JPH04312537A - Production of cycloolefin - Google Patents

Production of cycloolefin

Info

Publication number
JPH04312537A
JPH04312537A JP3105060A JP10506091A JPH04312537A JP H04312537 A JPH04312537 A JP H04312537A JP 3105060 A JP3105060 A JP 3105060A JP 10506091 A JP10506091 A JP 10506091A JP H04312537 A JPH04312537 A JP H04312537A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
manganese
benzene
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3105060A
Other languages
Japanese (ja)
Inventor
Satoshi Arimitsu
有光 聰
Koichi Shikakura
鹿倉 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP3105060A priority Critical patent/JPH04312537A/en
Publication of JPH04312537A publication Critical patent/JPH04312537A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce a cycloolefin useful for industrial use, especially cyclohexene, on an industrial scale in high yield at a low cost by partially hydrogenating an aromatic hydrocarbon such as benzene. CONSTITUTION:An aromatic hydrocarbon such as benzene is partially hydrogenated with hydrogen gas in the presence of a catalyst consisting of ruthenium and manganese, water and, as necessary, an alcohol and/or an alkaline agent. The catalyst consisting of ruthenium and manganese exhibits the catalytic activity extremely stable with time compared with conventional catalyst and the objective compound can be selectively produced at reduced cost over a long period.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は芳香族炭化水素を原料と
して環状オレフィン、例えばシクロヘキセンを製造する
方法の改良に関するものである。さらに詳しく言えば、
本発明は活性に優れた触媒系を用い、芳香族炭化水素を
水素ガスにより部分水素化することにより、収率よく工
業的有利に環状オレフィンを製造するための方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing cyclic olefins, such as cyclohexene, from aromatic hydrocarbons. To be more specific,
The present invention relates to a method for producing cyclic olefins in high yield and industrially advantageously by partially hydrogenating aromatic hydrocarbons with hydrogen gas using a catalyst system with excellent activity.

【従来技術】環状オレフィンは工業的に有用な原料中間
体であり、例えばシクロヘキセンはアジピン酸、カプロ
ラクタム、マレイン酸などの高分子原料、その他の医薬
、農薬の中間体として広範な用途が期待される工業原料
である。
[Prior Art] Cyclic olefins are industrially useful raw material intermediates. For example, cyclohexene is expected to have a wide range of uses as a raw material for polymers such as adipic acid, caprolactam, and maleic acid, and as an intermediate for other pharmaceuticals and agricultural chemicals. It is an industrial raw material.

【0002】シクロヘキセンの製造方法としては、従来
、シクロヘキサノールの脱水反応、ハロゲン化シクロヘ
キサンの脱ハロゲン化水素反応などの製造法が知られて
いる。また、最近、芳香族炭化水素化合物の核部分水素
化によりベンゼンからシクロヘキセンを収率よく製造す
る方法が経済性ある工業プロセスとして注目されている
Conventionally known methods for producing cyclohexene include dehydration reaction of cyclohexanol and dehydrohalogenation reaction of halogenated cyclohexane. Furthermore, recently, a method for producing cyclohexene from benzene in good yield through nuclear partial hydrogenation of aromatic hydrocarbon compounds has been attracting attention as an economical industrial process.

【0003】ベンゼンの部分水素化によるシクロヘキセ
ンの製造方法として以下の触媒を用いる方法が知られて
いる。
[0003] As a method for producing cyclohexene by partial hydrogenation of benzene, a method using the following catalyst is known.

