Part 3
Vol. 1, 1991, P.7 states, ``Conventionally, in order to clarify the deformation of polymer alloys containing rubber, ultra-thin sections were taken from test specimens whose loading was interrupted in the middle of deformation, or from test specimens after fracture. The rubber particles were cut out and stained with osmium oxide to provide contrast, and a transmission electron microscope was used to observe the state of crazes or voids. After the specimen was destroyed, the load was interrupted, the specimen was taken out, made conductive, and placed on a sample stage in an electron microscope for observation.

【0003】材料の破壊過程観察、調査を材料性能評価
に活かす装置は分析機器メーカーの販売する材料試験機
がある。この装置は電子顕微鏡観察する際に金属材料の
ように伸びによる観察点の移動が少ない材料の破壊過程
調査には適しているが、伸びにより観察点が移動するプ
ラスチック等には不適である。また、導電性の小さなプ
ラスチック材料の観察には、チャージアップ現象を防止
するため一般に金属蒸着を施す。特に1000倍を超え
る高倍率での観察には金属蒸着は必須である。また、従
来の材料試験機は大型の専用装置であり、一般の電子顕
微鏡には取付けられない。
[0003] Material testing machines sold by analytical equipment manufacturers are available as devices for utilizing the observation and investigation of the fracture process of materials for material performance evaluation. This device is suitable for investigating the fracture process of materials where the observation point moves little due to elongation, such as metal materials, when observed under an electron microscope, but it is not suitable for plastics, etc., where the observation point moves due to elongation. Furthermore, when observing plastic materials with low conductivity, metal vapor deposition is generally applied to prevent charge-up phenomena. In particular, metal vapor deposition is essential for observation at high magnification exceeding 1000 times. Furthermore, conventional material testing machines are large, dedicated devices that cannot be attached to general electron microscopes.

【0004】0004

【発明が解決しようとする課題】本発明の目的は従来の
大型専用装置を用いなければ観察できなかった応力を加
えた状態での観察を、一般の電子顕微鏡の試料室に設置
できる小型の材料試験装置を用い、応力を加えた状態で
容易に観察できる方法および装置を提供することにある
[Problems to be Solved by the Invention] The purpose of the present invention is to create a small material that can be installed in the sample chamber of a general electron microscope, allowing observation under stress, which could not be observed without using conventional large dedicated equipment. It is an object of the present invention to provide a method and apparatus that allow easy observation under stress using a testing device.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意検討した結果、試料材料が実際に使
用されている状態での破壊形態を観察、調査するには、
電子顕微鏡内で実際に使用されている状態に置くことが
必要である。引っ張り、圧縮応力をフリーにして試料の
導電化処理を行った後、観察することは応力をフリーに
した時に応力緩和等が生じ形態が変化することがあり、
実際の材料評価には不適当である。このことから、応力
をフリーにしないで導電化処理、観察ができる方法およ
び材料試験装置を創作し本発明に到った。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have found that in order to observe and investigate the fracture form when the sample material is actually used,
It is necessary to put it in the state in which it is actually used within the electron microscope. After making the sample conductive by freeing tensile and compressive stress, we observe that when the stress is released, stress relaxation etc. may occur and the shape may change.
It is inappropriate for actual material evaluation. Based on this, we created a method and material testing device that allow conductivity treatment and observation without releasing stress, and arrived at the present invention.

【0006】即ち、本発明はシート状物に引っ張り応力
等を加え、その破壊形態を顕微鏡で観察する方法におい
て、顕微鏡の試料室に、固定台と移動台を有する材料試
験装置を設け、試料片の両端を固定台と移動台に固定し
た後移動台を移動して、試料片に応力を与え、変化量を
任意に調節した状態で顕微鏡にて観察することを特徴と
するシート状物の破壊形態観察方法である。
That is, the present invention is a method of applying tensile stress or the like to a sheet-like material and observing its fracture form using a microscope. Destruction of a sheet-like object characterized by fixing both ends of the specimen to a fixed table and a moving table, then moving the moving table to apply stress to the sample piece, and observing it under a microscope with the amount of change arbitrarily adjusted. This is a morphological observation method.

【0007】また、シート状物に引っ張り応力等を加え
、その破壊形態を顕微鏡で観察する装置において、顕微
鏡の試料室に、試料片に応力を与え、変化量を任意に調
節でき、かつ任意の応力を維持した状態にできる試料片
の固定台と移動台を有する材料試験装置を設けたことを
特徴とするシート状物の破壊形態観察装置である。
[0007] In addition, in an apparatus that applies tensile stress or the like to a sheet-like object and observes its fracture form using a microscope, stress can be applied to a sample piece in the sample chamber of the microscope, and the amount of change can be arbitrarily adjusted. This is an apparatus for observing the fracture morphology of a sheet-like object, which is equipped with a material testing apparatus having a fixed table and a movable table for a sample piece that can maintain stress.

