JPH04313027A - Thermal type flow sensor - Google Patents

Thermal type flow sensor

Info

Publication number
JPH04313027A
JPH04313027A JP3062260A JP6226091A JPH04313027A JP H04313027 A JPH04313027 A JP H04313027A JP 3062260 A JP3062260 A JP 3062260A JP 6226091 A JP6226091 A JP 6226091A JP H04313027 A JPH04313027 A JP H04313027A
Authority
JP
Japan
Prior art keywords
heat
temperature
substrate
fluid
flow sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3062260A
Other languages
Japanese (ja)
Inventor
Yuji Ariyoshi
雄二 有吉
Koji Tanimoto
考司 谷本
Mikio Bessho
別所 三樹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3062260A priority Critical patent/JPH04313027A/en
Publication of JPH04313027A publication Critical patent/JPH04313027A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the output sensitivity of a thermal type flow sensor by increasing the convective heat transferring amount from a heat sensitive element for heat generation to a fluid. CONSTITUTION:A meandering recessing and projecting section is formed on the surface of a substrate 1 and another recessing and projecting section which is parallel to the flowing direction of a fluid is formed on the rear of the substrate 1. In addition, the convective heat transferring amount from a temperature sensitive resistance pattern 2 to a fluid is increased by forming heat sensitive resistance patterns 2 in the projecting sections of the recessing and projecting section on the surface and increasing the heat transferring area by means of both recessing and projecting sections on the surface and rear of the substrate 1. Therefore, the responsiveness of this sensor is improved, since the convective heat transferring amount to the fluid is increased and the output sensitivity of this sensor is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、エンジンに吸入され
る空気の流量検出用感温抵抗素子を改良した熱式流量セ
ンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal flow rate sensor having an improved temperature-sensitive resistance element for detecting the flow rate of air taken into an engine.

【0002】0002

【従来の技術】一般に自動車のエンジンの電子制御式燃
料噴射装着においては、空燃比制御のため、エンジンへ
の吸入空気量を精度良く計測することが重要である。こ
の空気流量センサとして従来ベーン式のものが主流であ
ったが、最近、小型で質量流量が得られ、応答性の良い
熱式流量センサが普及しつつある。
2. Description of the Related Art Generally, when installing an electronically controlled fuel injection system in an automobile engine, it is important to accurately measure the amount of air intake into the engine in order to control the air-fuel ratio. Conventionally, vane type air flow sensors have been the mainstream, but recently, thermal type flow sensors that are small, can obtain a mass flow rate, and have good responsiveness are becoming popular.

【0003】この熱式流量センサは吸入空気中に配設し
た感温抵抗体に電流を供給して発熱させ、この発熱体か
ら吸入空気中への伝熱現象を利用したもので、検出回路
として応答性に優れた定温度測定法が一般的に用いられ
ている。
This thermal flow rate sensor supplies current to a temperature-sensitive resistor disposed in the intake air to generate heat, and utilizes the phenomenon of heat transfer from this heating element to the intake air, and is used as a detection circuit. A constant temperature measurement method with excellent responsiveness is commonly used.

【0004】この定温度測定法は発熱体の温度が常に吸
気温度より一定温度高くなるようにブリッジ回路と差動
増幅器とを構成し、発熱体から空気中への伝熱量を計測
する方法である。
This constant temperature measurement method is a method in which a bridge circuit and a differential amplifier are configured so that the temperature of the heating element is always a certain temperature higher than the intake air temperature, and the amount of heat transferred from the heating element to the air is measured. .

