JP3955349B2 - Nuclear hydrogenation process for substituted aromatic compounds - Google Patents

Nuclear hydrogenation process for substituted aromatic compounds Download PDF

Info

Publication number
JP3955349B2
JP3955349B2 JP00746897A JP746897A JP3955349B2 JP 3955349 B2 JP3955349 B2 JP 3955349B2 JP 00746897 A JP00746897 A JP 00746897A JP 746897 A JP746897 A JP 746897A JP 3955349 B2 JP3955349 B2 JP 3955349B2
Authority
JP
Japan
Prior art keywords
nuclear hydrogenation
ruthenium
catalyst
reaction
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00746897A
Other languages
Japanese (ja)
Other versions
JPH10204002A (en
Inventor
敬幸 秋山
剛 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp, Dainippon Ink and Chemicals Co Ltd filed Critical NE Chemcat Corp
Priority to JP00746897A priority Critical patent/JP3955349B2/en
Publication of JPH10204002A publication Critical patent/JPH10204002A/en
Application granted granted Critical
Publication of JP3955349B2 publication Critical patent/JP3955349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、選択性および経済性に優れる置換芳香族化合物の核水素化方法、特に芳香族エポキシ化合物の核水素化方法に関する。
【0002】
【従来の技術】
一般に、置換基を有する芳香族化合物において、芳香核のみの水素化、即ち核水素化は極めて難しい。即ち、核水素化以外に置換基の水素化や水素化分解が同時に起こり、選択性が低いという欠点があった。しかも、このため大半の場合、生成物の純度を高めるために、煩雑な精製工程が必要であった。これまで、実用性の高い触媒を用いた芳香族エポキシ化合物の核水素化方法、例えばビスフェノールAのジグリシジルエーテルの核水素化については種々検討されており、例えば、米国特許3336241号公報には、ビスフェノールA型エポキシ樹脂を担持ルテニウム触媒を用いて核水素化する方法が挙げられており、また、特開平8−53370号公報には、Mg粉末を用いて還元したルテニウム触媒で、ビスフェノールA型エポキシ樹脂を核水素化する方法等が挙げられている。
【0003】
【発明が解決しようとする課題】
しかし、米国特許3336241号公報に記載の担持ルテニウム触媒を用いた核水素化する方法は、エポキシ基の水素化分解が同時に起こり、選択性が低いという課題が有り、また、特開平8−53370号公報に記載の、Mg粉末を用いて還元したルテニウム触媒による核水素化方法では、エポキシ基の残存率は改善されるものの、核水素化率が低下するという課題があった。
【0004】
本発明が解決しようとする課題は、従来にない優れた核水素化率が達成できると同時に、分子構造内の置換基の水素化や水素化分解を選択的に抑制できる置換芳香族化合物の核水素化方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意検討した結果、ルテニウム原子およびルテニウム原子より電気陰性度の低い金属原子が担体上に担持されており、且つ、ルテニウム原子の担持量が0.1〜20%である触媒が、芳香核のみの水素化、即ち、核水素化に対し極めて高い選択性を示し、しかも、これを低温且つ低圧の条件においても容易に実現できることを見い出し、本発明を完成するに至った。
【0006】
即ち、本発明は、ルテニウム原子およびルテニウム原子より電気陰性度の低い金属原子が担体上に担持されており、且つ、ルテニウム原子の担持量が0.1〜20%である触媒の存在下、水素加圧下に、置換芳香族化合物を核水素化することを特徴とし、且つ、該置換芳香族化合物がビスフェノール型エポキシ化合物であることを特徴とする置換芳香族化合物の核水素化方法に関する。
【0007】
本発明に用いる、ルテニウム原子およびルテニウム原子より電気陰性度の低い金属原子が担体上に担持されており、且つ、ルテニウム原子の担持量が0.1〜20%である触媒は、特にその調製方法が制限されるものではないが、例えば、(i)ルテニウム原子含有化合物と、ルテニウム原子より電気陰性度の低い金属原子を含有する化合物を含浸、乾固法、沈殿法等により担体上に担持した後、還元処理、例えば、水素による還元や、水素化ホウ素ナトリウム、ヒドラジン、蟻酸等による化学的還元を行うか、又は、還元処理を行わずに調製する方法、あるいは(ii)ルテニウム原子より電気陰性度の低い金属原子を含有するルテニウム原子含有化合物を含浸、乾固法、沈殿法等により担体上に担持した後、還元処理、例えば、水素による還元や、水素化ホウ素ナトリウム、ヒドラジン、蟻酸等による化学的還元を行うか、又は、還元処理を行わずに調製する方法が挙げられる。
【0008】
ここで、ルテニウム原子含有化合物としては、例えば塩化ルテニウム水和物、臭化ルテニウム水和物、酸化ルテニウム水和物、塩化ヘキサアミンルテニウム、臭化ヘキサアミンルテニウム、トリニトラトニトロシルジアクアルテニウム、トリス(アセチルアセトナート)ルテニウム、ドデカカルボニル三ルテニウム等があげられる。(i)の方法におけるルテニウムより電気陰性度の低い金属原子を含有する化合物としては、電気陰性度が2.1以下の金属原子を含有する化合物、例えばカリウム、ナトリウム、セシウム、カルシウム、マグネシウム、亜鉛、鉄、コバルト、ニッケル、銅等の金属原子を含有する水酸化物、酸化物、無機酸塩、有機酸塩、有機錯体化合物、無機錯体化合物等が挙げられ、ナトリウム、カリウム等のアルカリ金属の水酸化物、酸化物、無機酸塩、有機酸塩、カルシウム、マグネシウム等のアルカリ土類金属の水酸化物、酸化物、無機酸塩、有機酸塩がより好ましく、特にアルカリ金属の水酸化物、酸化物、無機酸塩、有機酸塩が好ましい。
【0009】
(ii)のルテニウムより電気陰性度の低い金属原子を含有するルテニウム原子含有化合物としては、例えばナトリウム、カリウムを含有するルテニウム化合物が挙げられ、特にルテニウム(VI)酸ナトリウム、ルテニウム(VI)酸カリウム、ペンタクロロアクアルテニウム(III)酸カリウム、ペンタクロロニトロシルルテニウム(II)酸カリウム、オキシデカクロロジルテニウム酸カリウム、過ルテニウム酸カリウム等が挙げられる。
【0010】
担体は、反応条件下で水素化の原料となる芳香族化合物の置換基に対し不活性なものであれば、有機系又は無機系のいずれでもよく、例えば活性炭、イオン交換樹脂、シリカ、α−アルミナ、γ−アルミナ、シリカ−アルミナ、ゼオライト、および種々の金属酸化物や複合酸化物等を挙げることができるが、特に表面積が大きく得られる触媒が高活性となる点から活性炭が好ましい。
【0011】
当該触媒の調製方法を更に詳述すれば、例えば、水または有機溶媒中に担体となる物質を加えて10〜100℃とし、(i)の方法では、上記に挙げたルテニウム原子含有化合物及びルテニウムより電気陰性度の低い金属原子を含有する化合物を、(ii)の方法ではルテニウム原子より電気陰性度の低い金属原子を含有するルテニウム原子含有化合物を、目標とする担持量に見合う量だけ添加して含浸させ担持し、還元処理を行った後、もしくは還元処理を行わずに、乾燥もしくは湿潤させて調製する。担持した後に還元処理を行う場合の方法としては、A.化学的還元、もしくはB.水素還元の2つの方法が挙げられる。前者では、例えば担持した後に還元剤を加えて還元し、ろ過し、水または有機溶媒を用いて洗浄を行う。後者では、例えば担持した後にろ過し、水または有機溶媒を用いて洗浄を行い、乾燥した後に、水素雰囲気下で−20〜550℃の温度で処理を行う。そして、A.もしくはB.の方法で還元処理を行った後、乾燥もしくは湿潤状態とする。一方、担持した後に還元処理を行わなくてもよく、その場合は、担持した後、ろ過、洗浄を行い、乾燥もしくは湿潤させて調製する方法が挙げられる。
【0012】
本発明で使用される当該触媒のルテニウム担持量は、0.1〜20重量%の範囲である。0.1重量%未満では、充分な核水素化率を得るために触媒量を多量要し、その工業的利用は困難である。また、20重量%を越える範囲では、細孔内に取り込まれるルテニウムの割合をいたずらに増加させてしまい、拡散の不十分な細孔内で置換基の水素化もしくは水素化分解が起きるため、選択率が低下する。
【0013】
担持されたルテニウム原子は、XPS法で測定したときのRu3d5/2軌道のスペクトルピークが、280.0〜281.0eVの範囲となることが高活性となる点から好ましい。
【0014】
