JPH04312256A - Gear and cam consisting of long-fiber reinforced thermoplastic resin - Google Patents

Gear and cam consisting of long-fiber reinforced thermoplastic resin

Info

Publication number
JPH04312256A
JPH04312256A JP3080048A JP8004891A JPH04312256A JP H04312256 A JPH04312256 A JP H04312256A JP 3080048 A JP3080048 A JP 3080048A JP 8004891 A JP8004891 A JP 8004891A JP H04312256 A JPH04312256 A JP H04312256A
Authority
JP
Japan
Prior art keywords
gear
long
thermoplastic resin
cam
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3080048A
Other languages
Japanese (ja)
Inventor
Toru Kuroki
徹 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3080048A priority Critical patent/JPH04312256A/en
Publication of JPH04312256A publication Critical patent/JPH04312256A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a lightweight, low-noise, and corrosion-resistant gear or cam that can resist a high load condition by laminating and meltedly forming a compound sheet made up of arranged long-fiber reinforcing materials and short fibers consisting of thermoplastic resins. CONSTITUTION:Long-fiber reinforcing materials 1 such as carbon fibers and glass fibers are extendedly arranged in one direction to form a sheet shape, and short fibers consisting of thermoplastics such as nylon and polyester are mixedly woven to make a compound sheet. And the compound sheets are laminated and meltedly formed to shape a prescribed gear or cam 2. Thus, a high fracture toughness, a strong fatigue strength, a high working accuracy, and lightweight gear or cam can be manufactured with high productivity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は動力の伝達機構として、
数々の特徴を備えた複合材歯車及びカムに関する。詳し
くは、長繊維強化熱可塑性樹脂製の歯車及びカムに関す
る。
[Industrial Field of Application] The present invention is a power transmission mechanism.
This article relates to composite gears and cams with numerous features. Specifically, the present invention relates to gears and cams made of long fiber-reinforced thermoplastic resin.

【0002】0002

【従来技術】従来、金属製の欠点(騒音発生、腐食、高
重量、他)をカバーするためにプラスチック素材の歯車
及びカムの製作がなされてきた。しかしながら、熱可塑
性樹脂であるプラスチックは射出成形等で非常に効率的
に安価に製品化できる特徴を持っている反面、機械的性
質が劣っているために、強度が低く、高負荷加重部には
使用できなかった。その欠点を補うために、例えば特開
昭54−36443号公報には炭素繊維強化熱硬化性樹
脂から製造された歯車が提示されている。この新しい素
材で製作された歯車はその高強度物性から、高負荷重部
分への使用が可能になったが、熱可塑性樹脂に比較して
、熱硬化樹脂の成形は一般的に言って長時間を必要とし
、生産効率は著しく低く、精度を要求された時には切削
加工を必要とする欠点があった。切除加工は素材が炭素
繊維を含んでいるので治具として特殊な物を使用しなけ
ればならないし、その治具のメンテナンスにも相当配慮
する必要があった。又、この技術では強化材として織物
だけを使用しているので、一方向材に比較して強化材重
量当たりの強度が低いという欠点があった。
2. Description of the Related Art Conventionally, gears and cams have been manufactured from plastic materials in order to overcome the disadvantages of metal gears (noise generation, corrosion, high weight, etc.). However, although thermoplastic resins have the characteristic that they can be manufactured into products very efficiently and inexpensively by injection molding, etc., they have poor mechanical properties, so they have low strength and cannot be used in high-load parts. Couldn't use it. In order to compensate for this drawback, for example, Japanese Patent Laid-Open No. 54-36443 proposes a gear made of carbon fiber reinforced thermosetting resin. Due to its high strength and physical properties, gears made from this new material can be used in high-load, heavy parts, but compared to thermoplastic resin, molding of thermoset resin generally takes a long time. The production efficiency was extremely low, and when precision was required, cutting was required. The cutting process requires the use of a special jig because the material contains carbon fiber, and considerable consideration must be given to the maintenance of the jig. Furthermore, since this technique uses only woven fabric as the reinforcing material, it has the disadvantage that the strength per weight of the reinforcing material is lower than that of unidirectional materials.