【0004】(1)アルコールまたはエステルの存在下
にニッケル、コバルト、クロムまたはジルコニウムの酸
化物にルテニウムを担持した触媒を用いる方法(特公昭
52−3933号公報)、(2)水およびアルカリ剤な
らびに少なくとも一種の第8族元素の還元されたカチオ
ンから成る触媒を用いる方法(特公昭56−22850
号公報)、(3)ルテニウムおよびロジウムの少なくと
も一種を主成分として予め還元された固体触媒を周期律
表IA族金属、IIA族金属、マンガン、鉄および亜鉛
よりなる群から選ばれた少なくとも一種の陽イオンの塩
を含む水溶液で予め処理したものを用い、水の存在下に
反応させる方法(特公昭56−3852号公報)、(4
)硫酸バリウムを担体として用い、鉄、コバルト、銀お
よび銅から1 る群より選ばれる少なくとも一種以上の
金属およびルテニウムを担持した触媒および水の存在下
に反応する方法(特開昭61−122231号公報)、
(5)水および亜鉛化合物の存在下、水素化触媒として
200オングストローム以下の平均結晶子径を有する金
属ルテニウム結晶子及び/またはその凝集した粒子を使
用し、アルコールを添加剤として反応する方法(特開昭
61−50930号公報)、(6)水および亜鉛化合物
の存在下、触媒として30−200オングストロームの
平均結晶子径を有する金属ルテニウムを主成分とする粒
子をZrO2 もしくはHfO2 担体に担持した触媒
を用いて反応する方法(特開昭63−243038号公
報)などが提案されている。
(1) A method using a catalyst in which ruthenium is supported on an oxide of nickel, cobalt, chromium or zirconium in the presence of an alcohol or ester (Japanese Patent Publication No. 3933/1983), (2) Water and an alkaline agent; A method using a catalyst consisting of a reduced cation of at least one Group 8 element (Japanese Patent Publication No. 56-22850
(3) A pre-reduced solid catalyst containing at least one of ruthenium and rhodium as a main component is combined with at least one selected from the group consisting of Group IA metals, Group IIA metals, manganese, iron and zinc in the periodic table. A method of reacting in the presence of water using an aqueous solution containing a cationic salt (Japanese Patent Publication No. 56-3852), (4
) A method of reacting in the presence of water and a catalyst supporting at least one metal selected from the group consisting of iron, cobalt, silver and copper and ruthenium using barium sulfate as a carrier (Japanese Patent Application Laid-open No. 122231/1983) Public bulletin),
(5) A method in which metal ruthenium crystallites and/or aggregated particles thereof having an average crystallite diameter of 200 angstroms or less are used as a hydrogenation catalyst in the presence of water and a zinc compound, and alcohol is used as an additive (special (6) A catalyst in which metal ruthenium-based particles having an average crystallite diameter of 30-200 angstroms are supported on a ZrO2 or HfO2 carrier in the presence of water and a zinc compound. A method of reacting using (Japanese Unexamined Patent Publication No. 63-243038) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記(1)及
び(2)の方法では高いシクロヘキセン選択率を得るた
めに原料の転化率を著しく低くする必要があり、実用的
な方法として採用し難い面を有している。また、(3)
、(4)及び(6)の方法では主触媒金属であるルテニ
ウムを種々の担体に担持した触媒を用い、水の存在下に
おいて高温・高圧条件で水素化を行うことに特徴がある
が、本発明者らが検討した結果、かかる反応条件下にお
いてルテニウム触媒の活性が経時的に著しく不安定であ
り、触媒の長期間連続使用ができないことが判った(参
考例参照)。また、上記(5)の方法では反応時におけ
るルテニウム微粒子の凝集などを伴い易く、経時的に安
定した触媒性能を維持することが難しいと判断される。
[Problems to be Solved by the Invention] However, in the methods (1) and (2) above, it is necessary to significantly lower the conversion rate of the raw material in order to obtain a high cyclohexene selectivity, and it is difficult to adopt it as a practical method. It has a surface. Also, (3)
, (4) and (6) are characterized by the use of catalysts in which ruthenium, the main catalyst metal, is supported on various carriers, and the hydrogenation is carried out under high temperature and high pressure conditions in the presence of water. As a result of studies conducted by the inventors, it was found that the activity of the ruthenium catalyst is extremely unstable over time under such reaction conditions, making it impossible to use the catalyst continuously for a long period of time (see Reference Examples). Furthermore, in the method (5) above, ruthenium fine particles tend to aggregate during the reaction, and it is judged that it is difficult to maintain stable catalyst performance over time.

【0006】[0006]

【課題を解決するための手段】本発明者らは工業的に有
利なかつ経時的に安定したシクロヘキセン合成用触媒に
ついて鋭意研究を重ねた結果、ルテニウムとマンガンか
ら成る触媒を用いることにより、上記目的を達成しうる
ことを見いだし、この知見に基づいて本発明を完成する
に至った。
[Means for Solving the Problems] As a result of extensive research into catalysts for cyclohexene synthesis that are industrially advantageous and stable over time, the present inventors have found that the above object can be achieved by using a catalyst consisting of ruthenium and manganese. We have discovered that this can be achieved, and based on this knowledge, we have completed the present invention.

【0007】すなわち、本発明はルテニウム及びマンガ
ンから成る触媒並びに水の存在下で芳香族炭化水素を水
素ガスにより部分水素化することを特徴とする環状オレ
フィンの製造方法を提供するものである。
That is, the present invention provides a method for producing cyclic olefins, which is characterized in that aromatic hydrocarbons are partially hydrogenated with hydrogen gas in the presence of a catalyst comprising ruthenium and manganese and water.

【0008】以下、本発明を詳細に説明する。本発明に
おける芳香族炭化水素としてはベンゼン、トルエン、キ
シレン等のアルキル基を有するベンゼン誘導体、ナフタ
レンやそのアルキル誘導体等が例示できる。
The present invention will be explained in detail below. Examples of the aromatic hydrocarbon in the present invention include benzene, toluene, xylene and other benzene derivatives having an alkyl group, naphthalene and its alkyl derivatives.

【0009】本発明においては触媒としてルテニウム及
びマンガンから成る触媒が用いられ、使用に際して水が
必要であり、アルコール及び/またはアルカリ剤が必要
に応じ用いられる。
[0009] In the present invention, a catalyst consisting of ruthenium and manganese is used as a catalyst, water is required for use, and alcohol and/or an alkaline agent are used as necessary.

【0010】本発明方法において用いるルテニウム及び
マンガンから成る触媒はルテニウム金属及び/またはル
テニウム化合物並びにマンガン金属及び/またはマンガ
ン化合物から構成され、担体に固定化されている。
The catalyst composed of ruthenium and manganese used in the method of the present invention is composed of ruthenium metal and/or a ruthenium compound and a manganese metal and/or a manganese compound, and is immobilized on a carrier.