ルテニウムより電気陰性度の低い金属原子の担持量は、水素化の対象となる置換芳香族化合物により異なるが、通常0.2〜5重量%である。さらに好ましくは0.3〜2重量%である。0.2重量%未満、および5重量%を越える範囲では、芳香核の水素化に対し高活性なものが得られず、核水素化率および選択率を共に満足させることは出来ない。
【0015】
本発明の置換芳香族化合物の核水素化方法は、詳述した触媒の存在下、溶媒中で水素加圧下に、置換芳香族化合物を核水素化することを特徴としている。ここで、水素化の対象となる置換芳香族化合物としては、種々の置換基、例えばアルキル基あるいは酸素、窒素、硫黄を含む置換基を有する、単環または多環式の芳香族化合物が何れも使用でき、例えば、芳香族カルボニル、芳香族カルボン酸、芳香族アルコール、芳香族エーテル、芳香族エポキシ化合物等が挙げられる。なかでも、触媒の有用性を十分に発揮できる点から特に芳香族エポキシ化合物が好ましい。なお、これら化合物の分子量に特に制限はないが、分子量2000以下のものが好ましい。
【0016】
好ましく使用できる芳香族エポキシ化合物としては、フェノール類のグリシジルエーテル、例えばフェニルグリシジルエーテル等;ビスフェノール型エポキシ化合物、例えばビスフェノールAのジグリシジルエーテル、ビスフェノールAのジグリシジルエーテルとビスフェノールAとの重合物、ビスフェノールFのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテルとビスフェノールFとの重合物等;ビフェノール型エポキシ化合物、例えばビフェノールのジグリシジルエーテル、ビフェノールのジグリシジルエーテルとビフェノールとの重合物、3,3’,5,5’−テトラメチルビフェノールのジグリシジルエーテル、3,3’,5,5’−テトラメチルビフェノールのジグリシジルエーテルと3,3’,5,5’−テトラメチルビフェノールとの重合物等;ノボラック型エポキシ化合物、例えばフェノールノボラックのポリグリシジルエーテル、o−クレゾールノボラックのポリグリシジルエーテル等が挙げられるが、これらに限定されるものではない。これらの中でも、原料として取扱いが容易な点からビスフェノール型エポキシ化合物が好ましく、特に液状である点からビスフェノールAのジグリシジルエーテル又はビスフェノールFのジグリシジルエーテルが好ましい。
【0017】
また、前記した触媒の使用量は、担持量、水素化の対象となる置換芳香族化合物の種類および反応条件等により大きく異なるが、通常、置換芳香族化合物1部に対して、通常0.00005〜0.5部の範囲から適宜選択されるが、工業的見地からは、0.0001〜0.2部の範囲が好ましい。
【0018】
本発明の水素化反応は、水素化の対象となる置換芳香族化合物の種類および反応条件によっては無溶媒で行うこともできるが、目的とする反応に対し最適な溶媒を選定することで選択性の向上が図れる点、および反応時間を短縮できる点から溶媒中で行うことが好ましい。
【0019】
ここで用いる溶媒は、特に限定されるものではないが、二重結合を持たない、炭化水素、エーテル類およびアルコール類、ハロゲン化炭化水素の中から適宜選択することができる。具体例としては、n−ペンタン、n−ヘキサン、シクロヘキサン、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、2−ブタノール、tert−ブタノール、n−ヘキサノール、シクロヘキサノール、四塩化炭素、ジクロロメタン、トリクロロエタンが挙げられ、なかでも、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、2−ブタノール、tert−ブタノール、n−ヘキサノール、シクロヘキサノールが好ましく、さらにはテトラヒドロフランが好ましい。
【0020】
これらのなかでも、特に反応速度、選択性に優れる点で、炭素数1〜10の飽和脂肪族のアルコール、鎖状又は環状エーテルと水との混合物が好ましい。前記した溶媒のうち、水は触媒の活性を高める効果がある。従って、有機溶媒を必要とする場合においても、上記の通り水との混合液として用いることが好ましく、水とエーテル類、水とアルコール類の組み合わせが好ましい。
【0021】
溶媒を用いる場合、溶媒の使用割合は特に制限はないが、好ましくは重量基準で、置換芳香族化合物1部に対して0.05〜100部、より好ましくは0.1〜50部の範囲である。
【0022】
当該反応に用いる水素は、通常工業的に用いられているものであればいずれのものでもよいが、不純物の一酸化炭素が少ない方が触媒活性が優れたものとなる。従って、水素中の一酸化炭素の含有量は2%以下であることが好ましい。反応時の水素圧は特に制限はないが、低圧では反応に必要以上の長い時間を要し、また高圧では水素原単位が高くなるため、1〜100kg/cmの範囲が好ましく、さらには2〜70kg/cmの範囲とすることが好ましい。
【0023】
当該反応における反応温度は、水素化の対象となる置換芳香族化合物の種類、反応条件および反応時間により大きく異なり、−40〜200℃の範囲で適宜選定すればよいが、選択性および経済性の点から、−20〜100℃の範囲が好ましく、特に反応性の高い置換基を有する置換芳香族化合物に対しては−20〜80℃の範囲が選択性が一層向上し好ましい。
【0024】
当該反応の反応時間は、水素化の対象となる置換芳香族化合物の種類、触媒量および他の反応条件に依存し、一概には言えないが、通常0.5〜30時間である。
【0025】
以上のごとく、当該置換芳香族化合物の核水素化反応を行うことにより、容易に目的とする核水素化物を高い選択率で得ることができる。当該ルテニウム触媒を用いる製法の優れる点は核水素化に極めて高い選択性を示す点であるが、さらに優れる点として、芳香核水素化を2〜70kg/cmの水素圧力、且つ−20〜100℃の反応温度といった極めて穏和な条件下でも行える点が挙げられる。一般に知られるルテニウム触媒は、芳香核水素化の条件として、100kg/cmを越える水素圧力とするか、100℃を越える反応温度とするか、何れかの条件が必要である。これに対し、当該触媒は、核水素化に対し極めて活性が高いため、先の条件を可能とし、極めて安価な製造コストおよび設備コストとすることができる。
【0026】
加えて、当該ルテニウム触媒は、非常に安価に得ることができる。更に、繰り返し使用することも可能であるため、当該核水素化方法は触媒コストを抑えることができる点でも有利な方法である。
【0027】
なお、反応設備としては、必要とされる水素圧に耐えるものであれば制限はなく、回分式、連続式のいずれの方法でもよい。本発明によって得られる核水素化物は、触媒をろ過等で除去した後、単に溶媒のみ除去したものでも、純度の高い目的物とすることができるが、必要であれば、さらに蒸留、晶析等の従来公知の方法を用いて精製することもできる。
【0028】
当該触媒を用いる核水素化方法によれば、置換芳香族化合物、例えば芳香族エポキシ化合物等の核水素化を、高選択的に行うことができ、かつ経済的に行うことができる。
【0029】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下において特記しない限り、核水素化率は紫外スペクトルの分析より求め、エポキシ基残存率はエポキシ当量の測定結果より求めた。
【0030】
参考例1(触媒調製方法)
200mlのビーカーに活性炭10.0g、水100gを加え、室温にてルテニウム原子を0.5g含有するルテニウム(VI)酸ナトリウム水溶液を添加した後、攪拌しながら含浸させ、これを、ろ過し、イオン交換水で洗浄した後に脱水した。得られた触媒は含水率50重量%で、ルテニウム原子の担持量、ナトリウム原子の担持量が各々乾燥重量当たり5重量%、1重量%であった。また、担持されたルテニウム原子はXPS法で測定したときのRu3d5/2軌道のスペクトルピークが、280.7eVのものであった。
【0031】
実施例1
1リットルのオートクレーブ反応器に、参考例1にて調製したルテニウム触媒(50重量%含水)2g、フェニルグリシジルエーテル(エポキシ当量150)30g、テトラヒドロフラン80gを仕込み、反応器内のガスを窒素ガスにて置換し、80℃に設定した後、水素を反応器内の圧力が40kg/cmとなるように加え密閉し、水素の圧力減少が終了するまでの1時間反応させた。反応終了後、触媒をろ過し、得られたろ液をガスクロマトグラフィーにより分析したところ、核水素化率100%が確認され、シクロヘキシルグリシジルエーテルの選択率は98%であった。次いで、エバポレーターにより溶媒を除去した。得られたもののエポキシ当量は159であった。
【0032】
参考例2(触媒調製方法)
200mlのビーカーに活性炭10.0g、水100gを加え、室温にてルテニウムを0.5g含有するルテニウム(VI)酸ナトリウム水溶液を添加した後、攪拌しながら含浸させ、ろ過し、イオン交換水で洗浄した後に脱水した後、水素雰囲気下で80℃で2時間加熱し還元させた。得られた触媒は、ルテニウム原子の担持量、ナトリウム原子の担持量が各々乾燥重量当たり5重量%、1重量%であった。また、担持されたルテニウム原子はXPS法で測定したときのRu3d5/2軌道のスペクトルピークが、280.4eVのものであった。
【0033】
実施例2
1リットルのオートクレーブ反応器に、参考例2にて調製したルテニウム触媒(乾燥品)1g、フェニルグリシジルエーテル(エポキシ当量150)30g、テトラヒドロフラン80gを仕込み、反応器内のガスを窒素ガスにて置換し、80℃に設定した後、水素を反応器内の圧力が40kg/cmとなるように加え密閉し、水素の圧力減少が終了するまでの1時間反応させた。反応終了後、触媒をろ過し、得られたろ液をガスクロマトグラフィーにより分析したところ、核水素化率100%が確認され、シクロヘキシルグリシジルエーテルの選択率は97%であった。次いで、エバポレーターにより溶媒を除去した。得られたもののエポキシ当量は161であった。