【0005】従来の熱式流量センサの発熱用感温素子の
平面図を図11に示し、図11のF−F断面図を図12
に示す。この図11、図12に図示した発熱用感温素子
は特開昭60−235020号公報に示されたものであ
る。この図11、図12において、101は20〜50
μm 程度の腐食しにくい金属板、102は絶縁層10
6上に蛇行形状に加工して形成された温度依存抵抗パタ
ーンである。この絶縁層106は金属板1上に形成され
た極めて薄い絶縁層である。
FIG. 11 shows a plan view of a heat-generating temperature sensing element of a conventional thermal flow sensor, and FIG. 12 shows a sectional view taken along line FF in FIG.
Shown below. The heat-generating temperature sensing element shown in FIGS. 11 and 12 is disclosed in Japanese Patent Application Laid-Open No. 60-235020. In FIGS. 11 and 12, 101 is 20 to 50
A corrosion-resistant metal plate of about μm, 102 is an insulating layer 10
6 is a temperature-dependent resistance pattern formed by processing it into a meandering shape. This insulating layer 106 is an extremely thin insulating layer formed on the metal plate 1.

【0006】以上のように構成された発熱用感温素子は
小型で、一枚基板から多くの素子を製作できるので、量
産性に優れている。
[0006] The heat-generating temperature-sensitive element constructed as described above is small, and many elements can be manufactured from a single substrate, so it is excellent in mass production.

【0007】以上のような構造の感温抵抗体と固定抵抗
により図13に示すブリッジ回路を構成する。この図1
3において、107は発熱用感温抵抗、108は発熱用
感温抵抗107と同様な構造で抵抗値が発熱用感温抵抗
107に比べて50倍以上大きい吸気温検出用感温抵抗
、109,110,111は固定抵抗である。
A bridge circuit shown in FIG. 13 is constructed by the temperature-sensitive resistor and fixed resistor having the above-described structure. This figure 1
3, 107 is a temperature-sensitive resistor for generating heat; 108 is a temperature-sensitive resistor for detecting intake temperature, which has a similar structure to the temperature-sensitive resistor for generating heat 107 and has a resistance value more than 50 times larger than that of the temperature-sensitive resistor for generating heat 107; 109; 110 and 111 are fixed resistances.

【0008】上記の発熱用感温抵抗7、吸気温検出用感
温抵抗108、固定抵抗109〜110よりブリッジ回
路を構成し、ブリッジに接続されている。またパワート
ランジスタ113のエミッタはバッテリ電源に接続され
ている。
A bridge circuit is constituted by the temperature-sensitive resistor 7 for heat generation, the temperature-sensitive resistor 108 for detecting intake temperature, and the fixed resistors 109 to 110, and is connected to the bridge. Further, the emitter of the power transistor 113 is connected to a battery power source.

【0009】次に動作について説明する。ブリッジ回路
が平衡状態にある時、各ブリッジ抵抗は次式を満たす。 RH・R2 =(RK +R1 )・R3 ただしRH
は発熱用感温抵抗7の抵抗値、RK は吸気温検出用感
温抵抗108の抵抗値、R1 ,R2 ,R3 はそれ
ぞれ固定抵抗109,110,111の抵抗値を示す。
Next, the operation will be explained. When the bridge circuit is in a balanced state, each bridge resistor satisfies the following equation. RH・R2 = (RK +R1)・R3 However, RH
is the resistance value of the heat-generating temperature-sensitive resistor 7, RK is the resistance value of the intake temperature detection temperature-sensitive resistor 108, and R1, R2, and R3 are the resistance values of the fixed resistors 109, 110, and 111, respectively.

【0010】つまり、ブリッジの不平衡電圧がほぼゼロ
になるように、パワートランジスタ113から発熱用感
温抵抗107に加熱電流Iを供給することにより、発熱
用感温抵抗107の抵抗値、つまり温度が一定に保たれ
る。
That is, by supplying the heating current I from the power transistor 113 to the heat-generating temperature-sensitive resistor 107 so that the unbalanced voltage of the bridge becomes almost zero, the resistance value of the heat-generating temperature-sensitive resistor 107, that is, the temperature is kept constant.

【0011】この熱平衡状態において、加熱電流Iは流
体の質量流量Qmだけの関数となる。したがって、加熱
電流Iをブリッジ抵抗R3 における電圧降下として出
力端子114において測定することにより、質量流量が
検出できる。
In this state of thermal equilibrium, the heating current I is a function only of the mass flow rate Qm of the fluid. Therefore, by measuring the heating current I as a voltage drop across the bridge resistor R3 at the output terminal 114, the mass flow rate can be detected.