【0011】触媒を構成するルテニウム及びマンガンの
原料化合物としては、例えばこれらの金属、酸化物、水
酸化物、ハロゲン化物、硝酸塩、硫酸塩、酢酸塩、アセ
チルアセトナート化合物、カルボニル化合物、アンミン
錯体、アルキル金属化合物などが用いられる。
Examples of raw material compounds for ruthenium and manganese constituting the catalyst include these metals, oxides, hydroxides, halides, nitrates, sulfates, acetates, acetylacetonate compounds, carbonyl compounds, ammine complexes, Alkyl metal compounds and the like are used.

【0012】触媒の調製に際して、これらのルテニウム
及びマンガンなどの触媒成分を担体に担持するが、その
方法については特に制限がなく、従来触媒成分を担体に
担持するのに慣用されている方法、例えば触媒成分を同
一溶媒に同時に溶解した混合液を調製し、担体に同時に
担持する方法、各触媒成分を必要に応じて還元、熱処理
などの処理を行いながら逐次的、段階的に担持する方法
などを用いることができる。このような触媒成分の担持
処理の際に使用する溶媒としては、例えば水、メタノー
ル、エタノール、テトラヒドロフラン、ジオキサン、ア
セトン、ヘキサン、ベンゼン、トルエン、塩化メチレン
などが挙げられる。
[0012] In preparing the catalyst, these catalyst components such as ruthenium and manganese are supported on a carrier, but there are no particular restrictions on the method, and conventional methods for supporting catalyst components on a carrier, such as Methods include preparing a mixed solution in which catalyst components are simultaneously dissolved in the same solvent and simultaneously supporting them on a carrier, and methods in which each catalyst component is supported sequentially or stepwise while performing treatments such as reduction and heat treatment as necessary. Can be used. Examples of the solvent used in the supporting treatment of the catalyst component include water, methanol, ethanol, tetrahydrofuran, dioxane, acetone, hexane, benzene, toluene, and methylene chloride.

【0013】その他の調製法、例えば担体のイオン交換
能を利用したイオン交換によって触媒金属成分を担持す
る方法、共沈法によって触媒を調製する方法なども本発
明で用いられる触媒の調製手法として採用できる。
Other preparation methods, such as a method of supporting a catalyst metal component by ion exchange utilizing the ion exchange ability of a carrier, and a method of preparing a catalyst by a coprecipitation method, are also employed as a preparation method for the catalyst used in the present invention. can.

【0014】上述の手法により調製された触媒は通常還
元処理を行うことにより担体に固定化し、活性化し次い
で反応に供せられる。還元を行うには水素を含有する気
体により昇温下で行うことが好ましい。還元温度はルテ
ニウムの還元される温度100℃程度の条件下で還元処
理ができるが、好ましくは100℃〜600℃の温度で
還元処理を行う。また、ヒドラジン、ホルマリン、水素
化ホウ素化合物、水素化アルミニウム化合物などの還元
剤を用いて還元処理を行うことができる。
[0014] The catalyst prepared by the above-mentioned method is usually immobilized on a carrier by reduction treatment, activated, and then subjected to reaction. The reduction is preferably carried out using a hydrogen-containing gas at an elevated temperature. The reduction treatment can be performed at a temperature of about 100°C, which is the temperature at which ruthenium is reduced, but preferably the reduction treatment is performed at a temperature of 100°C to 600°C. Further, reduction treatment can be performed using a reducing agent such as hydrazine, formalin, a borohydride compound, or an aluminum hydride compound.

【0015】本発明において用いられる担体は比表面積
が10〜2000m2/g で、かつ平均細孔径10オ
ングストローム以上のものが好ましく、例えばシリカ、
ケイ酸塩、シリカゲル、モレキュラーシーブ、ケイソウ
土などのシリカ系担体、アルミナ、マグネシア、チタニ
ア、ジルコニア、酸化亜鉛、酸化マンガンなどの金属酸
化物担体などが挙げられる。また、クロム酸マンガン、
ケイ酸マンガン、チタン酸マンガン、ジルコン酸マンガ
ン、ニオブ酸マンガン、バナジン酸マンガン、マンガン
フェライトなどのマンガン含有複合酸化物担体なども挙
げられる。
The carrier used in the present invention preferably has a specific surface area of 10 to 2000 m2/g and an average pore diameter of 10 angstroms or more, such as silica,
Examples include silica-based carriers such as silicate, silica gel, molecular sieve, diatomaceous earth, and metal oxide carriers such as alumina, magnesia, titania, zirconia, zinc oxide, and manganese oxide. In addition, manganese chromate,
Also included are manganese-containing complex oxide supports such as manganese silicate, manganese titanate, manganese zirconate, manganese niobate, manganese vanadate, and manganese ferrite.