【0034】
実施例3
1リットルのオートクレーブ反応器に、参考例1にて調製したルテニウム触媒(50重量%含水)4g、ビスフェノールAのジグリシジルエーテルであるEPICLON850CRP(エポキシ当量173、大日本インキ化学工業社製)30g、水10gおよびテトラヒドロフラン80gを仕込み、反応器内のガスを窒素ガスにて置換し、40℃に設定した後、水素を反応器内の圧力が40kg/cmとなるように加え密閉し、水素の圧力減少が終了するまでの7時間反応させた。反応終了後、触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は100%であり、また、得られたもののエポキシ当量は189であり、エポキシ基残存率は96%であった。
【0035】
比較例1
触媒として市販の5%活性炭担持ルテニウム(50重量%含水)4gを用い、反応時間9時間とした以外は、実施例3と同様の条件で反応を行った。反応終了後、触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は67%であり、また、得られたもののエポキシ当量は228であり、エポキシ基残存率は77%であった。
【0036】
比較例2
触媒として市販の5%活性炭担持ルテニウム(乾燥品)6gを用い、溶媒としてジオキサン240gを用い、反応温度50℃、水素の導入圧力を100kg/cmとし、反応時間24時間とした以外は実施例3と同様の条件で反応を行った。反応後、触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は81%であり、また、得られたもののエポキシ当量は29であり、エポキシ基残存率は67%であった。
【0037】
比較例3
反応温度80℃、反応時間6時間とした以外は、比較例1と同様の条件で反応を行った。触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は82%であり、また、得られたもののエポキシ当量は254であり、エポキシ基残存率は69%であった。
【0038】
比較例4
市販の5%活性炭担持ロジウム(50重量%含水)2gを触媒とし、反応時間5時間とした以外は比較例1と同様の条件で反応を行った。反応終了後、触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は100%であり、また、得られたもののエポキシ当量は242であり、エポキシ基残存率は81%であった。
【0039】
実施例4
原料としてビスフェノールAのジグリシジルエーテルであるEPICLON850(エポキシ当量189、大日本インキ化学工業社製)30gを用いた以外は、実施例3と同様の条件で反応を行った。反応終了後、触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は100%であり、また、得られたもののエポキシ当量は206であり、エポキシ基残存率は95%であった。
【0040】
実施例5
原料としてビスフェノールFのジグリシジルエーテルであるEPICLON830(エポキシ当量180、大日本インキ化学工業社製)30gを用いた以外は、実施例3と同様の条件で反応を行った。反応終了後、触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は100%であり、また、得られたもののエポキシ当量は198であり、エポキシ基残存率は95%であった。
【0041】
比較例5
2リットルの四つ口フラスコに、塩化ルテニウム水和物24.4g、テトラヒドロフラン1000gを仕込み、窒素雰囲気とし、マグネシウム粉末75gを加え5時間攪拌しながら加熱し、次いでろ別した。
【0042】
1リットルのオートクレーブ反応器に、得られた触媒の溶液12.9g、ビスフェノールFのジグリシジルエーテルであるEPICLON830(エポキシ当量180、大日本インキ化学工業社製)30g、テトラヒドロフラン20gを仕込み、反応器内のガスを窒素ガスにて置換し、50〜70℃に設定した後、水素を反応器内の圧力が100kg/cmとなるように加え密閉し、水素の圧力減少が終了するまでの12時間反応させた。反応終了後、触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は90%であり、また、得られたもののエポキシ当量は200であり、エポキシ基残存率は93%であった。実施例5に比べ高い圧力をとし、反応時間を長くしたにも関わらず、核水素化率が低い結果となった。
【0043】
実施例6
1リットルのオートクレーブに、参考例1にて調製したルテニウム触媒(50重量%含水)6g、原料としてビスフェノールAのジグリシジルエーテルの重縮合物であるEPICLON1055(エポキシ当量498、大日本インキ化学工業社製)30g、水20gおよびテトラヒドロフラン120gを仕込み、反応容器内のガスを窒素ガスにて置換し、50℃に設定した後、水素圧力が40kg/cmとなるように加え密閉し、水素の圧力減少が終了するまでの12時間反応させた。反応終了後、触媒をろ過し、150℃で150mmHgにて溶媒を除去した。核水素化率は96%であり、また、得られたもののエポキシ当量は568であり、エポキシ基残存率は91%であった。
【0044】
実施例7
原料としてビスフェノールAのジグリシジルエーテルの重縮合物であるEPICLON4055(エポキシ当量917、大日本インキ化学工業社製)30gを用い、反応時間16時間とした以外は、実施例6と同様の条件で反応を行った。反応終了後、150℃で150mmHgにて溶媒を除去した。核水素化率は92%であり、また、得られたもののエポキシ当量は1070であり、エポキシ基残存率は89%であった。
【0045】
実施例8
原料としてビスフェノールA30g、溶媒としてt−ブタノール80gを用い、反応時間3時間とした以外は、実施例2と同様の条件で反応を行った。反応終了後、触媒をろ過し、得られたろ液をガスクロマトグラフィーにより分析したところ、核水素化率100%が確認され、3種の異性体からなるビス(4−ヒドロシクロヘキシル)プロパンの選択率は99%であった。
【0046】
【発明の効果】
本発明によれば、従来にない優れた核水素化率が達成できると同時に、分子構造内の置換基の水素化や水素化分解を選択的に抑制できる置換芳香族化合物の核水素化方法を提供できる。
【0047】
また、核水素化反応を低温、低圧力な条件下で行うことができる為、生産性も向上する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for nuclear hydrogenation of substituted aromatic compounds having excellent selectivity and economy, and more particularly to a method for nuclear hydrogenation of aromatic epoxy compounds.
[0002]
[Prior art]
Generally, in an aromatic compound having a substituent, hydrogenation of only an aromatic nucleus, that is, nuclear hydrogenation is extremely difficult. That is, in addition to nuclear hydrogenation, hydrogenation and hydrocracking of substituents occur simultaneously, and there is a disadvantage that selectivity is low. In addition, for this reason, in most cases, complicated purification steps are required to increase the purity of the product. Until now, various studies have been made on the nuclear hydrogenation method of aromatic epoxy compounds using a highly practical catalyst, for example, the nuclear hydrogenation of diglycidyl ether of bisphenol A. For example, in US Pat. No. 3,336,241, A method of nuclear hydrogenation of a bisphenol A type epoxy resin using a supported ruthenium catalyst is mentioned, and Japanese Patent Application Laid-Open No. 8-53370 discloses a ruthenium catalyst reduced using Mg powder, and a bisphenol A type epoxy resin. Examples include a method of nuclear hydrogenation of a resin.