【0012】0012

【発明が解決しようとする課題】従来の熱式流量センサ
の原理は発熱体と流体との間の対流熱伝達を利用してい
るので、その他の熱伝達(保持部材への熱伝導や熱放射
)はできる限り小さい方がセンサの感度は向上する。 逆に言えば、発熱体からの全熱伝達量に占める対流熱伝
達量の割合が大きいほど、センサの出力感度は向上する
ことになる。
[Problems to be Solved by the Invention] Since the principle of conventional thermal flow rate sensors utilizes convection heat transfer between a heating element and a fluid, other heat transfer (such as heat conduction to a holding member or heat radiation) ) is as small as possible, the sensor sensitivity improves. Conversely, the output sensitivity of the sensor improves as the ratio of the amount of convective heat transfer to the total amount of heat transferred from the heating element increases.

【0013】しかしながら、従来の熱式流量センサは、
その発熱用感温素子の両面が平坦な構造であるため、伝
熱面積がかせげず、伝熱面積に比例する対流熱伝達量を
大きくすることができない。そのため、センサの出力感
度が比較的低いという問題があった。
However, the conventional thermal flow sensor
Since both surfaces of the heat-generating temperature sensing element are flat, the heat transfer area cannot be increased, and the amount of convective heat transfer, which is proportional to the heat transfer area, cannot be increased. Therefore, there was a problem that the output sensitivity of the sensor was relatively low.

【0014】また、保持部材への熱伝導損失は応答性に
も影響を与えるので、保持部材への熱伝導損失の全熱伝
達量に占める割合を小さくすることは、応答性改善の一
つの課題でもある。
[0014] Furthermore, since the heat conduction loss to the holding member also affects the responsiveness, reducing the proportion of the heat conduction loss to the holding member to the total amount of heat transfer is one of the challenges for improving the responsiveness. There is also.

【0015】この発明は上記のような課題を解消するた
めになされたもので、出力感度を向上させ、応答性も改
善された熱式流量センサを得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a thermal flow sensor with improved output sensitivity and response.

【0016】[0016]

【課題を解決するための手段】この発明に係わる熱式流
量センサは、発熱用感温素子の両面の流体に接する部分
の一部、または全部を凹凸構造にしたものである。
[Means for Solving the Problems] A thermal flow sensor according to the present invention has a heat-generating temperature-sensing element in which a part or all of the portions on both sides of the element that come into contact with fluid have an uneven structure.

【0017】[0017]

【作用】この発明における熱式流量センサは、発熱用感
温素子の両面の流体に接する部分の一部、または全部を
凹凸構造にしたので、伝熱面積が大きくなり、発熱体か
ら流体への対流による熱伝達量が増加する。
[Operation] In the thermal flow sensor of the present invention, part or all of the parts on both sides of the heat-generating temperature sensing element that come into contact with the fluid have an uneven structure, so the heat transfer area is increased and the heat transfer area from the heating element to the fluid is increased. The amount of heat transferred by convection increases.

【0018】[0018]

【実施例】以下、この発明の熱式流量センサの実施例を
図において説明する。図1はその一実施例を示す発熱用
感温素子の平面図、図2は図1のA−A断面図である。 図1、図2の両図において、1はシリコン単結晶基板(
以下、基板という)、1aは基板1の表面に形成された
表面凹凸部、1bは基板1の裏面に形成された裏面凹凸
部、2は基板1上に蒸着などにより形成された温度依存
性抵抗体となる感温抵抗膜をエッチングにより蛇行形状
に加工した感温抵抗パターン、3は感温抵抗パターンの
端部に設けられた電極取り出し部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the thermal flow rate sensor of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view of a heat-generating temperature-sensitive element showing one embodiment thereof, and FIG. 2 is a sectional view taken along the line AA in FIG. In both FIGS. 1 and 2, 1 is a silicon single crystal substrate (
(hereinafter referred to as a substrate), 1a is a surface unevenness formed on the front surface of the substrate 1, 1b is a back surface unevenness formed on the back surface of the substrate 1, and 2 is a temperature-dependent resistor formed on the substrate 1 by vapor deposition etc. A temperature-sensitive resistor pattern is formed by etching a temperature-sensitive resistive film as a body into a meandering shape. 3 is an electrode extraction portion provided at an end of the temperature-sensitive resistor pattern.