【0008】以下、本発明をさらに詳細に説明する。本
発明のシート状物に応力を加えた状態で形態観察するた
めには、試料片の片端を固定台に、例えば押さえ板、あ
るいは直接固定ネジやバイス等を用いて完全に固定して
おき、他の片端を移動台に固定台に固定するのと同様に
して完全に固定する。
The present invention will be explained in more detail below. In order to observe the morphology of the sheet-like article of the present invention under stress, one end of the sample piece is completely fixed on a fixing table using, for example, a holding plate or a direct fixing screw or vise. Completely fix the other end to the moving base in the same way as fixing it to the fixed base.

【0009】応力の加わらない状態の固定台と移動台の
距離、あるいは試料片の設定長さを適当なスケールで測
定しておき、固定台と移動台の距離を例えば応力調整ネ
ジ、モーター、油圧シリンダー等で調整して移動台を移
動し、試料に加わる応力を調節する。
[0009] The distance between the fixed base and the movable base when no stress is applied, or the set length of the sample piece, is measured on an appropriate scale, and the distance between the fixed base and the movable base is measured using, for example, a stress adjustment screw, motor, hydraulic pressure, etc. Adjust the stress applied to the sample by moving the moving stage using a cylinder, etc.

【0010】この際試料の弾性等により移動台のガタつ
きやネジレがないようにする必要がある。例えば移動台
が平行にスライドするようなレールやネジレ防止のため
補助棒を用いることが好ましい。また透過型顕微鏡を使
用の場合は、透過型顕微鏡で観察できるよう試料観察位
置すなわち試料真下の固定台に観察口を設け、レ−ルや
応力調整ネジ等も観察の妨害にならないような位置に複
数本設けるのが好ましい。
At this time, it is necessary to prevent the moving stage from wobbling or twisting due to the elasticity of the sample. For example, it is preferable to use a rail on which the movable platform slides in parallel or an auxiliary bar to prevent twisting. In addition, when using a transmission microscope, set up an observation port at the sample observation position, i.e., on a fixed stand directly below the sample, so that it can be observed with the transmission microscope, and place the rails, stress adjustment screws, etc. so that they do not interfere with observation. It is preferable to provide a plurality of them.

【0011】その外、任意の応力を加えた位置で移動台
を完全に固定する例えば固定ネジ等の設置が好ましい。
[0011] In addition, it is preferable to install, for example, a fixing screw to completely fix the movable table at a position where an arbitrary stress is applied.

【0012】0012

【実施例】以下、本発明に係る一般の電子顕微鏡用試料
台に容易に設置できる小型の材料試験装置を用いて観察
する方法および装置の一実施例を図面に基づき説明する
。図1は本発明に係る材料試験装置の概略正面図、図2
はその概略側面図、図3は応力を加えた状態での電子顕
微鏡写真(倍率300倍)、図4は応力を加えた状態で
の電子顕微鏡写真(倍率5000倍)、図5は応力を加
えた後取り外し、応力が緩和した状態での電子顕微鏡写
真(倍率5000倍)である。
[Embodiment] An embodiment of the method and apparatus for observation using a small-sized material testing device that can be easily installed on a general sample stage for an electron microscope according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic front view of a material testing device according to the present invention, and FIG.
is a schematic side view of the same, Figure 3 is an electron micrograph (300x magnification) under stress, Figure 4 is an electron microscope photograph (5000x magnification) under stress, and Figure 5 is an electron microscope photograph (5000x magnification) under stress. This is an electron micrograph (magnification: 5000x) taken after removal and stress relaxed.

【0013】図1の固定台1と移動台2に押さえ板3で
シート状試料4を挟み、固定ネジ5で試料4を固定した
後応力調整ネジ6を調節して固定台1と移動台2の距離
を変化させ試料4に応力を加える。応力の調整は移動台
2下部のスケール7で確認できる。応力調節ネジ用固定
用ネジ8をひずみ調整した後締める。移動台固定ネジ9
もこの後締める。レ−ル12は試料や移動台のガタつき
やネジレ防止目的で設けた。
A sheet-like sample 4 is sandwiched between the fixed table 1 and the movable table 2 in FIG. Stress is applied to sample 4 by changing the distance between the two. Stress adjustment can be confirmed on the scale 7 at the bottom of the moving table 2. Tighten the stress adjustment screw fixing screw 8 after adjusting the strain. Moving table fixing screw 9
I'll close it later. The rail 12 was provided for the purpose of preventing the sample and the moving stage from shaking or twisting.