[0003]
[Problems to be solved by the invention]
However, the method of nuclear hydrogenation using a supported ruthenium catalyst described in US Pat. No. 3,336,241 has a problem that the hydrogenolysis of an epoxy group occurs at the same time and the selectivity is low, and Japanese Patent Laid-Open No. 8-53370. The nuclear hydrogenation method using a ruthenium catalyst reduced using Mg powder described in the publication has a problem that the residual ratio of epoxy groups is improved, but the nuclear hydrogenation ratio is lowered.
[0004]
The problem to be solved by the present invention is that a nucleus of a substituted aromatic compound that can achieve an unprecedented excellent nuclear hydrogenation rate and can selectively suppress hydrogenation and hydrogenolysis of substituents in the molecular structure. It is to provide a hydrogenation method.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that ruthenium atoms and metal atoms having a lower electronegativity than ruthenium atoms are supported on the support, and the supported amount of ruthenium atoms is 0.1. It has been found that a catalyst of ˜20% shows a very high selectivity for hydrogenation of aromatic nuclei only, that is, nuclear hydrogenation, and can be easily realized even under low temperature and low pressure conditions. It came to be completed.
[0006]
That is, in the present invention, ruthenium atoms and metal atoms having a lower electronegativity than ruthenium atoms are supported on a carrier, and the amount of ruthenium atoms supported is 0.1 to 20% in the presence of a catalyst. The present invention relates to a method for nuclear hydrogenation of a substituted aromatic compound, characterized in that a substituted aromatic compound is subjected to nuclear hydrogenation under pressure, and the substituted aromatic compound is a bisphenol-type epoxy compound .
[0007]
The catalyst used in the present invention, in which a ruthenium atom and a metal atom having a lower electronegativity than a ruthenium atom are supported on a support, and the supported amount of ruthenium atoms is 0.1 to 20%, is particularly a preparation method thereof. Although not limited, for example, (i) a ruthenium atom-containing compound and a compound containing a metal atom having a lower electronegativity than a ruthenium atom are impregnated, supported on a support by a drying method, a precipitation method, or the like. Thereafter, reduction treatment, for example, reduction with hydrogen, chemical reduction with sodium borohydride, hydrazine, formic acid, or the like, or preparation without carrying out reduction treatment, or (ii) electronegative from ruthenium atoms After impregnation with a ruthenium atom-containing compound containing a low-grade metal atom, loading it on the support by a drying method, precipitation method, etc., a reduction treatment such as hydrogen Reduction or, sodium borohydride, hydrazine, or a chemical reduction by formic acid, or, and a method of preparing without reduction treatment.
[0008]
Here, examples of the ruthenium atom-containing compound include ruthenium chloride hydrate, ruthenium bromide hydrate, ruthenium oxide hydrate, hexaamine ruthenium chloride, hexaamine ruthenium bromide, trinitratonitrosyldiaquathenium, tris ( Acetylacetonato) ruthenium, dodecacarbonyl triruthenium and the like. As the compound containing a metal atom having a lower electronegativity than ruthenium in the method (i), a compound containing a metal atom having an electronegativity of 2.1 or less, such as potassium, sodium, cesium, calcium, magnesium, zinc , Hydroxides, oxides, inorganic acid salts, organic acid salts, organic complex compounds, inorganic complex compounds, etc. containing metal atoms such as iron, cobalt, nickel and copper, and alkali metal such as sodium and potassium More preferred are hydroxides, oxides, inorganic acid salts, organic acid salts, alkaline earth metal hydroxides such as calcium and magnesium, oxides, inorganic acid salts and organic acid salts, especially alkali metal hydroxides. Oxides, inorganic acid salts and organic acid salts are preferred.