【0019】次に、動作について説明する。この実施例
では、図1、図2に示されるように、基板1の両面に凹
凸構造を施しているので、発熱用感温素子から流体への
伝達面積が大きくなる。基板1の表面側の表面凹凸部1
aは凸部が感温抵抗パターン2と同じ蛇行形状に、基板
1の裏面側の裏面凹凸部1bは凹部凸部とも流体の流れ
に対して平行に形成されており、基板1を異方性エッチ
ングすることにより得られる。
Next, the operation will be explained. In this embodiment, as shown in FIGS. 1 and 2, both surfaces of the substrate 1 are provided with a concavo-convex structure, so that the transmission area from the heat-generating temperature-sensitive element to the fluid becomes large. Surface unevenness portion 1 on the front side of the substrate 1
The convex portion a has the same meandering shape as the temperature-sensitive resistor pattern 2, and the concave and convex portions 1b on the back side of the substrate 1 are formed parallel to the fluid flow, making the substrate 1 anisotropic. Obtained by etching.

【0020】この実施例では、感温抵抗パターン2が基
板1の表面凹凸部1aのうち凸部に形成されている。
In this embodiment, the temperature-sensitive resistor pattern 2 is formed on a convex portion of the surface unevenness 1a of the substrate 1.

【0021】また、図1には基板1に対して垂直な壁面
を持つ凹凸部を示してあるが、基板1の等方性エッチン
グにより得られる曲面をその壁面に持つ凹凸部であって
もかまわない。このように、伝熱面積を大きくすること
により、発熱用感温素子から流体への対流熱伝達量が増
加し、センサの出力感度、および応答性が向上される。
Further, although FIG. 1 shows an uneven portion having a wall surface perpendicular to the substrate 1, the uneven portion may have a curved surface obtained by isotropic etching of the substrate 1 on the wall surface. do not have. In this way, by increasing the heat transfer area, the amount of convective heat transfer from the heat-generating temperature sensing element to the fluid increases, and the output sensitivity and responsiveness of the sensor are improved.

【0022】次に、この発明の熱式流量センサの第2の
実施例について説明する。図3はこの第2の実施例にお
ける発熱用感温素子の平面図であり、図4は図3のB−
B線の断面図である。上記第1の実施例では基板1の表
面側の表面凹凸部1aのうち凸部に感温パターン2を形
成しているが、この第2の実施例では、逆に凹部に感温
抵抗パターン2を形成したものであり、この場合も同様
に効果を期待できる。この場合、基板1の表面側の凹部
が感温抵抗パターン2と同じ蛇行形状となる。
Next, a second embodiment of the thermal flow sensor of the present invention will be described. FIG. 3 is a plan view of the heat-generating temperature sensing element in this second embodiment, and FIG.
It is a sectional view taken along the B line. In the first embodiment, the temperature-sensitive pattern 2 is formed in the convex portion of the surface unevenness 1a on the front side of the substrate 1, but in this second embodiment, on the contrary, the temperature-sensitive resistor pattern 2 is formed in the concave portion. The same effect can be expected in this case as well. In this case, the concave portion on the front surface side of the substrate 1 has the same meandering shape as the temperature-sensitive resistor pattern 2.