【0016】本発明において用いられるルテニウム及び
マンガンから成る触媒では、触媒中の各成分の担持量と
組成比は広い範囲で変えることができる。ルテニウムの
担体に対する担持量は、担体の比表面積を考慮して重量
比で0.0001〜0.5、好ましくは0.001〜0
.3である。また、他の一方の成分であるマンガンはル
テニウムに対して原子比で0.01以上、好ましくは0
.1以上の添加量である。
[0016] In the catalyst composed of ruthenium and manganese used in the present invention, the supported amount and composition ratio of each component in the catalyst can be varied within a wide range. The amount of ruthenium supported on the carrier is 0.0001 to 0.5 in weight ratio, preferably 0.001 to 0, considering the specific surface area of the carrier.
.. It is 3. The other component, manganese, has an atomic ratio of 0.01 or more, preferably 0.01 to ruthenium.
.. The amount added is 1 or more.

【0017】本発明においては、水の存在下で水素化を
行うことが必要である。水の量は、水素化反応時に芳香
族炭化水素原料と生成物からなる有機相と触媒を含む水
相が2相を形成するに足る量であればよく、芳香族炭化
水素原料に対して重量比で1〜10の範囲で使用される
。また、アルコール及び/またはアルカリ剤が必要に応
じて使用でき、これらの試剤は触媒の水素化能を抑制し
、環状オレフィンの収率を増大させる有効な添加剤であ
り、アルコールとしてはメタノール、エタノール、プロ
パノール、ブタノールなどの脂肪族アルコール、エタノ
ールアミン、アミノプロパノール、アミノブタノール、
ジエタノールアミン、3−アミノ−1,2−プロパンジ
オール、ビス(ヒドロキシエチル)エチレンジアミンな
どのアルコールアミンが好ましく、アルコールの添加量
はルテニウム量に対して10〜300倍使用する。 また、アルカリ剤としては水酸化リチウム、水酸化ナト
リウム、水酸化カリウムなどが好ましく、アルカリ剤の
添加量はルテニウムに対して1〜200倍が用いられる
In the present invention, it is necessary to carry out the hydrogenation in the presence of water. The amount of water may be sufficient to form two phases, an organic phase consisting of the aromatic hydrocarbon raw material and the product, and an aqueous phase containing the catalyst during the hydrogenation reaction. It is used in a ratio of 1 to 10. In addition, alcohol and/or alkaline agents can be used as necessary, and these agents are effective additives that suppress the hydrogenation ability of the catalyst and increase the yield of cyclic olefins. , aliphatic alcohols such as propanol, butanol, ethanolamine, aminopropanol, aminobutanol,
Alcohol amines such as diethanolamine, 3-amino-1,2-propanediol, and bis(hydroxyethyl)ethylenediamine are preferred, and the amount of alcohol added is 10 to 300 times the amount of ruthenium. Further, as the alkaline agent, lithium hydroxide, sodium hydroxide, potassium hydroxide, etc. are preferable, and the amount of the alkaline agent added is 1 to 200 times that of ruthenium.

【0018】本発明における部分水素化反応は、液相懸
濁法において回分式または連続式に行われるが、固定床
式でも行うことができる。反応条件は環状オレフィンを
高収率・高選択率で製造することを目的として種々の因
子を有機的に組み合わせて選択される。反応圧力は1〜
150気圧、好ましくは10〜100気圧の範囲であり
、反応温度は50〜250℃、好ましくは100〜20
0℃の範囲である。
The partial hydrogenation reaction in the present invention is carried out batchwise or continuously in a liquid phase suspension method, but it can also be carried out in a fixed bed method. The reaction conditions are selected by organically combining various factors with the aim of producing a cyclic olefin in high yield and high selectivity. The reaction pressure is 1~
150 atm, preferably in the range of 10 to 100 atm, and the reaction temperature is 50 to 250 °C, preferably 100 to 20 °C.
It is in the range of 0°C.

【0019】[0019]

【発明の効果】本発明によれば、経時的に安定した高い
性能を発現する触媒を用いることにより、環状オレフィ
ンを高収率で得ることができ、経済性のある工業的製法
である。
According to the present invention, a cyclic olefin can be obtained in high yield by using a catalyst that exhibits stable and high performance over time, and is an economical industrial production method.

【0020】以下、実施例及び参考例により本発明をさ
らに詳細に説明するが、本発明はこれらの例によってな
んら限定されるものではない。
The present invention will be explained in more detail below with reference to Examples and Reference Examples, but the present invention is not limited to these Examples in any way.