[0009]
Examples of the ruthenium atom-containing compound containing a metal atom having a lower electronegativity than ruthenium of (ii) include, for example, a ruthenium compound containing sodium or potassium, in particular, ruthenium (VI) sodium or ruthenium (VI) potassium. , Potassium pentachloroaquathenium (III), potassium pentachloronitrosylruthenium (II), potassium oxydecachlorodiruthenate, potassium perruthenate and the like.
[0010]
The support may be either organic or inorganic as long as it is inert to the substituent of the aromatic compound that is the raw material for hydrogenation under the reaction conditions. For example, activated carbon, ion exchange resin, silica, α- Alumina, γ-alumina, silica-alumina, zeolite, and various metal oxides and composite oxides can be mentioned. In particular, activated carbon is preferable from the viewpoint that a catalyst having a large surface area is highly active.
[0011]
The method for preparing the catalyst will be described in more detail. For example, a substance serving as a carrier is added to water or an organic solvent to obtain a temperature of 10 to 100 ° C. In the method (i), the ruthenium atom-containing compound and ruthenium mentioned above are used. In the method (ii), a compound containing a metal atom having a lower electronegativity than a ruthenium atom is added in an amount corresponding to the target loading amount. It is prepared by impregnating and supporting and carrying out a reduction treatment or drying or wetting without a reduction treatment. As a method for carrying out the reduction treatment after loading, A. Chemical reduction, or B.I. Two methods of hydrogen reduction are mentioned. In the former, for example, after loading, a reducing agent is added for reduction, filtration, and washing with water or an organic solvent. In the latter, for example, it is filtered after being supported, washed with water or an organic solvent, dried, and then treated at a temperature of -20 to 550 ° C. in a hydrogen atmosphere. And A. Or B. After carrying out the reduction treatment by the above method, it is brought into a dry or wet state. On the other hand, it is not necessary to carry out the reduction treatment after loading, and in this case, a method of carrying out filtration, washing and drying or wetting after loading is mentioned.
[0012]
The ruthenium loading of the catalyst used in the present invention is in the range of 0.1 to 20% by weight. If it is less than 0.1% by weight, a large amount of catalyst is required to obtain a sufficient nuclear hydrogenation rate, and its industrial use is difficult. In addition, in the range exceeding 20% by weight, the ratio of ruthenium incorporated into the pores is unnecessarily increased, and hydrogenation or hydrogenolysis of substituents occurs in the pores with insufficient diffusion. The rate drops.
[0013]
The supported ruthenium atom preferably has a Ru3d5 / 2 orbital spectrum peak in the range of 280.0 to 281.0 eV when measured by the XPS method from the viewpoint of high activity.
[0014]
The amount of metal atoms having a lower electronegativity than ruthenium varies depending on the substituted aromatic compound to be hydrogenated, but is usually 0.2 to 5% by weight. More preferably, it is 0.3-2 weight%. In the range of less than 0.2% by weight and more than 5% by weight, those highly active for hydrogenation of aromatic nuclei cannot be obtained, and neither the nuclear hydrogenation rate nor the selectivity can be satisfied.
[0015]
The method for nuclear hydrogenation of a substituted aromatic compound according to the present invention is characterized in that a substituted aromatic compound is nuclear hydrogenated in the presence of a catalyst described above under hydrogen pressure in a solvent. Here, as the substituted aromatic compound to be hydrogenated, any of monocyclic or polycyclic aromatic compounds having various substituents, for example, alkyl groups or substituents containing oxygen, nitrogen, and sulfur are all used. Examples thereof include aromatic carbonyl, aromatic carboxylic acid, aromatic alcohol, aromatic ether, and aromatic epoxy compound. Among these, an aromatic epoxy compound is particularly preferable from the viewpoint that the usefulness of the catalyst can be sufficiently exhibited. The molecular weight of these compounds is not particularly limited, but those having a molecular weight of 2000 or less are preferred.
[0016]
Examples of aromatic epoxy compounds that can be preferably used include glycidyl ethers of phenols such as phenyl glycidyl ether; bisphenol type epoxy compounds such as diglycidyl ether of bisphenol A, a polymer of bisphenol A diglycidyl ether and bisphenol A, and bisphenol. Diglycidyl ether of F, polymer of diglycidyl ether of bisphenol F and bisphenol F, etc .; biphenol type epoxy compound, for example, diglycidyl ether of biphenol, polymer of diglycidyl ether of biphenol and biphenol, 3, 3 ′, Diglycidyl ether of 5,5′-tetramethylbiphenol, diglycidyl ether of 3,3 ′, 5,5′-tetramethylbiphenol and 3,3 ′, 5,5′-tetramethyl The polymerization products of phenol; novolak type epoxy compounds, for example polyglycidyl ethers of phenol novolac, o- although cresol novolac polyglycidyl ether, and the like, but is not limited thereto. Among these, bisphenol-type epoxy compounds are preferable from the viewpoint of easy handling as raw materials, and bisphenol A diglycidyl ether or bisphenol F diglycidyl ether is particularly preferable from the viewpoint of being liquid.
[0017]
The amount of the catalyst used varies greatly depending on the supported amount, the type of the substituted aromatic compound to be hydrogenated, the reaction conditions, and the like, but is usually 0.00005 per 1 part of the substituted aromatic compound. Although it is appropriately selected from the range of ~ 0.5 part, from the industrial viewpoint, the range of 0.0001 to 0.2 part is preferable.
[0018]
The hydrogenation reaction of the present invention can be carried out without a solvent depending on the type of the substituted aromatic compound to be hydrogenated and the reaction conditions, but the selectivity can be selected by selecting an optimum solvent for the intended reaction. It is preferable to carry out the reaction in a solvent from the standpoint of improving the temperature and reducing the reaction time.
[0019]
The solvent used here is not particularly limited, but can be appropriately selected from hydrocarbons, ethers and alcohols, and halogenated hydrocarbons having no double bond. Specific examples include n-pentane, n-hexane, cyclohexane, diethyl ether, dibutyl ether, tetrahydrofuran, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, 2-butanol, tert-butanol, n- Examples include hexanol, cyclohexanol, carbon tetrachloride, dichloromethane, and trichloroethane. Among them, diethyl ether, dibutyl ether, tetrahydrofuran, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, 2-butanol, tert- Butanol, n-hexanol, and cyclohexanol are preferable, and tetrahydrofuran is more preferable.
[0020]
Among these, a mixture of a saturated aliphatic alcohol having 1 to 10 carbon atoms, a linear or cyclic ether, and water is particularly preferable in terms of excellent reaction rate and selectivity. Of the solvents described above, water has the effect of increasing the activity of the catalyst. Therefore, even when an organic solvent is required, it is preferably used as a mixed solution with water as described above, and a combination of water and ethers or water and alcohols is preferable.