【0023】次に、この発明の第3の実施例について説
明する。図5はこの発明の熱式流量センサにおける発熱
用感温素子の平面図であり、図6は図5のC−C線に沿
って切断して示す断面図である。この図5、図6の両図
において、基板1、感温抵抗パターン2は上記図1、図
2で示した第1の実施例と全く同一のものを示すが、こ
の第3の実施例では、基板1の裏面に裏面凹凸部1bを
形成することは、上記第1、第2の二つの実施例と同じ
であるが、基板1の表面側に直接凹凸を施すことはせず
、平坦なままの表面に感温抵抗膜を成膜し、エッチング
により感温抵抗パターン2を形成する。そして、感温抵
抗パターン2の上からエッチング可能な良熱伝導膜4を
被覆し、この良熱伝導膜4をエッチングして凹凸部4a
を形成する。
Next, a third embodiment of the present invention will be described. FIG. 5 is a plan view of the heat-generating temperature sensing element in the thermal flow sensor of the present invention, and FIG. 6 is a cross-sectional view taken along line CC in FIG. In both FIGS. 5 and 6, the substrate 1 and temperature-sensitive resistor pattern 2 are exactly the same as those in the first embodiment shown in FIGS. 1 and 2, but in this third embodiment, , forming the back surface unevenness portion 1b on the back surface of the substrate 1 is the same as in the first and second embodiments described above, but the surface side of the substrate 1 is not directly formed with unevenness, but is formed on a flat surface. A temperature-sensitive resistance film is formed on the remaining surface, and a temperature-sensitive resistance pattern 2 is formed by etching. Then, a good heat conductive film 4 that can be etched is covered over the temperature sensitive resistor pattern 2, and the good heat conductive film 4 is etched to form the uneven portions 4a.
form.

【0024】このようにして、伝熱面積を大きくするこ
とによっても、発熱用感温素子から流体への対流熱伝達
量が増加し、センサの出力感度、および応答性が向上さ
れる。
[0024] By increasing the heat transfer area in this manner, the amount of convective heat transfer from the heat-generating temperature sensing element to the fluid increases, and the output sensitivity and responsiveness of the sensor are improved.

【0025】なお、この第3の実施例では、基板1上に
成膜された感温抵抗膜をエッチングして感温抵抗パター
ン2を形成したが、この発明の第4の実施例として、図
7の平面図および図7のD−D線に沿って切断して示す
図8の断面図に示すように、基板1上の感温抵抗膜を、
レーザトリミングを用いて形成したパターン溝5により
、蛇行形状の抵抗パターン2に加工してもかまわない。
In the third embodiment, the temperature-sensitive resistor pattern 2 was formed by etching the temperature-sensitive resistor film formed on the substrate 1, but as a fourth embodiment of the present invention, As shown in the plan view of FIG. 7 and the cross-sectional view of FIG. 8 taken along line D-D in FIG.
The resistor pattern 2 may be processed into a meandering shape using the pattern groove 5 formed using laser trimming.

【0026】次に、この発明の第5の実施例について説
明する。この第5の実施例における発熱用感温素子の平
面図を図9に示し、図9のE−E線に沿って切断して示
す断面図を図10に示す。
Next, a fifth embodiment of the present invention will be described. A plan view of the heat-generating temperature sensing element in this fifth embodiment is shown in FIG. 9, and a cross-sectional view taken along line E--E in FIG. 9 is shown in FIG.

【0027】この図9、図10における1〜3は上記図
1、図2で示した第1の実施例と同等あるいは相当部分
を示す。この第5の実施例では、基板1の平坦なままの
表面上に蒸着などにより感温抵抗膜を成膜し、この感温
抵抗膜4をエッチング、またはレーザトリミングにより
加工して蛇行形状の感温抵抗パターン2を形成した後、
基板1の両面にエッチング可能な良熱伝導膜4を被覆し
、その良熱伝導膜4に凹凸部4a,4bを形成している
Reference numerals 1 to 3 in FIGS. 9 and 10 indicate the same or equivalent parts as in the first embodiment shown in FIGS. 1 and 2 above. In this fifth embodiment, a temperature-sensitive resistive film is formed on the flat surface of the substrate 1 by vapor deposition or the like, and this temperature-sensitive resistive film 4 is processed by etching or laser trimming to form a meandering shape. After forming temperature resistance pattern 2,
Both sides of the substrate 1 are coated with a good heat conductive film 4 that can be etched, and uneven parts 4a and 4b are formed on the good heat conductive film 4.