【0003】0003

【発明が解決しようとする課題】本発明の課題は軽量、
低騒音、耐腐食性等の特徴を持っている高負荷加重部に
も使用可能にし、更にそれらが高精度、高生産性で製造
可能な繊維強化熱可塑性樹脂よりなる歯車及びカムを提
供するものである。
[Problems to be solved by the invention] The problems of the present invention are lightweight,
To provide gears and cams made of fiber-reinforced thermoplastic resin that can be used in high-load parts that have features such as low noise and corrosion resistance, and can be manufactured with high precision and high productivity. It is.

【0004】0004

【課題を解決するための手段】本発明は配列された長繊
維強化材と熱可塑性樹脂よりなる短繊維より構成された
複合シートを積層して溶融成形した長繊維強化熱可塑性
樹脂よりなる歯車及びカムである。歯車及びカムの構造
、要求性能に応じて複合シートを積層する際長繊維の方
向を定めることが出来る。一般的には長繊維性の配列を
一定角度づつづらして歯車及びカムの軸方向に積層して
成形することで、力の伝達方向に有効なものが得られる
[Means for Solving the Problems] The present invention provides a gear made of a long fiber-reinforced thermoplastic resin which is melt-molded by laminating a composite sheet made of arranged long fiber reinforcement material and short fibers made of a thermoplastic resin. It's a cam. The direction of the long fibers can be determined when laminating composite sheets according to the structure of the gear and cam and the required performance. In general, by stacking and molding long fibers arrayed at a constant angle in the axial direction of gears and cams, a material that is effective in the direction of force transmission can be obtained.

【0005】即ち、歯車の歯にかかる力は曲げ応力であ
り、負荷の方向と垂直に長繊維強化材が配列されている
歯車は曲げ強度の点で非常に有利になりその結果、高負
荷部への適用がより可能になる。樹脂(マトリックス)
としては、その成形性の良さから熱可塑性樹脂が適して
おり、製品として要求される耐熱温度等を勘案して広範
囲の樹脂種から、最適な物を測定する事も重大なポイン
トとなる。熱可塑性樹脂を繊維強化複合材にすると、熱
可塑性樹脂の延性効果により破壊靭性が優れ、その結果
耐衝撃強度も向上する。同様に振動減衰性や疲労性にも
、その特徴を発揮する事が可能である。
In other words, the force applied to the teeth of a gear is bending stress, and gears in which long fiber reinforcement is arranged perpendicular to the direction of load are very advantageous in terms of bending strength. becomes more applicable to Resin (matrix)
Thermoplastic resins are suitable because of their good moldability, and it is also important to measure the optimal resin from a wide range of resin types, taking into account the heat resistance temperature required for the product. When thermoplastic resin is used as a fiber-reinforced composite material, fracture toughness is excellent due to the ductility effect of the thermoplastic resin, and as a result, impact resistance strength is also improved. Similarly, it is possible to exhibit its characteristics in vibration damping properties and fatigue properties.