【実施例】実施例1 硝酸マンガン(Mn(NO3)2・6H2O) 1.4
35gを溶解させたメタノール溶液に、予め300℃で
2時間高真空下で焼成脱気したシリカゲル(キャリアク
ト−30、フジ・ダビソン社製)5gを加え浸漬した。 次いで、ロータリーエバポレーターを用いてメタノール
を留去し乾固した後、さらに真空乾燥した。その後、パ
イレックス反応管に充填し、常圧で水素ガス(300m
l/分)の通気下、600℃で5時間還元処理を行い、
マンガン担持シリカ担体(Mn/SiO2) を調製し
た。次いで、塩化ルテニウム(RuCl3) 0.20
7gを溶解させた水溶液にMn/SiO2 担体5gを
加え、強力攪拌下1時間分散させ、その後、水酸化カリ
ウム(KOH)0.17gを溶解させた水溶液15ml
を加え、3時間攪拌を続け、主にRu(OH)3 から
なる不溶性ルテニウム化合物をMn/SiO2 担体に
沈着させた。これを30mlの水中に再度分散させて、
SUS−316製200mlのオートクレーブに仕込み
、180℃、水素ガス50気圧下で20時間還元を行い
、水洗、乾燥することにより2%Ru/Mn/SiO2
 触媒を得た。
[Example] Example 1 Manganese nitrate (Mn(NO3)2.6H2O) 1.4
5 g of silica gel (Carryact-30, manufactured by Fuji Davison), which had been previously calcined and degassed under high vacuum at 300° C. for 2 hours, was added to a methanol solution in which 35 g of the gel was dissolved, and immersed therein. Next, methanol was distilled off using a rotary evaporator to dryness, followed by further vacuum drying. After that, the Pyrex reaction tube was filled with hydrogen gas (300 m
Reduction treatment was carried out at 600°C for 5 hours under ventilation (1/min).
A manganese-supported silica support (Mn/SiO2) was prepared. Then, ruthenium chloride (RuCl3) 0.20
5 g of Mn/SiO2 carrier was added to an aqueous solution in which 7 g of Mn/SiO2 was dissolved, and the mixture was dispersed for 1 hour under strong stirring, followed by 15 ml of an aqueous solution in which 0.17 g of potassium hydroxide (KOH) was dissolved.
was added and stirring was continued for 3 hours to deposit an insoluble ruthenium compound mainly consisting of Ru(OH)3 onto the Mn/SiO2 support. Disperse this again in 30ml of water,
It was charged into a 200ml autoclave made of SUS-316, and reduced at 180°C under 50 atmospheres of hydrogen gas for 20 hours, washed with water, and dried to produce 2% Ru/Mn/SiO2.
I got a catalyst.

【0021】[0021]

【化1】 次に、上記で得た触媒20mg、水6gを、SUS−3
16製200mlオートクレーブに仕込み、水素ガスを
50気圧下で封入し、180℃で、13時間触媒処理し
た。その後、室温まで冷却し、充填ガスを排気後、大気
中に開放し、ベンゼン3gを仕込み、オートクレーブ内
を水素により置換したのち、水素を5気圧封入し、反応
温度180℃に保ちながら、強力攪拌下にベンゼンの部
分水素化反応を行った。反応終了後に、室温まで急冷し
、充填ガスを排気後、大気中に開放し、全ての内容物を
取り出し、有機相をガスクロマトグラフィーにより分析
した。その結果、反応時間15分でベンゼン転化率40
.6%、シクロヘキセン選択率43.1%、ルテニウム
単位原子比活性ターンオーバー6732(h−1)であ
った。副生成物はシクロヘキサンであった。
[Chemical formula 1] Next, 20 mg of the catalyst obtained above and 6 g of water were added to SUS-3
The mixture was placed in a 200 ml autoclave manufactured by No. 16, sealed with hydrogen gas under 50 atm, and subjected to catalytic treatment at 180° C. for 13 hours. Thereafter, the autoclave was cooled to room temperature, the filled gas was evacuated, the autoclave was opened to the atmosphere, 3 g of benzene was charged, and the inside of the autoclave was replaced with hydrogen. After that, hydrogen was filled in at 5 atm, and the reaction temperature was maintained at 180°C with strong stirring. Below, a partial hydrogenation reaction of benzene was performed. After the reaction was completed, the reactor was rapidly cooled to room temperature, the filled gas was exhausted, the reactor was opened to the atmosphere, all contents were taken out, and the organic phase was analyzed by gas chromatography. As a result, the benzene conversion rate was 40% in a reaction time of 15 minutes.
.. 6%, cyclohexene selectivity 43.1%, and ruthenium unit atomic specific activity turnover 6732 (h-1). The by-product was cyclohexane.

【0022】実施例2 硝酸マンガン(Mn(NO3)2・6H2O) 0.8
610gを溶解させたメタノール溶液に、予め300℃
で2時間高真空下で焼成脱気したシリカゲル(ダビソン
#57、ダビソン社製)5gを加え浸漬した。次いで、
ロータリーエバポレーターを用いてメタノールを留去し
乾固した後、さらに真空乾燥した。その後、パイレック
ス反応管に充填し、常圧で水素ガス(300ml/分)
の通気下、600℃で5時間還元処理を行い、マンガン
担持シリカ担体(Mn/SiO2) を調製した。次い
で、塩化ルテニウム(RuCl3) 0.207gを溶
解させたメタノール溶液中に上記Mn/SiO2 担体
5gを加え浸漬した。上記と同様の処理によりメタノー
ルを除去したのち、常圧で水素ガス(300ml/分)
の通気下、450℃で5時間還元処理を行い、2%Ru
/Mn/SiO2 触媒を調製した。
Example 2 Manganese nitrate (Mn(NO3)2.6H2O) 0.8
Add 610g of the mixture to a methanol solution at 300°C in advance.
5 g of silica gel (Davison #57, manufactured by Davison) which had been calcined and degassed under high vacuum for 2 hours was added and immersed. Then,
After methanol was distilled off to dryness using a rotary evaporator, the mixture was further dried in vacuum. After that, the Pyrex reaction tube was filled with hydrogen gas (300 ml/min) at normal pressure.
A reduction treatment was performed at 600° C. for 5 hours under ventilation to prepare a manganese-supported silica carrier (Mn/SiO2). Next, 5 g of the above Mn/SiO2 carrier was added and immersed in a methanol solution in which 0.207 g of ruthenium chloride (RuCl3) was dissolved. After removing methanol by the same treatment as above, hydrogen gas (300 ml/min) was added at normal pressure.
Reduction treatment was performed at 450°C for 5 hours under aeration of 2% Ru.
/Mn/SiO2 catalyst was prepared.