【0028】このようにして、伝熱面積を大きくするこ
とによっても、発熱用感温素子から流体への対流熱伝達
量が増加し、センサの出力感度および応答性が向上する
。この実施例においては、基板1はシリコン単結晶基板
である必要はなく、アルミナ、ポリイミドなどからなる
絶縁性基板、あるいはエッチングのできない絶縁性基板
であってもかまわない。
In this manner, by increasing the heat transfer area, the amount of convective heat transfer from the heat-generating temperature sensing element to the fluid increases, and the output sensitivity and responsiveness of the sensor are improved. In this embodiment, the substrate 1 need not be a silicon single crystal substrate, but may be an insulating substrate made of alumina, polyimide, etc., or an insulating substrate that cannot be etched.

【0029】[0029]

【発明の効果】以上のように、この発明によれば、発熱
用感温素子の両面の流体に接する部分の一部、または全
部を凹凸構造にしたので、伝熱面積が大きくなり、発熱
体から流体への対流熱伝達量が増加する。その結果、セ
ンサの出力感度が向上し、応答性も改善される効果があ
る。
As described above, according to the present invention, a part or all of the parts on both sides of the heat-generating temperature-sensitive element that come in contact with the fluid have an uneven structure, so that the heat transfer area becomes large and the heat-generating element The amount of convective heat transfer from to the fluid increases. As a result, the output sensitivity of the sensor is improved and the responsiveness is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の第1の実施例による熱式流量センサ
における発熱用感温素子の平面図である。
FIG. 1 is a plan view of a heat-generating temperature sensing element in a thermal flow sensor according to a first embodiment of the present invention.

【図2】図1のA−A線に沿って切断して示す断面図で
ある。
FIG. 2 is a cross-sectional view taken along line AA in FIG. 1;

【図3】この発明の第2の実施例による熱式流量センサ
における発熱用感温素子の平面図である。
FIG. 3 is a plan view of a heat-generating temperature sensing element in a thermal flow sensor according to a second embodiment of the present invention.

【図4】図3のB−B線に沿って切断して示す断面図で
ある。
FIG. 4 is a cross-sectional view taken along line BB in FIG. 3;

【図5】この発明の第3の実施例による熱式流量センサ
における発熱用感熱抵抗素子の平面図である。
FIG. 5 is a plan view of a heat-generating heat-sensitive resistance element in a thermal flow sensor according to a third embodiment of the present invention.

【図6】図5のC−C線に沿って切断して示す断面図で
ある。
FIG. 6 is a cross-sectional view taken along line CC in FIG. 5;

【図7】この発明の第4の実施例による熱式流量センサ
における発熱用感熱抵抗素子の平面図である。
FIG. 7 is a plan view of a heat-generating heat-sensitive resistance element in a thermal flow sensor according to a fourth embodiment of the present invention.

【図8】図7のD−D線に沿って切断して示す断面図で
ある。
8 is a cross-sectional view taken along line DD in FIG. 7. FIG.

【図9】この発明の第5の実施例による熱式流量センサ
における発熱用感熱抵抗素子の平面図である。
FIG. 9 is a plan view of a heat-generating heat-sensitive resistance element in a thermal flow sensor according to a fifth embodiment of the present invention.

【図10】図9のE−E線に沿って切断して示す断面図
である。
10 is a cross-sectional view taken along line E-E in FIG. 9; FIG.

【図11】従来の熱式流量センサにおける発熱用感熱抵
抗素子の平面図である。
FIG. 11 is a plan view of a heat-generating heat-sensitive resistance element in a conventional thermal flow sensor.

【図12】図11のF−F線に沿って切断して示す断面
図である。
12 is a cross-sectional view taken along line FF in FIG. 11. FIG.

【図13】従来の熱式流量センサにおける定温度測定法
に使用されるブリッジ回路を示す回路図である。
FIG. 13 is a circuit diagram showing a bridge circuit used in a constant temperature measurement method in a conventional thermal flow sensor.

【符号の説明】[Explanation of symbols]

1  基板 1a  基板1の表面側の凹凸構造 1b  基板1の裏面側の凹凸構造 2  感温抵抗パターン 3  電極取り出し部 4  良熱伝導膜 4a,4b  良熱伝導膜の凹凸部 5  パターン溝 6  絶縁層 1 Board 1a Uneven structure on the surface side of substrate 1 1b Uneven structure on the back side of substrate 1 2 Temperature-sensitive resistance pattern 3 Electrode extraction part 4. Good thermal conductive film 4a, 4b Uneven parts of good thermal conductive film 5 Pattern groove 6 Insulating layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  流通する流体に接するように基板上に
蛇行状に形成された温度依存性抵抗体と、この温度依存
性抵抗体の上記流体の接する部分の少なくとも一部に形
成された凹凸部とを備えた熱式流量センサ。
1. A temperature-dependent resistor formed in a meandering shape on a substrate so as to be in contact with a flowing fluid, and an uneven portion formed on at least a portion of a portion of the temperature-dependent resistor that is in contact with the fluid. A thermal flow sensor equipped with
JP3062260A 1991-03-27 1991-03-27 Thermal type flow sensor Pending JPH04313027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3062260A JPH04313027A (en) 1991-03-27 1991-03-27 Thermal type flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062260A JPH04313027A (en) 1991-03-27 1991-03-27 Thermal type flow sensor

Publications (1)

Publication Number Publication Date
JPH04313027A true JPH04313027A (en) 1992-11-05

Family

ID=13195001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062260A Pending JPH04313027A (en) 1991-03-27 1991-03-27 Thermal type flow sensor

Country Status (1)

Country Link
JP (1) JPH04313027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058046A (en) * 2019-04-23 2019-07-26 中国大唐集团科学技术研究院有限公司华东电力试验研究院 A kind of fluid flow rate measurement method and device based on convective heat transfer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058046A (en) * 2019-04-23 2019-07-26 中国大唐集团科学技术研究院有限公司华东电力试验研究院 A kind of fluid flow rate measurement method and device based on convective heat transfer

Similar Documents

Publication Publication Date Title
JPH10197309A (en) Measuring element for thermal air flowmeter and thermal air flowmeter
JPH0989619A (en) Heat-sensitive flowmeter
JP3455473B2 (en) Thermal flow sensor
US6470742B1 (en) Flow sensor
JP3658170B2 (en) Flow sensor
JP3513048B2 (en) Thermal flow sensor and method of manufacturing the same
KR100323315B1 (en) Thermo-sensitive flow rate sensor
CN101408442A (en) Air mass flow sensor of silicone base thin-film structure
US5140854A (en) Intake air quantity measuring apparatus
JPH04313027A (en) Thermal type flow sensor
JP2529895B2 (en) Flow sensor
JP3668921B2 (en) Flow detection element
JP2908942B2 (en) Thermal flow sensor
JP3316740B2 (en) Flow detection element
JPS60230019A (en) Gas flow rate detector
JPH04343022A (en) Thermal flowmeter sensor
JP2842485B2 (en) Thermal flow sensor
JP2646846B2 (en) Temperature-sensitive resistance element
JP3174234B2 (en) Thermal air flow detector
JPH11281445A (en) Flow rate detecting element and flow sensor
JP2001153704A (en) Flow sensor
JPH04191619A (en) Thermal flow rate sensor
JPH04102023A (en) Flow speed sensor
JPH1062222A (en) Flow sensor
JPH07286876A (en) Thermal type air flow rate detector