[0021]
When using a solvent, the ratio of the solvent used is not particularly limited, but is preferably 0.05 to 100 parts, more preferably 0.1 to 50 parts, based on weight, with respect to 1 part of the substituted aromatic compound. is there.
[0022]
The hydrogen used in the reaction may be any hydrogen as long as it is usually used industrially, but the catalyst activity is excellent when the amount of impurity carbon monoxide is small. Therefore, the content of carbon monoxide in hydrogen is preferably 2% or less. The hydrogen pressure during the reaction is not particularly limited, but it takes a longer time than necessary for the reaction at low pressure, and the hydrogen basic unit becomes high at high pressure, so the range of 1 to 100 kg / cm 2 is preferable. It is preferable to set it as the range of -70kg / cm < 2 >.
[0023]
The reaction temperature in the reaction varies greatly depending on the type of the substituted aromatic compound to be hydrogenated, the reaction conditions, and the reaction time, and may be appropriately selected within the range of −40 to 200 ° C. From the point, the range of −20 to 100 ° C. is preferable, and the range of −20 to 80 ° C. is particularly preferable for a substituted aromatic compound having a highly reactive substituent because the selectivity is further improved.
[0024]
The reaction time of the reaction depends on the type of the substituted aromatic compound to be hydrogenated, the amount of catalyst, and other reaction conditions, and cannot generally be said, but is usually 0.5 to 30 hours.
[0025]
As described above, the target nuclear hydride can be easily obtained with high selectivity by carrying out the nuclear hydrogenation reaction of the substituted aromatic compound. The excellent point of the production method using the ruthenium catalyst is that it shows extremely high selectivity for nuclear hydrogenation. However, as an excellent point, aromatic hydrogenation is performed at a hydrogen pressure of 2 to 70 kg / cm 2 and at a pressure of -20 to 100. It can be performed even under extremely mild conditions such as a reaction temperature of ° C. A generally known ruthenium catalyst needs to have either a hydrogen pressure exceeding 100 kg / cm 2 or a reaction temperature exceeding 100 ° C. as a condition for aromatic nucleus hydrogenation. On the other hand, since the said catalyst is very active with respect to nuclear hydrogenation, the above conditions are possible and it can be set as a very cheap manufacturing cost and equipment cost.
[0026]
In addition, the ruthenium catalyst can be obtained very inexpensively. Furthermore, since it can be used repeatedly, the nuclear hydrogenation method is advantageous in that the catalyst cost can be suppressed.
[0027]
The reaction equipment is not particularly limited as long as it can withstand the required hydrogen pressure, and either a batch system or a continuous system may be used. The nuclear hydride obtained by the present invention can be obtained by removing the catalyst by filtration, etc., and then removing only the solvent, so that it can be a highly pure target product. If necessary, further distillation, crystallization, etc. It can also be purified using a conventionally known method.
[0028]
According to the nuclear hydrogenation method using the catalyst, nuclear hydrogenation of a substituted aromatic compound such as an aromatic epoxy compound can be performed with high selectivity and can be performed economically.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. In the following, unless otherwise specified, the nuclear hydrogenation rate was determined from the analysis of the ultraviolet spectrum, and the epoxy group residual rate was determined from the measurement result of the epoxy equivalent.
[0030]
Reference Example 1 (Catalyst preparation method)
In a 200 ml beaker, 10.0 g of activated carbon and 100 g of water were added, and an aqueous solution of sodium ruthenium (VI) containing 0.5 g of ruthenium atoms was added at room temperature, and then impregnated with stirring. It was dehydrated after washing with exchange water. The obtained catalyst had a water content of 50% by weight, and the supported amounts of ruthenium atoms and sodium atoms were 5% by weight and 1% by weight, respectively, per dry weight. The supported ruthenium atom had a Ru3d5 / 2 orbital spectrum peak of 280.7 eV as measured by the XPS method.
[0031]
Example 1
A 1 liter autoclave reactor was charged with 2 g of the ruthenium catalyst (containing 50% by weight of water) prepared in Reference Example 1, 30 g of phenylglycidyl ether (epoxy equivalent 150) and 80 g of tetrahydrofuran, and the gas in the reactor was nitrogen gas. After replacement and setting to 80 ° C., hydrogen was added so that the pressure in the reactor was 40 kg / cm 2 and sealed, and the reaction was allowed to proceed for 1 hour until the pressure reduction of hydrogen ended. After completion of the reaction, the catalyst was filtered, and the obtained filtrate was analyzed by gas chromatography. As a result, a nuclear hydrogenation rate of 100% was confirmed, and the selectivity for cyclohexyl glycidyl ether was 98%. Subsequently, the solvent was removed by an evaporator. The epoxy equivalent of what was obtained was 159.
[0032]
Reference Example 2 (Catalyst Preparation Method)
Add 200 g of activated carbon and 100 g of water to a 200 ml beaker, add an aqueous solution of sodium ruthenium (VI) containing 0.5 g of ruthenium at room temperature, impregnate with stirring, filter, and wash with ion-exchanged water. After dehydration, it was reduced by heating at 80 ° C. for 2 hours in a hydrogen atmosphere. In the obtained catalyst, the supported amount of ruthenium atoms and the supported amount of sodium atoms were 5% by weight and 1% by weight, respectively, based on the dry weight. The supported ruthenium atom had a Ru3d5 / 2 orbital spectrum peak of 280.4 eV as measured by the XPS method.
[0033]
Example 2
A 1 liter autoclave reactor was charged with 1 g of the ruthenium catalyst (dry product) prepared in Reference Example 2, 30 g of phenyl glycidyl ether (epoxy equivalent 150), and 80 g of tetrahydrofuran, and the gas in the reactor was replaced with nitrogen gas. After setting the temperature to 80 ° C., hydrogen was added so that the pressure in the reactor was 40 kg / cm 2 and sealed, and the reaction was allowed to proceed for 1 hour until the decrease in hydrogen pressure was completed. After completion of the reaction, the catalyst was filtered, and the obtained filtrate was analyzed by gas chromatography. As a result, a nuclear hydrogenation rate of 100% was confirmed, and the selectivity for cyclohexyl glycidyl ether was 97%. Subsequently, the solvent was removed by an evaporator. The epoxy equivalent of what was obtained was 161.
[0034]
Example 3
In a 1 liter autoclave reactor, 4 g of the ruthenium catalyst (containing 50% by weight of water) prepared in Reference Example 1, 30 g of EPICLON850CRP (epoxy equivalent 173, manufactured by Dainippon Ink and Chemicals), which is diglycidyl ether of bisphenol A, water 10 g and 80 g of tetrahydrofuran were charged, the gas in the reactor was replaced with nitrogen gas, and the temperature was set to 40 ° C. Then, hydrogen was added so that the pressure in the reactor would be 40 kg / cm 2 and sealed, and the hydrogen pressure The reaction was continued for 7 hours until the decrease was completed. After completion of the reaction, the catalyst was filtered and the solvent was removed at 150 ° C. with 150 mmHg. The nuclear hydrogenation rate was 100%, the epoxy equivalent of the obtained product was 189, and the epoxy group residual rate was 96%.