【0023】この2%Ru/Mn/SiO2 触媒をメ
ノウ乳鉢で粉末にした後、この触媒100mg、水6g
及びジエタノールアミン10.5mgを200mlのオ
ートクレーブに入れ、室温で水素ガスを50気圧導入し
、攪拌下180℃で61時間触媒を処理した。処理後、
オートクレーブを室温に戻し、水素ガスをパージし、ベ
ンゼン3gを加え、水素ガスを50気圧で封入し、攪拌
下180℃で15分間反応した。反応後、オートクレー
ブを急冷し、気相成分及び有機相成分をガスクロマトグ
ラフィーで分析した。ベンゼン転化率70.9%、シク
ロヘキセン選択率37.9%、ルテニウム単位原子の比
活性(ターンオーバー)2063(h−1)の結果を得
た。
[0023] After pulverizing this 2% Ru/Mn/SiO2 catalyst in an agate mortar, 100 mg of this catalyst and 6 g of water were added.
and 10.5 mg of diethanolamine were placed in a 200 ml autoclave, hydrogen gas was introduced at 50 atm at room temperature, and the catalyst was treated at 180° C. for 61 hours with stirring. After treatment,
The autoclave was returned to room temperature, hydrogen gas was purged, 3 g of benzene was added, hydrogen gas was sealed at 50 atm, and reaction was carried out at 180° C. for 15 minutes with stirring. After the reaction, the autoclave was rapidly cooled, and gas phase components and organic phase components were analyzed by gas chromatography. The results were a benzene conversion rate of 70.9%, a cyclohexene selectivity of 37.9%, and a specific activity (turnover) of ruthenium unit atoms of 2063 (h-1).

【0024】実施例3 塩化ルテニウム(RuCl3) 0.207gを溶解さ
せた水溶液に予め300℃で2時間高真空下で焼成脱気
したケイ酸マンガン(MnSiO3) 5gを加え、強
力攪拌下1時間分散させ、その後、水酸化カリウム(K
OH)0.17gを溶解させた水溶液15mlを加え、
3時間攪拌を続け、主にRu(OH)3 からなる不溶
性ルテニウム化合物をMnSiO3 担体に沈着させた
。これを30mlの水中に再度分散させて、SUS−3
16製200mlのオートクレーブに仕込み  、18
0℃、水素ガス50気圧下で20時間還元を行い、水洗
、乾燥することにより2%Ru/MnSiO3 触媒を
得た。
Example 3 To an aqueous solution in which 0.207 g of ruthenium chloride (RuCl3) was dissolved, 5 g of manganese silicate (MnSiO3), which had been previously calcined and degassed under high vacuum at 300°C for 2 hours, was added and dispersed for 1 hour with strong stirring. and then potassium hydroxide (K
Add 15 ml of an aqueous solution containing 0.17 g of OH),
Stirring was continued for 3 hours, and an insoluble ruthenium compound consisting mainly of Ru(OH)3 was deposited on the MnSiO3 support. Disperse this again in 30 ml of water and make SUS-3
Prepared in a 200ml autoclave made in 16, 18
Reduction was performed for 20 hours at 0° C. under 50 atmospheres of hydrogen gas, washed with water, and dried to obtain a 2% Ru/MnSiO3 catalyst.

【0025】次に、上記で得た触媒50mg、水6g及
びn−プロパノール0.2gをSUS−316製200
mlオートクレーブに仕込み、水素ガスを50気圧下で
封入し、180℃で、110時間触媒処理した。その後
、室温まで冷却し、充填ガスを排気後、大気中に開放し
、ベンゼン3gを仕込み、オートクレーブ内を水素によ
り置換したのち、水素を50気圧封入し、反応温度18
0℃に保ちながら、強力攪拌下にベンゼンの部分水素化
反応を行った。反応終了後に、室温まで急冷し、充填ガ
スを排気後、大気中に開放し、全ての内容物を取り出し
、有機相をガスクロマトグラフィーにより分析した。 その結果、反応時間15分でベンゼン転化率39.2%
、シクロヘキセン選択率53.1%、ルテニウム単位原
子比活性ターンオーバー2132(h−1)であった。 副生成物はシクロヘキサンであった。
[0025] Next, 50 mg of the catalyst obtained above, 6 g of water, and 0.2 g of n-propanol were placed in a 200 g
The mixture was placed in an autoclave, filled with hydrogen gas under 50 atm, and subjected to catalyst treatment at 180° C. for 110 hours. Thereafter, the autoclave was cooled to room temperature, the filled gas was exhausted, the autoclave was opened to the atmosphere, 3 g of benzene was charged, and the inside of the autoclave was replaced with hydrogen. Hydrogen was then sealed at 50 atm, and the reaction temperature was 18
A partial hydrogenation reaction of benzene was carried out under strong stirring while maintaining the temperature at 0°C. After the reaction was completed, the reactor was rapidly cooled to room temperature, the filled gas was exhausted, the reactor was opened to the atmosphere, all contents were taken out, and the organic phase was analyzed by gas chromatography. As a result, the benzene conversion rate was 39.2% in 15 minutes of reaction time.
, cyclohexene selectivity was 53.1%, and ruthenium unit atomic specific activity turnover was 2132 (h-1). The by-product was cyclohexane.