【0014】図3はこの装置を用いて三井東圧化学(株
)製高ニトリル樹脂商品名ゼクロン(厚み0.5mm)
を20%引っ張り応力を加えたまま導電化処理を行い、
電子顕微鏡(倍率300倍)で観察した写真である。試
料が引っ張り応力の方向に引き延ばされ、その直角方向
にクラックが発生していることが容易に判る。
FIG. 3 shows a high nitrile resin manufactured by Mitsui Toatsu Chemical Co., Ltd. (product name: Zekron (thickness: 0.5 mm)) using this device.
Conductive treatment is performed while applying 20% tensile stress.
This is a photograph observed with an electron microscope (300x magnification). It is easily seen that the sample is stretched in the direction of the tensile stress and cracks are generated in the direction perpendicular to the direction of the tensile stress.

【0015】図4はさらに細部を観察するため図3と同
一試料を高倍率(倍率5000倍)で観察した写真で、
多くのクレーズが集まってクラックができた様子が確認
できる。
FIG. 4 is a photograph of the same sample as in FIG. 3 observed at high magnification (5000x magnification) in order to observe more details.
It can be seen that many crazes gathered together to form a crack.

【0016】図5はゼクロン(厚み0.5mm)を20
%引っ張り試験を行った後取り外し、応力が緩和した状
態で導電化処理し電子顕微鏡(倍率5000倍)で観察
した写真である。この写真からクラックが発生したと判
断できる跡は認められるが、応力緩和により形状が変化
し、最も重要な観察すべきクレーズが観察できないこと
は明確である。
FIG. 5 shows 20 pieces of Zekron (thickness 0.5 mm).
This is a photograph taken after a tensile test was performed, removed, subjected to conductive treatment in a stress-relaxed state, and observed with an electron microscope (magnification: 5000x). Although traces of cracks can be seen from this photograph, it is clear that the shape has changed due to stress relaxation and the most important crazes that should be observed cannot be observed.

【0017】[0017]

【発明の効果】本発明は実施例に示したように、一般の
電子顕微鏡に取付け可能で応力可変の本発明の材料試験
装置を用いることで、導電化処理から観察までを応力を
加えた状態で行うことができ、従来の測定法では観察で
きなかった現象をとらえることが可能となり、従来技術
より低倍率での細部の観察が可能である。
Effects of the Invention As shown in the examples, the present invention uses the material testing device of the present invention that can be attached to a general electron microscope and has variable stress, so that stress is applied during the process from conductivity treatment to observation. This makes it possible to capture phenomena that could not be observed with conventional measurement methods, and enables observation of details at lower magnification than with conventional techniques.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】は本発明に係る材料試験装置の概略正面図であ
る。
FIG. 1 is a schematic front view of a material testing device according to the present invention.

【図2】は本発明に係る材料試験装置の概略側面図であ
る。
FIG. 2 is a schematic side view of a material testing device according to the present invention.

【図3】は本発明による材料試験装置を用い応力を加え
た状態での電子顕微鏡写真(倍率300倍)である。
FIG. 3 is an electron micrograph (300x magnification) under stress using the material testing device according to the present invention.

【図4】は本発明による材料試験装置を用い応力を加え
た状態での電子顕微鏡写真(倍率5000倍)である。
FIG. 4 is an electron micrograph (magnification: 5000 times) in a state where stress is applied using the material testing device according to the present invention.

【図5】は従来技術による応力を加えた後取り外し、応
力が緩和した状態で観察した電子顕微鏡写真(倍率50
00倍)である。
[Figure 5] is an electron micrograph (magnification: 50
00 times).

【符号の説明】[Explanation of symbols]

1:  固定台 2:  移動台 3a,3b:  押さえ板 4:  シート状試料 5a,5b,5c,5d:  固定ネジ6:  応力調
整ネジ 7:  スケール 8:  応力調整ネジ用固定ネジ 9:  移動台固定ネジ 10:  ベアリング 11:  ベアリング 12:  レール
1: Fixed base 2: Moving base 3a, 3b: Holding plate 4: Sheet sample 5a, 5b, 5c, 5d: Fixing screw 6: Stress adjustment screw 7: Scale 8: Fixing screw for stress adjustment screw 9: Moving base fixing Screw 10: Bearing 11: Bearing 12: Rail

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シート状物に引っ張り応力等を加え、その
破壊形態を顕微鏡で観察する方法において、顕微鏡の試
料室に、固定台と移動台を有する材料試験装置を設け、
試料片の両端を固定台と移動台に固定し、移動台を移動
して試料片に応力を与え、変化量を任意に調節した状態
で顕微鏡にて観察することを特徴とするシート状物の破
壊形態観察方法。
Claim 1: A method of applying tensile stress or the like to a sheet-like material and observing its fracture form using a microscope, comprising: providing a material testing device having a fixed stage and a moving stage in a sample chamber of the microscope;
A sheet-like object characterized by fixing both ends of a sample piece to a fixed table and a moving table, moving the moving table to apply stress to the sample piece, and observing it under a microscope with the amount of change arbitrarily adjusted. Method for observing fracture morphology.
【請求項2】シート状物に引っ張り応力等を加え、その
破壊形態を顕微鏡で観察する装置において、顕微鏡の試
料室に、試料片に応力を与え、変化量を任意に調節でき
、かつ任意の応力を維持した状態にできる試料片の固定
台と移動台を有する材料試験装置を設けたことを特徴と
するシート状物の破壊形態観察装置。
[Claim 2] A device for applying tensile stress or the like to a sheet-like object and observing its fracture form using a microscope. 1. An apparatus for observing the fracture morphology of a sheet-like object, comprising a material testing apparatus having a fixed table and a movable table for a sample piece that can maintain stress.
JP10361191A 1991-04-10 1991-04-10 Method and apparatus for observing broken state of sheet-shaped material Pending JPH04313046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10361191A JPH04313046A (en) 1991-04-10 1991-04-10 Method and apparatus for observing broken state of sheet-shaped material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10361191A JPH04313046A (en) 1991-04-10 1991-04-10 Method and apparatus for observing broken state of sheet-shaped material

Publications (1)

Publication Number Publication Date
JPH04313046A true JPH04313046A (en) 1992-11-05

Family

ID=14358572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10361191A Pending JPH04313046A (en) 1991-04-10 1991-04-10 Method and apparatus for observing broken state of sheet-shaped material

Country Status (1)

Country Link
JP (1) JPH04313046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278661A (en) * 2013-05-14 2013-09-04 北京科技大学 Parallel force continuous self loading compression device sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278661A (en) * 2013-05-14 2013-09-04 北京科技大学 Parallel force continuous self loading compression device sample
CN103278661B (en) * 2013-05-14 2015-06-10 北京科技大学 Parallel force continuous self loading compression device sample

Similar Documents

Publication Publication Date Title
US10119893B2 (en) Mechanical property tester of biological soft tissue
Tucker et al. The effect of varying strain rates and stress states on the plasticity, damage, and fracture of aluminum alloys
Jordon et al. Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method
Farruggia et al. Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce
CN200960630Y (en) Sample polishing clamp
Kihara et al. Tensile behavior of micro-sized specimen made of single crystalline nickel
CN108896562B (en) Material residual life evaluation method based on surface microscopic topography feature image analysis
Balasundaram et al. Three-dimensional particle cracking damage development in an Al–Mg-base wrought alloy
Hittmair et al. Environmental stress cracking of polyethylene
US5906681A (en) Cross-section sample staining tool
JPH04313046A (en) Method and apparatus for observing broken state of sheet-shaped material
Lee et al. Relaxation mechanism of polymer melts
Zhang et al. Numerical simulation and experimental study of crack propagation of polydimethylsiloxane
CN110470532A (en) A kind of fibre bundle scanning electron microscope home position stretch analysis sample preparation apparatus
Rizzieri et al. A tensometer to study strain deformation and failure behavior of hydrated systems via in situ environmental scanning electron microscopy
CN109959558B (en) Sample matrix for coating material in-situ tensile observation system
Pruitt et al. Cyclic stress fields ahead of tension fatigue cracks in amorphous polymers
CN111781061B (en) Plate and strip sample tensile test device and design and use method thereof
KR100534977B1 (en) Method and apparatus for characterizing in-situ tensile of metallic meterial
CN217443213U (en) Sample clamp for compression test analysis of in-situ tension table of scanning electron microscope
CN210119396U (en) Experiment platform of electronic universal testing machine
Gianola et al. Experimental techniques for uncovering deformation mechanisms in nanocrystalline Al thin films
CN110006749A (en) Translation gliding girdle tests observation method
Lesiuk et al. Structural integrity assessment of rigid polyurethane components using energy methods
CN220231263U (en) In-situ stretching device for testing two-dimensional strain of side surface of coating sample