【0006】本発明に用いられる長繊維強化材としては
、炭素繊維、ガラス繊維、その他の無機あるいは有機繊
維等で成形温度でその強化材が失われない物であれば、
何れの繊維でもよいが製品の高機能を追求する場合には
炭素繊維が物性的に有利であり、また適している。 長繊維強化材としては織物、一方向、編物等種々の形態
があるが、一番強度が発揮できるのは、一方向素材であ
る。例えば、織物は炭素繊維で言えば、3kfを使用し
、目付け=200g/m2 程度の平織、一方向素材は
希望する目付けを繊維束の太さと本数で決定し、それを
規定幅に均一に広げた物である。但し歯車として成形さ
れ、製品として総合的な高物性を示す為、上記各形状素
材の組合せも当然必要となる。
[0006] The long fiber reinforcing material used in the present invention may be carbon fiber, glass fiber, or other inorganic or organic fiber, as long as the reinforcing material is not lost at the molding temperature.
Any type of fiber may be used, but carbon fiber is advantageous in terms of physical properties and is suitable when pursuing high functionality of the product. There are various forms of long fiber reinforcement such as woven fabrics, unidirectional fabrics, and knitted fabrics, but unidirectional materials can exhibit the highest strength. For example, in the case of carbon fiber, 3kf is used for textiles, plain weave with a basis weight of about 200g/m2, and for unidirectional materials, the desired basis weight is determined by the thickness and number of fiber bundles, and then spread uniformly to the specified width. It is a thing. However, since it is molded as a gear and exhibits overall high physical properties as a product, a combination of the above-mentioned shapes and materials is naturally necessary.

【0007】熱可塑性樹脂の種類は先の述べたように要
求される製品物性から選定してよいのであるが、一般的
にはナイロン、ポリエステル、ポリプロピレン、ポリカ
ーボネート、ポリフェニレンスルファイド、航空機用途
高耐熱性として、ポリエーテルケトン、ポリエーテルエ
ーテルケトン、ポリエーテルイミド等がある。本発明の
複合シートは配列された長繊維強化材と熱可塑性樹脂よ
り構成された複合シートで、熱可塑性樹脂は長繊維強化
材により均一に分散されている方が強化材の強度の強度
寄与率が高い。分散性をよくする複合シートの製造方法
として、その一例はWO90−7024号公報に示され
ている。
As mentioned above, the type of thermoplastic resin may be selected based on the required physical properties of the product, but generally nylon, polyester, polypropylene, polycarbonate, polyphenylene sulfide, and high heat resistance for aircraft use are selected. Examples include polyetherketone, polyetheretherketone, polyetherimide, etc. The composite sheet of the present invention is a composite sheet composed of arranged long fiber reinforcement and thermoplastic resin, and the thermoplastic resin has a higher strength contribution to the strength of the reinforcement when it is uniformly dispersed by the long fiber reinforcement. is high. An example of a method for manufacturing a composite sheet with improved dispersibility is shown in WO90-7024.

【0008】即ち、強化材としては炭素繊維、ガラス繊
維等の一方向に引揃えたシート状物、織物、編物等に熱
可塑性樹脂である短繊維が充分混織された複合シートが
最適である。短繊維を混織するに気体流又は液体流で強
化用長繊維に打ちこむことで、短繊維が各単繊維間に分
散する。
[0008] In other words, the most suitable reinforcing material is a composite sheet in which short fibers of thermoplastic resin are sufficiently mixed with a unidirectional sheet-like material such as carbon fiber or glass fiber, woven fabric, or knitted fabric. . By driving the short fibers into the reinforcing long fibers with a gas or liquid stream, the short fibers are dispersed between each single fiber.

【0009】強化用繊維ウェブとの交絡一体化のし易さ
、得られる複合シートの柔軟性から、短繊維事態の剛性
が低いものが好ましく、用いる重合体の種類によって変
わるが一般的にはその長さ100cm、好ましくは10
cm以下、さらに好ましくは5cm以下が良く、1mm
以下では長繊維にからまないので好ましくない、又短繊
維の直径は一般的には200μ以下、好ましくは100
μ以下、さらに好ましくは50位かの短繊維が好ましい
。又繊維長として明確でないフラッシュ紡糸された繊維
や、マイクロウェーブでも、強化用繊維ウェブと交絡一
体化するものであればかまわない。
In view of the ease of intertwining and integration with the reinforcing fiber web and the flexibility of the resulting composite sheet, it is preferable that the short fibers have low rigidity, and this varies depending on the type of polymer used, but in general, the short fibers have low rigidity. length 100cm, preferably 10
cm or less, more preferably 5 cm or less, 1 mm
The diameter of the short fibers is generally less than 200 μm, preferably 100 μm or less, which is not preferable because the short fibers do not get entangled with the long fibers.
Short fibers with a diameter of μ or less, more preferably 50 or less, are preferred. In addition, flash-spun fibers whose fiber length is not clear or microwaves may be used as long as they are intertwined and integrated with the reinforcing fiber web.

【0010】以下、概略の製造方法に就いて述べる。ま
ず前述した複合シートを製作予定製品の設計に基づいて
各原材料の必要量を用意する。設計は複合則を駆使して
、製品がコストパフォーマンスを一番発揮できるように
素材の仕様(強化繊維の種類、形態、目付け、熱可塑性
樹脂の種類、目付け等)及びシート形状切断時の各複合
シートの配向方向が少なくとも明示されていることが好
ましい。次に複合シートを裁断機で配向方向、枚数、等
を考慮して規定形状にカッティングする。炭素繊維は通
常の他の繊維に対して硬く、普通のカッティング器具で
はすぐに切れなくなるか、正確に裁断されなくなるので
、特殊な治具を用意する必要がある。規定形状へのカッ
ティング方法としては、打ち抜き法、堅刃、片刃による
カッティング、丸刃、多角形刃による回転カッティング
、レーザー光によるカサティング、ウォータージェット
によるカッティング、高周波振動刃によるカッティング
、ハサミによるカッティング、等多種類があり又、各々
の種類にも手動、自動、コンピューター化、等種々のグ
レイドがある。前に示した形態の素材の場合には、素材
そのものの交絡が充分なので、複雑な形状にカッティン
グしても末端、周辺部の脱落及び乱れ、突起部の脱落等
がないが、レーザー光等によるカッティングを行うと、
カッティング端部の熱可塑が溶融、溶着して形状維持が
更によく保持される。設計の配向に積層された複合シー
トを前もってステイチィング(縫い合わせ)してから、
前記のカッティング方法を用いて規定形状にする方法も
ある。この場合、一枚一枚カチティングし、積層するよ
りも、過ちが少なくなる等の利点がある。切断されたシ
ート状物を設計に従って順序良く積層してゆく、この時
製品形状に合った積層型枠を使用すると、初心者でも正
確に間違いなくより効率的である。
The outline of the manufacturing method will be described below. First, the required amount of each raw material is prepared for the above-mentioned composite sheet based on the design of the product to be manufactured. The design utilizes compound rules to ensure that the product exhibits the best cost performance, including material specifications (type of reinforcing fiber, form, basis weight, type of thermoplastic resin, basis weight, etc.) and each composite when cutting the sheet shape. It is preferable that at least the orientation direction of the sheet is clearly indicated. Next, the composite sheet is cut into a specified shape using a cutting machine, taking into consideration the orientation direction, number of sheets, etc. Carbon fiber is harder than other fibers and cannot be easily cut or cut accurately with ordinary cutting tools, so a special jig is required. Cutting methods to specified shapes include punching, cutting with a hard blade, cutting with a single blade, rotary cutting with a round blade or polygonal blade, cutting with a laser beam, cutting with a water jet, cutting with a high frequency vibrating blade, cutting with scissors, There are many types, and each type has various grades such as manual, automatic, computerized, etc. In the case of the material in the form shown above, the material itself is sufficiently intertwined, so even if it is cut into a complicated shape, the ends and periphery will not fall off or be disturbed, and the protrusions will not fall off. When cutting,
The thermoplastic at the cutting end melts and welds to better maintain its shape. The composite sheets are laminated in the design orientation and then stitched together in advance.
There is also a method of forming a prescribed shape using the above-mentioned cutting method. In this case, there are advantages such as fewer mistakes compared to cutting and laminating each sheet one by one. Laminating the cut sheets in an orderly manner according to the design is more efficient, even for beginners, by using a laminating form that matches the shape of the product.

【0011】複合シートの組み合せに於いて、表層部を
織物にすると一方向材の表層部配置の欠点を補うと同時
に、美観的にも良好に仕上がる。更に。高機能、高性能
を期待する場合には、積層した形状物を厚さ方向に、出
来れば強化繊維と同じ繊維又は少なくとも同じ種類の繊
維で縫い合わせると良い。製作物に対して最適設計され
た金型を予め規定温度に余熱し、その中に先の方法で作
製された積層物を入れ金型の温度をある昇温速度で樹脂
の種類によって決められた温度まで昇温する。樹脂が溶
融した事を確認後、規定圧に加圧し、規定時間その圧力
、温度を維持する。次に備え付けの冷却装置を用いて降
温を始めるが、この操作は加圧状態下で行う事が成形品
のボイドを無くす為には好ましい条件である。規定温度
に降温したら、追い出し板で金型より成形品を取り出す
。取り出した製品は金型の状態及び成形条件等の理由で
表面に”バリ”が発生する場合がある。その様な時には
、製品の仕上げを良くする為に適切な治具を用いて表面
を平滑にすると良い。
[0011] In the combination of composite sheets, if the surface layer is made of fabric, the disadvantages of the surface layer arrangement of the unidirectional material can be compensated for, and at the same time, the finish is aesthetically pleasing. Furthermore. If high functionality and performance are expected, the laminated shape should be sewn together in the thickness direction, preferably with the same fibers as the reinforcing fibers, or at least the same type of fibers. A mold that has been optimally designed for the product is preheated to a specified temperature, and the laminate produced by the previous method is placed inside it, and the temperature of the mold is raised at a certain heating rate determined by the type of resin. Heat up to temperature. After confirming that the resin has melted, pressurize to the specified pressure and maintain that pressure and temperature for the specified time. Next, the temperature begins to decrease using the provided cooling device, but it is preferable to perform this operation under pressure in order to eliminate voids in the molded product. Once the temperature has fallen to the specified temperature, the molded product is removed from the mold using the expulsion plate. The removed product may have ``burrs'' on its surface due to the condition of the mold and molding conditions. In such cases, it is best to use an appropriate jig to smooth the surface to improve the finish of the product.

【0012】0012

【実施例】強化用長繊維として炭素繊維、マトリックス
樹脂としてポリフェニレンスルファイドを用いた複合シ
ートを選定し、図1に示すように〔0°/90°/±4
5°/±22.5°/±67.5°〕を二層とし、最外
層に一枚づつ織物よりなる複合シートを積層した。
[Example] A composite sheet using carbon fiber as the reinforcing long fiber and polyphenylene sulfide as the matrix resin was selected, and as shown in Figure 1, [0°/90°/±4
5°/±22.5°/±67.5°], and a composite sheet made of a woven fabric was laminated on the outermost layer.

【0013】成形温度340℃、成形圧力10kg/c
m2 、成形時間  5分の成形条件で圧縮成形した。 取り出した製品は”バリ”の少ない精度の良い高精度の
良い高性能であった。
[0013] Molding temperature 340°C, molding pressure 10kg/c
Compression molding was performed under molding conditions of m2 and molding time of 5 minutes. The product taken out was of high precision and high performance with little burrs.

【0014】[0014]

【発明の効果】従来の複合材製歯車およびカムに比較し
て破壊靱性の高い、疲労強度が強い、加工精度の高い、
軽い歯車およびカムが高生産性で製作可能である。
[Effects of the invention] Compared to conventional composite gears and cams, it has higher fracture toughness, stronger fatigue strength, and higher machining accuracy.
Light gears and cams can be produced with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例に示した歯車の概念図である。FIG. 1 is a conceptual diagram of a gear shown in an example.

【符号の説明】[Explanation of symbols]

1  強化用長繊維 2  歯車 1. Long fibers for reinforcement 2 Gears

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  配列された長繊維強化材と熱可塑性樹
脂よりなる短繊維より構成された複合シートを積層して
溶融成形した長繊維強化熱可塑性樹脂よりなる歯車及び
カム
Claim 1: Gears and cams made of long fiber reinforced thermoplastic resin, which are made by laminating and melt-molding composite sheets made of arranged long fiber reinforcing material and short fibers made of thermoplastic resin.
JP3080048A 1991-04-12 1991-04-12 Gear and cam consisting of long-fiber reinforced thermoplastic resin Withdrawn JPH04312256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3080048A JPH04312256A (en) 1991-04-12 1991-04-12 Gear and cam consisting of long-fiber reinforced thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080048A JPH04312256A (en) 1991-04-12 1991-04-12 Gear and cam consisting of long-fiber reinforced thermoplastic resin

Publications (1)

Publication Number Publication Date
JPH04312256A true JPH04312256A (en) 1992-11-04

Family

ID=13707359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080048A Withdrawn JPH04312256A (en) 1991-04-12 1991-04-12 Gear and cam consisting of long-fiber reinforced thermoplastic resin

Country Status (1)

Country Link
JP (1) JPH04312256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076158A (en) * 2004-09-10 2006-03-23 Toray Ind Inc Method for producing preform, apparatus for producing preform, and preform
DE102010042809A1 (en) * 2010-10-22 2012-04-26 Hilti Aktiengesellschaft machine tool
JP2012087190A (en) * 2010-10-18 2012-05-10 Mitsubishi Rayon Co Ltd Method for production of prepreg having discontinuous fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006076158A (en) * 2004-09-10 2006-03-23 Toray Ind Inc Method for producing preform, apparatus for producing preform, and preform
JP4576942B2 (en) * 2004-09-10 2010-11-10 東レ株式会社 Preform manufacturing method and preform manufacturing apparatus
JP2012087190A (en) * 2010-10-18 2012-05-10 Mitsubishi Rayon Co Ltd Method for production of prepreg having discontinuous fiber
DE102010042809A1 (en) * 2010-10-22 2012-04-26 Hilti Aktiengesellschaft machine tool

Similar Documents

Publication Publication Date Title
US4368234A (en) Woven material and layered assembly thereof
EP2669081B1 (en) Joint body of carbon fiber reinforced composite material
US8354156B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
EP1948856B1 (en) Hybrid three-dimensional woven/laminated struts for composite structural applications
JP5934802B2 (en) Load bearing structure and process for aircraft engines
EP1595689B1 (en) Prepregs for use in building lay-ups of composite materials and process for their preparation
EP1685947B1 (en) Method for the manufacture of FRP composites
US11376812B2 (en) Shock and impact resistant structures
US20210339499A1 (en) Composite materials and structures
WO2018101245A1 (en) Fiber-reinforced resin molded article and method for manufacturing fiber-reinforced resin molded article
JPH04312256A (en) Gear and cam consisting of long-fiber reinforced thermoplastic resin
JP2008307818A (en) Multiaxial material for fiber-reinforced thermoplastic resin, and molded product
WO2017110596A1 (en) Method for manufacturing cutting body, and device for cutting composite material
JP2010202824A (en) Sheet composite
JPH05269909A (en) Fiber reinforced resin molded product
Varshney et al. Innovations in textile composite designing and their applications
JP4673184B2 (en) Centrifuge rotor
KR101138117B1 (en) A method manufacturingballastic structure of special purpose vehicles
JP2926736B2 (en) Multi-layer thermoplastic composite molding
JPS6011339A (en) Manufacture of fiber-reinforced plastic composite material
JPS61181634A (en) Manufacture of frp gear
JPH0780836A (en) Fiber reinforced thermoplastic resin stampable sheet
JP2005002514A (en) Three-dimensional woven or knitted fabric or braid for composite material and method for producing the same and three-dimensional preform
JP4322632B2 (en) Multiaxial reinforced fiber laminate
JPH0719220A (en) Base material for bolt consisting of fiber reinforced compond matreial

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711