[0035]
Comparative Example 1
The reaction was carried out under the same conditions as in Example 3 except that 4 g of commercially available ruthenium supported on 5% activated carbon (containing 50 wt% water) was used and the reaction time was 9 hours. After completion of the reaction, the catalyst was filtered and the solvent was removed at 150 ° C. with 150 mmHg. The nuclear hydrogenation rate was 67%, the epoxy equivalent of the obtained product was 228, and the epoxy group residual rate was 77%.
[0036]
Comparative Example 2
Example except that 6 g of commercially available ruthenium supported on 5% activated carbon (dry product) is used as a catalyst, 240 g of dioxane is used as a solvent, the reaction temperature is 50 ° C., the hydrogen introduction pressure is 100 kg / cm 2 , and the reaction time is 24 hours. The reaction was carried out under the same conditions as in 3. After the reaction, the catalyst was filtered, and the solvent was removed at 150 ° C. with 150 mmHg. The nuclear hydrogenation rate was 81%, the epoxy equivalent of the obtained product was 29, and the epoxy group residual rate was 67%.
[0037]
Comparative Example 3
The reaction was performed under the same conditions as in Comparative Example 1 except that the reaction temperature was 80 ° C. and the reaction time was 6 hours. The catalyst was filtered and the solvent was removed at 150 ° C. and 150 mmHg. The nuclear hydrogenation rate was 82%, the epoxy equivalent of the obtained product was 254, and the epoxy group residual rate was 69%.
[0038]
Comparative Example 4
The reaction was conducted under the same conditions as in Comparative Example 1 except that 2 g of commercially available rhodium supported on 5% activated carbon (containing 50% by weight water) was used as a catalyst and the reaction time was 5 hours. After completion of the reaction, the catalyst was filtered and the solvent was removed at 150 ° C. with 150 mmHg. The nuclear hydrogenation rate was 100%, the epoxy equivalent of the obtained product was 242 and the epoxy group residual rate was 81%.
[0039]
Example 4
The reaction was carried out under the same conditions as in Example 3 except that 30 g of EPICLON 850 (epoxy equivalent 189, manufactured by Dainippon Ink & Chemicals, Inc.), which is diglycidyl ether of bisphenol A, was used as a raw material. After completion of the reaction, the catalyst was filtered and the solvent was removed at 150 ° C. with 150 mmHg. The nuclear hydrogenation rate was 100%, the epoxy equivalent of the obtained product was 206, and the epoxy group residual rate was 95%.
[0040]
Example 5
The reaction was carried out under the same conditions as in Example 3 except that 30 g of EPICLON 830 (epoxy equivalent 180, manufactured by Dainippon Ink & Chemicals, Inc.), which is a diglycidyl ether of bisphenol F, was used as a raw material. After completion of the reaction, the catalyst was filtered and the solvent was removed at 150 ° C. with 150 mmHg. The nuclear hydrogenation rate was 100%, the epoxy equivalent of the obtained product was 198, and the epoxy group residual rate was 95%.
[0041]
Comparative Example 5
A 2 liter four-necked flask was charged with 24.4 g of ruthenium chloride hydrate and 1000 g of tetrahydrofuran, brought to a nitrogen atmosphere, 75 g of magnesium powder was added, heated with stirring for 5 hours, and then filtered off.
[0042]
A 1 liter autoclave reactor was charged with 12.9 g of the resulting catalyst solution, 30 g of EPICLON 830 (epoxy equivalent 180, manufactured by Dainippon Ink & Chemicals, Inc.), which is diglycidyl ether of bisphenol F, and 20 g of tetrahydrofuran. After replacing the gas with nitrogen gas and setting to 50 to 70 ° C., hydrogen was added so that the pressure in the reactor was 100 kg / cm 2 and sealed, and 12 hours until the pressure reduction of hydrogen ended. Reacted. After completion of the reaction, the catalyst was filtered and the solvent was removed at 150 ° C. with 150 mmHg. The nuclear hydrogenation rate was 90%, the epoxy equivalent of the obtained product was 200, and the epoxy group residual rate was 93%. Although the pressure was higher than that in Example 5 and the reaction time was increased, the nuclear hydrogenation rate was low.
[0043]
Example 6
In a 1 liter autoclave, 6 g of the ruthenium catalyst (containing 50 wt% water) prepared in Reference Example 1 and EPICLON 1055 (epoxy equivalent 498, manufactured by Dainippon Ink & Chemicals, Inc.), which is a polycondensate of diglycidyl ether of bisphenol A as a raw material ) Charge 30 g, 20 g of water and 120 g of tetrahydrofuran, replace the gas in the reaction vessel with nitrogen gas, set to 50 ° C., and then add and seal so that the hydrogen pressure becomes 40 kg / cm 2. It was made to react for 12 hours until completion | finish. After completion of the reaction, the catalyst was filtered and the solvent was removed at 150 ° C. with 150 mmHg. The nuclear hydrogenation rate was 96%, the epoxy equivalent of the obtained product was 568, and the epoxy group residual rate was 91%.
[0044]
Example 7
The reaction was carried out under the same conditions as in Example 6 except that 30 g of EPICLON 4055 (epoxy equivalent 917, manufactured by Dainippon Ink & Chemicals, Inc.), which is a polycondensate of diglycidyl ether of bisphenol A, was used as a raw material and the reaction time was 16 hours. Went. After completion of the reaction, the solvent was removed at 150 ° C. and 150 mmHg. The nuclear hydrogenation rate was 92%, the epoxy equivalent of the obtained product was 1070, and the epoxy group residual rate was 89%.
[0045]
Example 8
The reaction was carried out under the same conditions as in Example 2, except that 30 g of bisphenol A and 80 g of t-butanol were used as raw materials and the reaction time was 3 hours. After completion of the reaction, the catalyst was filtered, and the obtained filtrate was analyzed by gas chromatography. As a result, a nuclear hydrogenation rate of 100% was confirmed, and the selectivity for bis (4-hydrocyclohexyl) propane consisting of three isomers. Was 99%.
[0046]
【The invention's effect】
According to the present invention, there is provided a method for nuclear hydrogenation of a substituted aromatic compound capable of achieving an unprecedented excellent nuclear hydrogenation rate and at the same time selectively suppressing hydrogenation or hydrogenolysis of substituents in the molecular structure. Can be provided.
[0047]
Further, since the nuclear hydrogenation reaction can be performed under low temperature and low pressure conditions, productivity is improved.