【0026】実施例4、5、6 実施例2において、硝酸マンガン2.296g及び塩化
ルテニウム51.9mgに変えた以外は実施例2と同様
の方法により0.5%Ru/Mn/SiO2 触媒を調
製した。
Examples 4, 5, 6 A 0.5% Ru/Mn/SiO2 catalyst was prepared in the same manner as in Example 2, except that 2.296 g of manganese nitrate and 51.9 mg of ruthenium chloride were used in Example 2. Prepared.

【0027】粉末に砕いた0.5%Ru/Mn/SiO
2 触媒100mgを用い、水の量あるいはジエタノー
ルアミンの代わりに1−ブタノール、3−アミノ−1,
2−プロパンジオールや水酸化リチウムを使用した以外
は実施例2と同様の条件下で13時間触媒を処理した。 その後、実施例2と同様の操作によりベンゼンの部分水
素化を行った。反応結果を表1に示した。
0.5% Ru/Mn/SiO ground into powder
2 Using 100 mg of catalyst, the amount of water or 1-butanol, 3-amino-1,
The catalyst was treated for 13 hours under the same conditions as in Example 2, except that 2-propanediol and lithium hydroxide were used. Thereafter, partial hydrogenation of benzene was performed in the same manner as in Example 2. The reaction results are shown in Table 1.

【0028】実施例7 塩化ルテニウム0.207g、及び塩化マンガン1.5
83gを溶解させた水溶液に、実施例1と同様のシリカ
ゲル(キャリアクト−30)5gを加え、強力攪拌下に
1時間分散させ浸漬した。この液に水酸化カリウム1.
173gを溶解させた水溶液15mlを加え、その後実
施例1と同様の方法により2%Ru−Mn/SiO2 
触媒を得た。
Example 7 Ruthenium chloride 0.207g and manganese chloride 1.5g
5 g of the same silica gel (Carryact-30) as in Example 1 was added to an aqueous solution in which 83 g was dissolved, and the mixture was dispersed and immersed for 1 hour under strong stirring. Add 1.0% potassium hydroxide to this solution.
15 ml of an aqueous solution in which 173 g of Ru-Mn was dissolved was added, and then 2% Ru-Mn/SiO2 was added in the same manner as in Example 1.
I got a catalyst.

【0029】次に、この触媒を粉末に砕き、2%Ru−
Mn/SiO2 触媒50mg、水6g及び水酸化カリ
ウム0.3gを使用した以外は実施例1と同様に触媒処
理し、引続き実施例1と同条件下でベンゼンの部分水素
化を行った。その結果、反応時間15分でベンゼン転化
率48.5%、シクロヘキセン選択率47.8%、ルテ
ニウム単位原子比活性ターンオーバー2374(h−1
)を得た。
Next, this catalyst was crushed into powder, and 2% Ru-
Catalytic treatment was carried out in the same manner as in Example 1, except that 50 mg of Mn/SiO2 catalyst, 6 g of water, and 0.3 g of potassium hydroxide were used, and then benzene was partially hydrogenated under the same conditions as in Example 1. As a result, in a reaction time of 15 minutes, the benzene conversion rate was 48.5%, the cyclohexene selectivity was 47.8%, and the ruthenium unit atomic specific activity turnover was 2374 (h-1
) was obtained.

【0030】実施例8 実施例2において添加剤としてジエタノールアミン10
.5mg及び水酸化カリウム0.3gを加えた他は、実
施例2と同様にベンゼンの部分水素化反応を行ったとこ
ろ、反応時間15分でベンゼン転化率24.3%、シク
ロヘキセン選択率60.7%、ルテニウム単位原子比活
性ターンオーバー1131(h−1)を得た。
Example 8 Diethanolamine 10 was used as an additive in Example 2.
.. When a partial hydrogenation reaction of benzene was carried out in the same manner as in Example 2 except that 5 mg and 0.3 g of potassium hydroxide were added, the benzene conversion rate was 24.3% and the cyclohexene selectivity was 60.7 in a reaction time of 15 minutes. %, a ruthenium unit atomic activity turnover of 1131 (h-1) was obtained.

【0031】実施例9 実施例2において添加剤としてn−プロパノール0.2
g及び水酸化カリウム0.3gを加えた他は、実施例2
と同様にベンゼンの部分水素化反応を行ったところ、反
応時間15分でベンゼン転化率14.6%、シクロヘキ
セン選択率77.4%、ルテニウム単位原子比活性ター
ンオーバー866(h−1)を得た。
Example 9 In Example 2, 0.2 n-propanol was added as an additive.
Example 2 except that g and 0.3 g of potassium hydroxide were added.
When a partial hydrogenation reaction of benzene was carried out in the same manner as above, a benzene conversion rate of 14.6%, a cyclohexene selectivity of 77.4%, and a ruthenium unit atomic specific activity turnover of 866 (h-1) were obtained in a reaction time of 15 minutes. Ta.

【0032】参考例1 実施例1において、マンガン担持シリカ担体のかわりに
、シリカゲル(キャリアクト−30、フジ・ダビソン社
製)を用いた以外は実施例1と同様の方法により2%R
u/SiO2 触媒を調製した。反応に用いた触媒量を
50mgとした他は実施例1と同様にベンゼンの部分還
元反応を行った。その結果、反応時間15分でベンゼン
転化率11.4%、シクロヘキセン選択率20.7%、
ルテニウム単位原子比活性ターンオーバー242(h−
1)であった。なお、この2%Ru/SiO2 触媒に
おいて触媒処理時間が15分間では反応時間15分でベ
ンゼン転化率91.2%でシクロヘキセンは痕跡量しか
生成しなかった。これらの結果から、Ru/SiO2 
触媒の活性は反応条件下で経時的に著しく失活すること
が明かである。
Reference Example 1 2% R was prepared in the same manner as in Example 1 except that silica gel (Carryact-30, manufactured by Fuji Davison) was used instead of the manganese-supported silica carrier.
A u/SiO2 catalyst was prepared. A partial reduction reaction of benzene was carried out in the same manner as in Example 1, except that the amount of catalyst used in the reaction was 50 mg. As a result, the benzene conversion rate was 11.4%, the cyclohexene selectivity was 20.7%, and the reaction time was 15 minutes.
Ruthenium unit atomic specific activity turnover 242 (h-
1). In this 2% Ru/SiO2 catalyst, when the catalyst treatment time was 15 minutes, only a trace amount of cyclohexene was produced with a benzene conversion rate of 91.2% in a reaction time of 15 minutes. From these results, Ru/SiO2
It is clear that the activity of the catalyst deactivates significantly over time under the reaction conditions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  触媒及び水の存在下、必要に応じアル
コール及び/またはアルカリ剤の共存下、芳香族炭化水
素を水素化することにより環状オレフィンを製造する方
法において、ルテニウム及びマンガンから成る触媒を用
いることを特徴とする該環状オレフィンの製造方法。
Claim 1: A method for producing cyclic olefins by hydrogenating aromatic hydrocarbons in the presence of a catalyst and water, optionally in the coexistence of an alcohol and/or alkali agent, comprising: a catalyst comprising ruthenium and manganese; A method for producing the cyclic olefin, which is characterized in that it is used.
JP3105060A 1991-04-11 1991-04-11 Production of cycloolefin Pending JPH04312537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3105060A JPH04312537A (en) 1991-04-11 1991-04-11 Production of cycloolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3105060A JPH04312537A (en) 1991-04-11 1991-04-11 Production of cycloolefin

Publications (1)

Publication Number Publication Date
JPH04312537A true JPH04312537A (en) 1992-11-04

Family

ID=14397431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3105060A Pending JPH04312537A (en) 1991-04-11 1991-04-11 Production of cycloolefin

Country Status (1)

Country Link
JP (1) JPH04312537A (en)

Similar Documents

Publication Publication Date Title
WO2001021306A1 (en) Catalysts for hydrogenation of carboxylic acid
KR0160308B1 (en) Method for producing a cyloolefin
JPS6261935A (en) Production of cycloolefin
EP2791095B1 (en) Hydrogenation of styrene oxide forming 2-phenyl ethanol
JP2002346390A (en) Catalyst for manufacturing both terminal diols, method for manufacturing the same, method for manufacturing both terminal diols using the catalyst and both terminal diols obtained by the manufacturing method
US6294696B1 (en) Process for hydrogenating organic functions
JPS6021126B2 (en) Manufacturing method of cyclohexene
WO2023134779A1 (en) Hydrogenation catalyst and preparation method therefor, and method for preparing isohexanediol and methyl isobutyl carbinol
JP4033916B2 (en) Method for producing alicyclic group-containing alcohol
JP3955349B2 (en) Nuclear hydrogenation process for substituted aromatic compounds
US3919294A (en) Process for preparing diacetoxy butane
JPH0987217A (en) Production of ethanol
JP3897830B2 (en) Process for producing cycloolefin
JPH04312537A (en) Production of cycloolefin
JPH0129173B2 (en)
JP2000080053A (en) Production of cyloalkyldimethanol
JP3159010B2 (en) Method for producing α-phenylethyl alcohol
JP2002154990A (en) Method for producing cycloolefin
JPS5941974B2 (en) Hydrogenation method for α,β-unsaturated aldehydes
US4238368A (en) Water dealkylation catalyst of aromatic hydrocarbons
JPS6362525B2 (en)
CN115487821B (en) Application of inorganic oxide supported multi-metal catalyst in catalyzing hydrogenation reaction of hydroquinone or bisphenol A
JPH02202855A (en) Production of secondary amine
JP3964936B2 (en) Process for producing 2-cyclohexen-1-ol
JPH0259809B2 (en)