Claims (9)

ルテニウム原子およびルテニウム原子より電気陰性度の低い金属原子が担体上に担持されており、且つ、ルテニウム原子の担持量が0.1〜20%である触媒の存在下、水素加圧下に、置換芳香族化合物を核水素化することを特徴とし、且つ、該置換芳香族化合物がビスフェノール型エポキシ化合物であることを特徴とする置換芳香族化合物の核水素化方法。Ruthenium atoms and metal atoms having a lower electronegativity than ruthenium atoms are supported on the support, and in the presence of a catalyst in which the supported amount of ruthenium atoms is 0.1 to 20%, a substituted fragrance is applied under hydrogen pressure. A method for nuclear hydrogenation of a substituted aromatic compound, characterized in that the aromatic compound is subjected to nuclear hydrogenation, and the substituted aromatic compound is a bisphenol-type epoxy compound . ルテニウム原子より電気陰性度の低い金属原子の担持量が0.2〜5%である請求項1記載の核水素化方法。  The nuclear hydrogenation method according to claim 1, wherein the supported amount of metal atoms having a lower electronegativity than ruthenium atoms is 0.2 to 5%. ルテニウム原子が、XPS法で測定したときのRu3d5/2軌道のスペクトルピークが、280.0〜281.0eVの範囲のものである請求項1又は2記載の核水素化方法。  The nuclear hydrogenation method according to claim 1 or 2, wherein the ruthenium atom has a Ru3d5 / 2 orbital spectrum peak as measured by XPS in the range of 280.0 to 281.0 eV. ルテニウム原子より電気陰性度の低い金属原子が、アルカリ金属である請求項1、2又は3記載の核水素化方法。  The nuclear hydrogenation method according to claim 1, 2 or 3, wherein the metal atom having a lower electronegativity than the ruthenium atom is an alkali metal. 担体が活性炭である請求項1、2、3又は4記載の核水素化方法。  The nuclear hydrogenation method according to claim 1, 2, 3 or 4, wherein the carrier is activated carbon. 核水素化を溶媒の存在下に行う請求項1〜5の何れか1つに記載の核水素化方法。  The nuclear hydrogenation method according to any one of claims 1 to 5, wherein the nuclear hydrogenation is performed in the presence of a solvent. 溶媒が、炭素数1〜10の飽和脂肪族のアルコール、鎖状若しくは環状エーテル、水またはそれらの混合物である請求項1〜6の何れか1つに記載の核水素化方法。  The nuclear hydrogenation method according to any one of claims 1 to 6, wherein the solvent is a saturated aliphatic alcohol having 1 to 10 carbon atoms, a chain or cyclic ether, water, or a mixture thereof. 溶媒が、テトラヒドロフランと水との混合液である請求項7記載の核水素化方法。  The nuclear hydrogenation method according to claim 7, wherein the solvent is a mixed liquid of tetrahydrofuran and water. 水素圧が2〜70kg/cmであり、且つ反応温度が−20〜100℃である請求項1〜8の何れか1つに記載の核水素化方法。The nuclear hydrogenation method according to any one of claims 1 to 8, wherein the hydrogen pressure is 2 to 70 kg / cm 2 and the reaction temperature is -20 to 100 ° C.
JP00746897A 1997-01-20 1997-01-20 Nuclear hydrogenation process for substituted aromatic compounds Expired - Fee Related JP3955349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00746897A JP3955349B2 (en) 1997-01-20 1997-01-20 Nuclear hydrogenation process for substituted aromatic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00746897A JP3955349B2 (en) 1997-01-20 1997-01-20 Nuclear hydrogenation process for substituted aromatic compounds

Publications (2)

Publication Number Publication Date
JPH10204002A JPH10204002A (en) 1998-08-04
JP3955349B2 true JP3955349B2 (en) 2007-08-08

Family

ID=11666640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00746897A Expired - Fee Related JP3955349B2 (en) 1997-01-20 1997-01-20 Nuclear hydrogenation process for substituted aromatic compounds

Country Status (1)

Country Link
JP (1) JP3955349B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130344A (en) * 1997-11-27 2000-10-10 Mitsubishi Chemical Corporation Process for producing compound having epoxy group
JP3480552B2 (en) * 1998-04-15 2003-12-22 ジャパンエポキシレジン株式会社 Epoxy resin composition
JP3415047B2 (en) * 1998-11-18 2003-06-09 ジャパンエポキシレジン株式会社 Curable epoxy resin composition
DE19853858A1 (en) * 1998-11-23 2000-05-25 Bayer Ag Process for the preparation of hydroxyethylcyclohexanes and hydroxyethylpiperidines
JP4531915B2 (en) * 2000-03-16 2010-08-25 丸善石油化学株式会社 Process for continuous nuclear hydrogenation of aromatic epoxy compounds
JP2002097251A (en) * 2000-09-21 2002-04-02 New Japan Chem Co Ltd Alicyclic compound containing glycidyl group, its production method and epoxy resin composition using the same
JP4611287B2 (en) * 2004-02-23 2011-01-12 新日鐵化学株式会社 Method for producing alicyclic oxetane compound
JPWO2007063974A1 (en) * 2005-12-02 2009-05-07 財団法人名古屋産業科学研究所 Method for adding hydrogen to aromatic ring of aromatic ring compound

Also Published As

Publication number Publication date
JPH10204002A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
US5386060A (en) Palladium catalyst and its use in the preparation of a mixture of optionally substituted cyclohexylamine and optionally substituted dicyclohexylamine
JP3955349B2 (en) Nuclear hydrogenation process for substituted aromatic compounds
EP3118181A1 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
EP1645555B1 (en) A method for producing 4-aminodiphenylamine
JPS6059215B2 (en) Process for producing cyclohexene from benzene
CN112920139A (en) Dimorpholinyl diethyl ether and preparation process thereof
EP3374344B1 (en) Improved process for the reductive amination of halogen-containing substrates
JP4296739B2 (en) Catalyst for producing both-end diols, method for producing the catalyst, method for producing both-end diols using the catalyst, and both-end diols obtained by the production method
CA2381604C (en) Process for producing a supported metal catalyst
JPS596699B2 (en) supported ruthenium catalyst
US6130344A (en) Process for producing compound having epoxy group
JP4122589B2 (en) Method for producing epoxy compound
KR100590604B1 (en) Process for producing fluorinated methyl-benzyl alcohol
JP3773293B2 (en) Method for producing ammonia synthesis catalyst
CN112844473A (en) Alumina-supported polyion liquid catalyst and preparation method and application thereof
JP2002186854A (en) Selective hydrogenation catalyst and method for selective hydrogenation using the same
JP5028730B2 (en) Process for producing 2,3,5,6-tetrafluoro-4-methylbenzyl alcohol
EP3619186B1 (en) Process for the production of semifluorinated alkanes
EP2660237B1 (en) Tertiary amine preparation process
JP4268796B2 (en) Method for producing epoxy compound
JP2001002604A (en) Production of diols
CN115487821B (en) Application of inorganic oxide supported multi-metal catalyst in catalyzing hydrogenation reaction of hydroquinone or bisphenol A
EP2055379A1 (en) Raney-nickel-iron catalyst, its preparation and a method to produce L-norephedrine by hydrogenating L-phenylacetylcarbinol-oxime with said catalyst
JP4182659B2 (en) A method for producing a glycidyl group-containing alicyclic compound.
JP3094101B1 (en) Method for producing tertiary carboxylic acid and its ester using silver ion exchange resin catalyst

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees