JP2012087190A - Method for production of prepreg having discontinuous fiber - Google Patents

Method for production of prepreg having discontinuous fiber Download PDF

Info

Publication number
JP2012087190A
JP2012087190A JP2010233882A JP2010233882A JP2012087190A JP 2012087190 A JP2012087190 A JP 2012087190A JP 2010233882 A JP2010233882 A JP 2010233882A JP 2010233882 A JP2010233882 A JP 2010233882A JP 2012087190 A JP2012087190 A JP 2012087190A
Authority
JP
Japan
Prior art keywords
prepreg
cutting
fiber
thermoplastic resin
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010233882A
Other languages
Japanese (ja)
Other versions
JP5768354B2 (en
Inventor
Sadao Samejima
禎雄 鮫島
Yasushi Watanabe
康 渡辺
Nobuyuki Yamamoto
伸之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010233882A priority Critical patent/JP5768354B2/en
Publication of JP2012087190A publication Critical patent/JP2012087190A/en
Application granted granted Critical
Publication of JP5768354B2 publication Critical patent/JP5768354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for production of a prepreg having discontinuous fibers, by which a unidirectional discontinuous fiber prepreg having uniform quality can be obtained and which can easily change the formation pattern of a cutting part and has high flexibility of prepreg design.SOLUTION: A film 24 comprising a thermoplastic resin is fed and laminated on one face of a strip 22 formed by aligning continuous fibers as a layered thermoplastic resin to form a laminate. Then, the laminate is irradiated with laser beam, and the continuous fibers in the strip 22 of the laminate is cut at a plurality of places in a longitudinal direction by cutting device 26 to form the cutting parts in a direction crossing the continuous fibers. After that, the strip 22 is impregnated with the thermoplastic resin to be formed into the prepreg, or after being formed into the prepreg, the laser beam is irradiated to form the cutting parts.

Description

本発明は、多数本の短繊維が長手方向に沿って配向した不連続繊維を有するプリプレグ(一方向不連続繊維プリプレグ)の製造方法に関する。   The present invention relates to a method for producing a prepreg (one-way discontinuous fiber prepreg) having discontinuous fibers in which a number of short fibers are oriented along the longitudinal direction.

繊維強化樹脂成形品を得る際に使用する成形材として、一方向に配向した繊維材料に熱可塑性樹脂または熱硬化性樹脂を含浸させた一方向プリプレグが知られている。このような一方向プリプレグには、繊維材料として長繊維が使用されることが多い。これに対して、繊維材料として一方向に配向した短繊維を含むプリプレグも検討されている。一方向に配向した短繊維を含むプリプレグは、一方向に配向した長繊維を含むプリプレグと同等の物性を有し、かつ、擬似的に伸びることにより立体成形時には優れた曲面賦形性を発揮するものと期待される。   A unidirectional prepreg in which a fiber material oriented in one direction is impregnated with a thermoplastic resin or a thermosetting resin is known as a molding material used when obtaining a fiber-reinforced resin molded product. In such a unidirectional prepreg, long fibers are often used as a fiber material. On the other hand, a prepreg containing short fibers oriented in one direction as a fiber material has been studied. A prepreg containing short fibers oriented in one direction has the same physical properties as a prepreg containing long fibers oriented in one direction, and exhibits excellent curved surface shapeability during three-dimensional molding by pseudo extension. Expected.

一方向に配向した短繊維を含むプリプレグ、すなわち、一方向不連続繊維プリプレグの製造方法として、例えば特許文献1には、一方向に配向した長繊維を含むプリプレグに対して、複数の刃を配置した抜き型を間欠的に押し当て、進入させる方法が記載されている。このような方法によれば、各刃の進入により切断線が形成され、該切断線により個々の各フィラメントが適宜切断されて短繊維とされた一方向不連続繊維プリプレグを得ることができる。また、特許文献2には、熱可塑性樹脂により被覆された強化繊維束をロータリーカッターで切断する方法が記載されている。また、特許文献3にも、刃物により、プリプレグに切れ目を入れる方法が記載されている。   As a method for producing a prepreg containing short fibers oriented in one direction, that is, a unidirectional discontinuous fiber prepreg, for example, Patent Document 1 arranges a plurality of blades with respect to a prepreg containing long fibers oriented in one direction. A method is described in which a punched die is intermittently pressed and entered. According to such a method, it is possible to obtain a unidirectional discontinuous fiber prepreg in which a cutting line is formed by entering each blade, and each filament is appropriately cut by the cutting line to form a short fiber. Patent Document 2 describes a method of cutting a reinforcing fiber bundle covered with a thermoplastic resin with a rotary cutter. Patent Document 3 also describes a method of making a cut in a prepreg with a blade.

また、炭素繊維を切断する技術としては、例えば特許文献4に記載のように、繊維材料を延伸して切断する、いわゆる牽切技術が知られている。   Moreover, as a technique for cutting carbon fibers, for example, as described in Patent Document 4, a so-called check-out technique for drawing and cutting a fiber material is known.

特開2009−220480号公報JP 2009-220480 A 特開平09−254227号公報JP 09-254227 A 特開昭63−247012号公報Japanese Unexamined Patent Publication No. 63-247010 特開昭63−165541号公報JP-A 63-165541

しかしながら、繊維材料として例えば炭素繊維やアラミド繊維を用いた場合には、これらの繊維は一般的な有機繊維よりも引張り強さが大きく、高弾性であるため、特許文献1〜3のように刃を使用して切断する方法では、刃先が磨耗により劣化しやすい。そのため、このような刃を使用した方法では、長期的に安定な切断を行えず、一定の品質の一方向不連続繊維プリプレグが得られない傾向があった。また、抜き型やロータリーカッターを使用した方法では、切断線の形成パターンを変更する際には、抜き型やロータリーカッターの刃の配置パターンを変更する必要があった。そのため、切断線の形成パターンを変更することが容易ではなく、プリプレグ設計の自由度が低いという問題があった。   However, when carbon fiber or aramid fiber, for example, is used as the fiber material, these fibers have a higher tensile strength and higher elasticity than general organic fibers. In the method of cutting using, the cutting edge tends to deteriorate due to wear. Therefore, in the method using such a blade, stable cutting cannot be performed for a long time, and there is a tendency that a unidirectional discontinuous fiber prepreg having a certain quality cannot be obtained. Further, in the method using a cutting die or a rotary cutter, it is necessary to change the arrangement pattern of the cutting die or the blade of the rotary cutter when changing the cutting line formation pattern. Therefore, there is a problem that it is not easy to change the formation pattern of the cutting line, and the degree of freedom in prepreg design is low.

一方、特許文献4に記載のような牽切技術により繊維束を切断した場合には、切断後には繊維束はばらけてしまい、繊維の配向を維持することができない。このようなばらけた状態にある繊維束を用いて、一方向不連続繊維プリプレグを製造することは、実質的に困難である。   On the other hand, when the fiber bundle is cut by the check technique described in Patent Document 4, the fiber bundle is scattered after the cutting, and the fiber orientation cannot be maintained. It is substantially difficult to manufacture a unidirectional discontinuous fiber prepreg using such a bundle of fibers in a separated state.

本発明は上記事情に鑑みてなされたもので、本発明の目的は、一定の品質の一方向不連続繊維プリプレグが得られ、また、切断線(切断部)の形成パターンを容易に変更でき、プリプレグ設計の自由度も高い、一方向不連続プリプレグの製造方法を提供することである。   The present invention was made in view of the above circumstances, and the object of the present invention is to obtain a unidirectional discontinuous fiber prepreg of a certain quality, and can easily change the formation pattern of the cutting line (cutting part), The object is to provide a method for producing a unidirectional discontinuous prepreg having a high degree of freedom in prepreg design.

本発明の不連続繊維を有するプリプレグの製造方法は、連続繊維を引き揃えてなる帯状物と、熱可塑性樹脂層とが積層した積層体を形成する積層体形成工程と、レーザ光の照射により、前記帯状物中の連続繊維をその長手方向の複数箇所において切断し、前記連続繊維と交差する方向の切断部を形成する切断工程と、前記熱可塑性樹脂層を前記帯状物に含浸しプリプレグを得る含浸工程と、を有する。
切断工程を含浸工程の後に行うことができる。
本発明の不連続繊維を有するプリプレグは、前記製造方法によって製造される。
The method for producing a prepreg having discontinuous fibers according to the present invention includes a laminate forming step of forming a laminate in which a strip formed by arranging continuous fibers and a thermoplastic resin layer are laminated, and irradiation with laser light. A continuous fiber in the strip is cut at a plurality of locations in the longitudinal direction to form a cut portion in a direction intersecting the continuous fiber, and the strip is impregnated with the thermoplastic resin layer to obtain a prepreg. Impregnation step.
The cutting step can be performed after the impregnation step.
The prepreg having discontinuous fibers of the present invention is manufactured by the above manufacturing method.

本発明によれば、一定の品質の一方向不連続繊維プリプレグが得られ、また、切断線(切断部)の形成パターンを容易に変更でき、プリプレグ設計の自由度も高い、一方向不連続プリプレグの製造方法を提供することができる。   According to the present invention, a unidirectional discontinuous prepreg having a certain quality can be obtained, the formation pattern of cutting lines (cutting portions) can be easily changed, and the degree of freedom of prepreg design is high. The manufacturing method of can be provided.

本発明の製造方法で製造される不連続繊維を有するプリプレグの一例を示す平面図である。It is a top view which shows an example of the prepreg which has a discontinuous fiber manufactured with the manufacturing method of this invention. 図1の不連続繊維を有するプリプレグを製造する製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the manufacturing apparatus which manufactures the prepreg which has the discontinuous fiber of FIG. 図1の不連続繊維を有するプリプレグを製造する製造装置の他の一例を示す概略構成図である。It is a schematic block diagram which shows another example of the manufacturing apparatus which manufactures the prepreg which has the discontinuous fiber of FIG.

以下、本発明の不連続繊維を有するプリプレグ(以下、一方向不連続繊維プリプレグという場合もある。)の製造方法について、詳細に説明する。
なお、本発明において、不連続繊維を有するプリプレグとは、長手方向(一方向)に沿って、多数本の短繊維が配向した帯状物に対して、熱可塑性樹脂を含浸させた一方向プリプレグのことを言う。また、短繊維とは、長さが15mm以上、200mm未満の繊維のことを意味し、長繊維とは、長さが200mm以上の繊維のことを意味する。
Hereinafter, the manufacturing method of the prepreg which has the discontinuous fiber of this invention (henceforth a unidirectional discontinuous fiber prepreg) is demonstrated in detail.
In the present invention, the prepreg having discontinuous fibers refers to a unidirectional prepreg obtained by impregnating a thermoplastic resin into a strip in which a number of short fibers are oriented along the longitudinal direction (one direction). Say that. The short fiber means a fiber having a length of 15 mm or more and less than 200 mm, and the long fiber means a fiber having a length of 200 mm or more.

[一方向不連続繊維プリプレグ]
図1は、本発明の製造方法で製造される一方向不連続繊維プリプレグの一例を示す平面図である。
この一方向不連続繊維プリプレグ10は、マトリックス樹脂として熱可塑性樹脂を含み、繊維材料として、長手方向に沿う一方向(矢印A方向)に配向した多数本の短繊維の炭素繊維フィラメントを含む、幅Wの帯状のプリプレグである。詳しくは後述するが、図1の一方向不連続プリプレグに含まれる繊維材料は、開繊された幅Wの1本の長繊維束(連続繊維を引き揃えてなる帯状物)から製造されたものである。1本の長繊維束は、通常3000〜180000本程度のフィラメントから構成される。また、この一方向不連続繊維プリプレグ10の厚みは、0.04〜0.25mmである。
[One-way discontinuous fiber prepreg]
FIG. 1 is a plan view showing an example of a unidirectional discontinuous fiber prepreg manufactured by the manufacturing method of the present invention.
The unidirectional discontinuous fiber prepreg 10 includes a thermoplastic resin as a matrix resin, and includes, as a fiber material, carbon fiber filaments of a plurality of short fibers oriented in one direction along the longitudinal direction (arrow A direction). This is a W-band prepreg. As will be described in detail later, the fiber material included in the unidirectional discontinuous prepreg in FIG. 1 is manufactured from a single long fiber bundle (a strip formed by aligning continuous fibers) having an opened width W. It is. One long fiber bundle is usually composed of about 3,000 to 180,000 filaments. Moreover, the thickness of this one-way discontinuous fiber prepreg 10 is 0.04-0.25 mm.

この一方向不連続繊維プリプレグ10は、長手方向の複数箇所P(ただし、n=1,2,3・・・)、すなわち、この例ではP,P,P,P,Pの5箇所それぞれにおいて、炭素繊維フィラメントと交差する方向(繊維方向と交差する方向。)に部分的に形成された複数の切断線(切れ目)11を切断部として有している。 The unidirectional discontinuous fiber prepreg 10 has a plurality of longitudinal positions P n (where n = 1, 2, 3...), That is, P 1 , P 2 , P 3 , P 4 , P in this example. In each of 5 points, a plurality of cutting lines (cuts) 11 partially formed in a direction crossing the carbon fiber filament (direction crossing the fiber direction) are provided as cutting parts.

具体的には、各切断線11は、一方向不連続繊維プリプレグ10の幅方向に沿う長さがL、一方向不連続繊維プリプレグ10の幅方向に沿う間隔がQ、一方向不連続繊維プリプレグ10の長手方向に沿う間隔がQで配置され、長手方向の各箇所それぞれにおいて一方向不連続繊維プリプレグ10の幅方向に沿って断続的に形成されている。また、各切断線11は、一方向不連続繊維プリプレグ10の厚み方向において、繊維材料を貫通するように、すなわち厚み方向の全ての繊維材料を切断する深さで形成されている。
図1の一方向不連続繊維プリプレグ10に含まれる繊維材料は、このように形成された切断線11により、元々は長繊維(連続繊維)であった各炭素繊維フィラメントそれぞれが長手方向に分断され、長さRの短繊維とされたものである。そのため、この一方向不連続繊維プリプレグ10は、一方向に配向した長繊維を含むプリプレグと同等の物性や取扱性を有しながら、優れた曲面賦形性を発揮し、特に立体的な成形物の成形に適したものとなる。
Specifically, each cutting line 11 has a length along the width direction of the one-way discontinuous fiber prepreg 10 as L, an interval along the width direction of the one-way discontinuous fiber prepreg 10 as Q 1 , and the one-way discontinuous fiber. interval along the longitudinal direction of the prepreg 10 are arranged in Q 2, in each of positions in the longitudinal direction along the width direction of the unidirectional discontinuous fiber prepreg 10 are intermittently formed. Moreover, each cutting line 11 is formed in the depth direction which penetrates a fiber material in the thickness direction of the unidirectional discontinuous fiber prepreg 10, ie, cuts all the fiber materials of the thickness direction.
In the fiber material included in the unidirectional discontinuous fiber prepreg 10 in FIG. 1, the carbon fiber filaments that were originally long fibers (continuous fibers) are divided in the longitudinal direction by the cutting lines 11 formed in this way. , A short fiber having a length R. Therefore, this unidirectional discontinuous fiber prepreg 10 exhibits excellent curved surface formability while having the same physical properties and handleability as a prepreg containing long fibers oriented in one direction, and is particularly a three-dimensional molded product. It is suitable for molding.

また、この例では、長手方向に隣り合う箇所、すなわちPとPn+1とでは、切断線11の幅方向における配置位置が一致せず、互い違いにずれるようなパターンで、切断線11が配置されている。 Further, in this example, the cutting lines 11 are arranged in a pattern in which the arrangement positions in the width direction of the cutting lines 11 do not coincide with each other in places adjacent to each other in the longitudinal direction, that is, Pn and Pn + 1. ing.

[一方向不連続繊維プリプレグの製造方法]
次に、図1の一方向不連続繊維プリプレグ10を連続的に製造する方法について、第1および第2実施形態を挙げて、詳細に説明する。
図2は、第1実施形態の製造装置20を示す図であって、この製造装置20は、連続した繊維束を巻き出す巻出装置21と、巻き出された繊維束を開繊して、例えば厚みが0.04〜0.25mm程度の平たい帯状とする開繊装置23と、開繊された帯状の繊維束、すなわち、連続繊維を引き揃えてなる帯状物22の下面側に、加熱された熱可塑性樹脂のフィルム24を供給して貼り合わせ、帯状物22と熱可塑性樹脂層とを備えた積層体を形成する供給・貼合装置25を備えている。この例の供給・貼合装置25は、フィルム24を巻き出す供給ロール25aと、巻き出されたフィルム24と帯状物22とを挟んで加熱および加圧する、一対のニップロール25bとを備えている。
[Method for producing unidirectional discontinuous fiber prepreg]
Next, a method for continuously producing the unidirectional discontinuous fiber prepreg 10 in FIG. 1 will be described in detail with reference to the first and second embodiments.
FIG. 2 is a diagram illustrating the manufacturing apparatus 20 according to the first embodiment. The manufacturing apparatus 20 unwinds a continuous fiber bundle and unwinds the unrolled fiber bundle, For example, it is heated on the lower surface side of the opening device 23 that forms a flat strip having a thickness of about 0.04 to 0.25 mm and the strip-shaped fiber bundle that has been spread, that is, the continuous strip 22. A thermoplastic / resin film 24 is supplied and bonded to form a laminate including a strip 22 and a thermoplastic resin layer. The supply / bonding device 25 of this example includes a supply roll 25 a that unwinds the film 24, and a pair of nip rolls 25 b that heat and pressurize the unwound film 24 and the strip 22.

また、この製造装置20は、積層体を構成する帯状物22に対して、フィルム24が貼り合わされていないその上面にレーザ光を照射して、帯状物22の所望の部分を切断し、複数の切断線11を形成する切断装置26を備えている。この例の切断装置26は、帯状物22の上面側において、レーザ光を自在に走査して、帯状物22の任意の位置を切断可能なものである。   In addition, the manufacturing apparatus 20 irradiates a laser beam on the upper surface of the band-shaped object 22 that constitutes the laminated body, on which the film 24 is not bonded, and cuts a desired portion of the band-shaped object 22. A cutting device 26 for forming the cutting line 11 is provided. The cutting device 26 of this example can freely scan a laser beam on the upper surface side of the band 22 to cut an arbitrary position of the band 22.

さらに、この製造装置20は、切断装置26の後段に、切断後の帯状物22に熱可塑性樹脂のフィルム24を加熱加圧により含浸させた後、冷却し、一方向不連続繊維プリプレグ10とするダブルベルト式の連続処理装置27と、該プリプレグ10を巻き取る巻取装置33とを備えている。
この連続処理装置27は、上下一対の従動ドラム28a,28bと、上下一対の駆動ドラム29a,29bとを備えるとともに、上側の従動ドラム28aと上側の駆動ドラム29aとに掛け渡されたステンレススチール製無端ベルト30aと、下側の従動ドラム28bと下側の駆動ドラム29bとに掛け渡されたステンレススチール製無端ベルト30bとを具備している。走行する上下の無端ベルト30a,30bの対向する領域の内側には、加熱加圧装置31として、一対のヒータ31a,31aを備えた加熱手段と、複数対の加熱加圧ロール31b,31cとが配置され、冷却装置32として、複数対の冷却ロール32a,32bが配置されている。また、この例では、無端ベルト30a,30bの外表面には、フッ素系樹脂による離型加工が施されている。
Further, in the manufacturing apparatus 20, after the cutting device 26 is impregnated with the film 24 of the thermoplastic resin by heating and pressurizing the strip-like material 22 after the cutting, the manufacturing apparatus 20 is cooled to obtain the unidirectional discontinuous fiber prepreg 10. A double belt type continuous processing device 27 and a winding device 33 for winding the prepreg 10 are provided.
The continuous processing device 27 includes a pair of upper and lower driven drums 28a and 28b and a pair of upper and lower driven drums 29a and 29b, and is made of stainless steel spanned between the upper driven drum 28a and the upper driving drum 29a. An endless belt 30a and a stainless steel endless belt 30b stretched over a lower driven drum 28b and a lower drive drum 29b are provided. Inside the region where the upper and lower endless belts 30a, 30b that run are opposed to each other, a heating unit including a pair of heaters 31a, 31a and a plurality of pairs of heating / pressurizing rolls 31b, 31c are provided as the heating / pressurizing device 31. A plurality of pairs of cooling rolls 32 a and 32 b are arranged as the cooling device 32. Further, in this example, the outer surfaces of the endless belts 30a and 30b are subjected to release processing using a fluorine-based resin.

この製造装置20により、図1の一方向不連続繊維プリプレグ10を製造する場合には、まず、巻出装置21により連続した繊維束を連続的に巻き出し、この繊維束を開繊装置23の具備する複数本のバーで擦過もしくは揺動により開繊して、連続繊維を引き揃えてなる帯状物22とする。
ついで、開繊されたこの帯状物22の下面側に、供給・貼合装置25の供給ロール25aから、熱可塑性樹脂のフィルム(層状の熱可塑性樹脂)24を供給し、このフィルム24と帯状物22とをニップロール25bで挟んで、これらを貼り合わせ、帯状物22の下面側に熱可塑性樹脂層が設けられた積層体を形成する(積層体形成工程)。この際、ニップロール25bの温度および圧力を調整して、フィルム24が帯状物22に半含浸した、いわゆるセミプレグの状態としてもよい。
ついで、貼り合わされたフィルム24により帯状物22を下方から支持しながら、帯状物22とフィルム24との積層体を切断装置26へと送る。
When the unidirectional discontinuous fiber prepreg 10 in FIG. 1 is manufactured by the manufacturing apparatus 20, first, a continuous fiber bundle is continuously unwound by the unwinding apparatus 21, and this fiber bundle is The strip 22 is formed by rubbing or swinging with a plurality of bars to provide continuous fibers.
Next, a film (layered thermoplastic resin) 24 of a thermoplastic resin is supplied from the supply roll 25a of the supply / bonding device 25 to the lower surface side of the strip 22 thus opened, and the film 24 and the strip are supplied. 22 is sandwiched between nip rolls 25b, and these are bonded together to form a laminate in which a thermoplastic resin layer is provided on the lower surface side of the strip 22 (laminate formation step). At this time, the temperature and pressure of the nip roll 25b may be adjusted to form a so-called semi-preg state in which the film 24 is semi-impregnated into the strip 22.
Next, the laminated body of the band 22 and the film 24 is sent to the cutting device 26 while the band 22 is supported from below by the bonded film 24.

ついで、帯状物22の上面に、切断装置26によりレーザ光を照射して、帯状物22の所定の位置を走査して連続繊維を切断し、図1のようなパターンで複数の切断線11を形成する(切断工程)。
この例では、被切断物である帯状物22は、所定の供給速度で連続的に切断装置26に送られているため、切断装置26は、帯状物22の供給速度を考慮した方向および速度でレーザ光を走査し、複数の切断線11を連続的に形成していく。
Next, the cutting device 26 irradiates the upper surface of the band 22 with laser light, scans a predetermined position of the band 22 to cut continuous fibers, and forms a plurality of cutting lines 11 in a pattern as shown in FIG. Form (cutting step).
In this example, since the strip 22 that is the object to be cut is continuously sent to the cutting device 26 at a predetermined supply speed, the cutting device 26 has a direction and a speed in consideration of the supply speed of the strip 22. The laser beam is scanned to form a plurality of cutting lines 11 continuously.

ついで、連続処理装置27の無端ベルト30a,30b間に、切断線が形成された帯状物束22とフィルム24との積層体を供給して、加熱加圧装置31により、フィルム24を帯状物22に含浸させ(含浸工程)、その後、冷却装置32により冷却する。
これにより、切断線が形成された帯状物22に熱可塑性樹脂が含浸した一方向不連続繊維プリプレグ10が得られ、得られた一方向不連続繊維プリプレグ10を巻取装置33で巻き取る。
一方向不連続繊維プリプレグ10は、製造する成形物の形状、強度などに応じて、複数枚重ねられて成形に供される。
Next, a laminated body of the band-like material bundle 22 having a cutting line and the film 24 is supplied between the endless belts 30 a and 30 b of the continuous processing device 27. And then cooled by the cooling device 32.
Thereby, the unidirectional discontinuous fiber prepreg 10 obtained by impregnating the strip 22 with the cutting line with the thermoplastic resin is obtained, and the obtained unidirectional discontinuous fiber prepreg 10 is wound by the winding device 33.
A plurality of unidirectional discontinuous fiber prepregs 10 are stacked and used for molding in accordance with the shape and strength of the molded product to be produced.

フィルム24を構成する熱可塑性樹脂としては、ポリアミド、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル樹脂、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー、塩化ビニル樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーン樹脂などが使用できる。また、その厚みは、一方向不連続繊維プリプレグの樹脂含有量が25〜45質量%となるように、適宜決定される。なお、樹脂含有量は、一方向不連続繊維プリプレグを構成する熱可塑性樹脂と繊維材料の合計質量を100質量%とした際の熱可塑性樹脂の質量割合である。   The thermoplastic resin constituting the film 24 includes polyamide, polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic resin, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide (PPS). ), Polyether ether ketone (PEEK), liquid crystal polymer, vinyl chloride resin, polytetrafluoroethylene and other fluorine-based resins, silicone resin, and the like. Moreover, the thickness is suitably determined so that the resin content of the unidirectional discontinuous fiber prepreg is 25 to 45% by mass. The resin content is a mass ratio of the thermoplastic resin when the total mass of the thermoplastic resin and the fiber material constituting the unidirectional discontinuous fiber prepreg is 100% by mass.

切断工程で照射するレーザ光の種類としては、例えば炭酸ガスレーザやエキシマレーザなどの気体レーザ、YAGレーザやYVOレーザなどの固体レーザ及びファイバーレーザなどが使用できるが、短時間の照射で帯状物を良好に切断できる点では、YAGレーザ及びYVOレーザなどの固体レーザ及びファイバーレーザが好ましい。
切断工程で使用される切断装置26としては、キーエンス(株)製の型式MD−F3000や型式MD−V9900、SUNX製の型式LP−Z250、LP−G050、LP−431U、Advanced Optowaves Corp製の型式AWAVE−355−15−100Kなどが挙げられる。
また、レーザ出力、発振モード、走査する速度、パルス幅、パルス周波数などを帯状物22の材質、厚み、供給される速度、厚み方向の切断の度合いに応じて設定することが好ましい。
As the type of laser light irradiated in the cutting process, for example, a gas laser such as a carbon dioxide laser or an excimer laser, a solid state laser such as a YAG laser or a YVO 4 laser, and a fiber laser can be used. A solid laser and a fiber laser such as a YAG laser and a YVO 4 laser are preferable in that they can be cut well.
As the cutting device 26 used in the cutting process, model MD-F3000 or model MD-V9900 manufactured by Keyence Corporation, model LP-Z250 manufactured by SUNX, LP-G050, LP-431U, model manufactured by Advanced Optowaves Corp. AWAVE-355-15-100K etc. are mentioned.
In addition, it is preferable to set the laser output, the oscillation mode, the scanning speed, the pulse width, the pulse frequency, and the like according to the material, the thickness, the supplied speed, and the degree of cutting in the thickness direction.

このような製造方法では、以上説明したように、レーザ光の照射により切断工程を行う。
そのため、刃先の磨耗による劣化という問題が生じず、長期的に安定な切断を行って、一定の品質の一方向不連続繊維プリプレグを得ることができる。また、レーザの走査パターンを変更するだけで、容易に切断線11の形成パターンを変更できるため、プリプレグ設計の自由度も高い。
In such a manufacturing method, as described above, the cutting process is performed by laser light irradiation.
Therefore, the problem of deterioration due to abrasion of the blade edge does not occur, and stable unidirectional discontinuous fiber prepreg of a certain quality can be obtained by performing stable cutting for a long time. Further, since the formation pattern of the cutting line 11 can be easily changed simply by changing the laser scanning pattern, the degree of freedom in designing the prepreg is high.

なお、以上説明した第1実施形態においては、帯状物22の下面側のみにフィルム24を貼り合わせているが、切断工程と含浸工程の間において、帯状物22の上面側にも熱可塑性樹脂のフィルムを貼り合あわせてもよい。
また、以上の例では、帯状物22の下面側に配置された供給・貼合装置25から、熱可塑性樹脂のフィルム24を供給し、ニップロール25bで挟持することにより、帯状物22と熱可塑性樹脂層を備えた積層体を形成し、その後、積層体の上面にレーザ光を照射して切断部を形成している。しかしながら、帯状物の上面側に配置された供給・貼合装置から熱可塑性樹脂のフィルムを供給して、ニップロールで挟持することにより、帯状物と熱可塑性樹脂層を備えた積層体を形成し、帯状物を上方から支持しながら切断装置へと送り、積層体の下面の帯状物に下方からレーザ光を照射して切断部を形成してもよい。このように積層体形成工程においては、熱可塑性樹脂のフィルムを帯状物の上下いずれか一方の面に積層し、その後の切断工程においては、好ましくは他方の面へレーザ光を照射すればよい。
さらに、積層体形成工程においては、熱可塑性樹脂のフィルムの両面に帯状物が積層した積層体を形成し、その後の切断工程において、この積層体にレーザ光を照射して、切断線を形成することができる。この場合、レーザ光の照射は、積層体の少なくとも一方の面に対して行えばよく、片面側からのみの照射であっても、両面に配置された帯状物のいずれをも切断することができる。
In the first embodiment described above, the film 24 is bonded only to the lower surface side of the band-shaped object 22, but the thermoplastic resin is also formed on the upper surface side of the band-shaped object 22 between the cutting step and the impregnation step. A film may be bonded together.
Moreover, in the above example, the film 22 of thermoplastic resin is supplied from the supply / bonding device 25 arranged on the lower surface side of the belt 22 and is sandwiched between the nip rolls 25b, whereby the belt 22 and the thermoplastic resin. A laminate including the layers is formed, and then a laser beam is irradiated on the upper surface of the laminate to form a cut portion. However, by supplying a thermoplastic resin film from a supply / bonding device disposed on the upper surface side of the belt-like material and sandwiching it with a nip roll, a laminate including the belt-like material and the thermoplastic resin layer is formed, The cutting part may be formed by feeding the belt-like object to the cutting device while supporting the belt-like object from above and irradiating the belt-like object on the lower surface of the laminated body with laser light from below. As described above, in the laminated body forming step, a thermoplastic resin film is laminated on one of the upper and lower surfaces of the belt-like material, and in the subsequent cutting step, the other surface is preferably irradiated with laser light.
Further, in the laminated body forming step, a laminated body in which strips are laminated on both surfaces of the thermoplastic resin film is formed, and in the subsequent cutting step, the laminated body is irradiated with laser light to form a cutting line. be able to. In this case, the laser beam irradiation may be performed on at least one surface of the laminate, and any of the strips disposed on both surfaces can be cut even if the irradiation is performed from only one surface side. .

次に、図3を参照して、図1の一方向不連続繊維プリプレグ10を連続的に製造する第2実施形態を詳細に説明する。
図2の製造装置20が、連続処理装置27よりも前段側に切断装置26を具備し、含浸工程よりも前に切断工程を行う、すなわち、プリプレグ化前の帯状物22に対して切断工程を行うものであるのに対して、図3の製造装置40は、連続処理装置27よりも後段側に切断装置26を具備し、含浸工程よりも後に切断工程を行う、すなわち、プリプレグに含まれる未切断の帯状物22に対して切断工程を行うものである。
Next, with reference to FIG. 3, 2nd Embodiment which manufactures the unidirectional discontinuous fiber prepreg 10 of FIG. 1 continuously is described in detail.
The manufacturing apparatus 20 in FIG. 2 includes a cutting device 26 on the upstream side of the continuous processing device 27, and performs the cutting step before the impregnation step. That is, the cutting step is performed on the strip 22 before prepregization. 3 is provided with a cutting device 26 on the rear side of the continuous processing device 27, and performs the cutting step after the impregnation step. That is, the manufacturing apparatus 40 in FIG. A cutting process is performed on the cut strip 22.

図3の製造装置40により、図1の一方向不連続繊維プリプレグ10を製造する場合には、まず、巻出装置21により連続した繊維束を連続的に巻き出し、この繊維束を開繊装置23の具備する複数本のバーで擦過もしくは揺動により開繊して、帯状物22とする。
ついで、開繊された帯状物22の下面側に、供給・貼合装置25から層状の熱可塑性樹脂として熱可塑性樹脂のフィルム24を供給して貼り合わせ、帯状物22と熱可塑性樹脂層を備えた積層体を形成する(積層体形成工程)。
ついで、連続処理装置27により、第1の実施形態と同様に熱可塑性樹脂層を含浸させ、冷却して、プリプレグを得る(含浸工程)。
When the unidirectional discontinuous fiber prepreg 10 of FIG. 1 is manufactured by the manufacturing apparatus 40 of FIG. 3, first, a continuous fiber bundle is continuously unwound by the unwinding apparatus 21, and the fiber bundle is opened. The strips 22 are opened by rubbing or swinging with a plurality of bars.
Next, a thermoplastic resin film 24 is supplied and laminated as a layered thermoplastic resin from the supply / bonding device 25 to the lower surface side of the opened band-shaped object 22, and the band-shaped object 22 and the thermoplastic resin layer are provided. A laminated body is formed (laminated body forming step).
Next, the thermoplastic resin layer is impregnated by the continuous processing device 27 as in the first embodiment and cooled to obtain a prepreg (impregnation step).

そして、プリプレグの上面側から、切断装置26によりレーザ光を照射して、帯状物22の所定の位置を走査して切断し、図1のような複数の切断線11を形成する(切断工程)ことにより、一方向不連続繊維プリプレグ10を得る。その後、一方向不連続繊維プリプレグ10を巻取装置33で巻き取る(巻取工程)。
この例でも、被切断物であるプリプレグは、所定の供給速度で連続的に切断装置26に送られているため、切断装置26は、プリプレグの供給速度を考慮した方向および速度でレーザ光を走査し、複数の切断線11を連続的に形成していく。
Then, the cutting device 26 irradiates laser light from the upper surface side of the prepreg, scans and cuts a predetermined position of the strip 22, and forms a plurality of cutting lines 11 as shown in FIG. 1 (cutting step). Thus, the unidirectional discontinuous fiber prepreg 10 is obtained. Thereafter, the unidirectional discontinuous fiber prepreg 10 is wound up by the winding device 33 (winding step).
Also in this example, since the prepreg which is an object to be cut is continuously sent to the cutting device 26 at a predetermined supply speed, the cutting device 26 scans the laser beam at a direction and speed considering the supply speed of the prepreg. Then, a plurality of cutting lines 11 are continuously formed.

なお、以上説明した第2実施形態では、積層体形成工程において、帯状物22の下面側のみにフィルム24を貼り合わせているが、上面側と下面側の両方に貼り合わせてもよい。また、切断工程においては、プリプレグに対して、レーザ光を上面側から照射しているが、下面側から照射してもよいし、両面側から照射してもよい。下面側からレーザ光を照射してプリプレグを切断する場合には、プリプレグの下面側に切断装置を配置してレーザ光を照射する。また、両面側からレーザ光を照射する場合には、プリプレグの上方と下方に切断装置を配置して、プリプレグの所定の位置を走査してプリプレグの厚み方向に対して出力をコントロールし、不連続プリプレグとなるように切断する。この場合、1つの箇所に対して両面側からレーザ光を照射することにより、厚み方向に貫通する切断部を形成してもよいし、1つの箇所に対してはいずれか一方の面側からのみレーザ光を照射して、厚み方向に貫通する切断部を形成してもよい。また、両面側からレーザ光を照射する場合、一方からのレーザ光と、他方からのレーザ光とを異なる箇所に走査し、各レーザ光により、厚み方向には貫通しない切断部をそれぞれ形成してもよい。すなわち、一方向不連続繊維プリプレグ10に含まれる各フィラメントが、切断工程により短繊維になっている限り、各切断部が貫通していなくてもよい。
さらに、積層体形成工程において、熱可塑性樹脂層の両面に帯状物が積層した積層体を形成した場合にも、レーザ光を上面側または下面側から照射してもよいし、両面側から照射してもよい。
In addition, in 2nd Embodiment demonstrated above, in the laminated body formation process, although the film 24 is bonded only to the lower surface side of the strip | belt-shaped object 22, you may bond to both an upper surface side and a lower surface side. Further, in the cutting step, the prepreg is irradiated with laser light from the upper surface side, but may be irradiated from the lower surface side or from both surfaces. When irradiating a laser beam from the lower surface side to cut the prepreg, a cutting device is disposed on the lower surface side of the prepreg to irradiate the laser beam. In addition, when irradiating laser light from both sides, a cutting device is placed above and below the prepreg, scanning a predetermined position of the prepreg, controlling the output in the thickness direction of the prepreg, and discontinuous Cut to a prepreg. In this case, by irradiating laser light to one place from both sides, a cut portion penetrating in the thickness direction may be formed, and for one place only from one of the faces. You may form the cutting part penetrated to a thickness direction by irradiating a laser beam. Also, when irradiating the laser beam from both sides, the laser beam from one side and the laser beam from the other side are scanned at different locations, and each laser beam forms a cut portion that does not penetrate in the thickness direction. Also good. That is, as long as each filament included in the unidirectional discontinuous fiber prepreg 10 is a short fiber by the cutting process, each cut portion may not penetrate.
Further, in the laminated body forming step, even when a laminated body in which strips are laminated on both surfaces of the thermoplastic resin layer is formed, laser light may be irradiated from the upper surface side or the lower surface side, or irradiation may be performed from both surface sides. May be.

また、第1および第2実施形態の積層体形成工程では、マトリックス樹脂である熱可塑性樹脂の材料としてフィルム24を用い、これを帯状物22に貼り合わせることによって熱可塑性樹脂層を形成しているが、例えば熱可塑性樹脂製の粉体(パウダー)を帯状物22に接触させ、加熱、冷却する方法などにより、熱可塑性樹脂層を形成するなどしてもよく、帯状物と熱可塑性樹脂層とを備えた積層体が形成されればよい。   Moreover, in the laminated body formation process of 1st and 2nd embodiment, the thermoplastic resin layer is formed by using the film 24 as a material of the thermoplastic resin which is matrix resin, and bonding this to the strip | belt-shaped object 22. However, a thermoplastic resin layer may be formed by, for example, a method in which a thermoplastic resin powder (powder) is brought into contact with the strip 22 and heated or cooled. It is only necessary to form a laminate including

[その他]
以上の説明においては、繊維材料として炭素繊維を例示したが、炭素繊維以外の繊維、例えばアラミド繊維などであってもよい。しかしながら、上述の切断工程によれば、配向を乱さずに切断することがより難しい炭素繊維であっても、良好に切断することができる。
[Others]
In the above description, carbon fibers are exemplified as the fiber material, but fibers other than carbon fibers, such as aramid fibers, may be used. However, according to the above-described cutting step, even a carbon fiber that is more difficult to cut without disturbing the orientation can be cut well.

また、図1では、一方向不連続繊維プリプレグ10として、長手方向の複数箇所Pそれぞれにおいて、切断部として複数の切断線11が断続的に形成されているものを例示した。しかしながら、一方向不連続繊維プリプレグ10に含まれる各フィラメントが、切断工程により短繊維になっている限り、各箇所Pそれぞれにおける切断線の本数は1本であってもよい。
また、この例では、一方向不連続繊維プリプレグ10として、長手方向に隣り合う箇所では、切断線11の幅方向における配置位置が互い違いにずれるパターンで切断線11が形成されたものを例示した。しかしながら、一方向不連続繊維プリプレグ10に含まれる各フィラメントが、切断工程により短繊維になっている限り、切断線11の形成パターンには特に制限はない。例えば図1の例のように一定の規則性をもったパターンでもよいし、規則性のないランダムなパターンであってもよい。また、各切断線11の長さ、切断線11の本数、間隔Q、Qなどにも制限はない。
また、図示例では、一方向不連続繊維プリプレグ10の厚み方向に、繊維材料を貫通するように各切断線11が形成されているが、先にも述べたとおり、一方向不連続繊維プリプレグ10に含まれる各フィラメントが、切断工程により短繊維になっている限り、すべての切断線がこのように貫通している必要はない。
Moreover, in FIG. 1, as the unidirectional discontinuous fiber prepreg 10, one in which a plurality of cutting lines 11 are intermittently formed as cutting portions at each of a plurality of longitudinal positions Pn is illustrated. However, as long as each filament included in the unidirectional discontinuous fiber prepreg 10 is a short fiber by the cutting process, the number of cutting lines in each of the locations Pn may be one.
Moreover, in this example, as the one-way discontinuous fiber prepreg 10, the one in which the cutting lines 11 are formed in a pattern in which the arrangement positions in the width direction of the cutting lines 11 are staggered in places adjacent to each other in the longitudinal direction. However, as long as each filament included in the unidirectional discontinuous fiber prepreg 10 is a short fiber by the cutting process, the formation pattern of the cutting line 11 is not particularly limited. For example, a pattern having a certain regularity as in the example of FIG. 1 or a random pattern having no regularity may be used. The length of each cut line 11, the number of cutting lines 11, there is no limitation to such interval Q 1, Q 2.
In the illustrated example, each cutting line 11 is formed in the thickness direction of the unidirectional discontinuous fiber prepreg 10 so as to penetrate the fiber material. However, as described above, the unidirectional discontinuous fiber prepreg 10 is formed. As long as each filament contained in is made into a short fiber by the cutting process, it is not necessary that all the cutting lines penetrate in this way.

さらに、この例では、各切断線11の方向が一方向不連続繊維プリプレグ10の幅方向と一致しているものを例示した。しかしながら、各切断線11の方向は、繊維方向と交差する方向であればよい。ただし、レーザ光の照射されるスポット径による切断幅の点からは、各切断線11の方向は、繊維方向に対する角度が2〜178°となる範囲内であることが好ましい。更に好ましくは30〜150°の範囲がよい。なお、各切断線の方向は、一致していなくてもよい。   Furthermore, in this example, the case where the direction of each cutting line 11 coincides with the width direction of the unidirectional discontinuous fiber prepreg 10 is illustrated. However, the direction of each cutting line 11 may be a direction that intersects the fiber direction. However, from the viewpoint of the cutting width depending on the spot diameter irradiated with laser light, the direction of each cutting line 11 is preferably within a range where the angle with respect to the fiber direction is 2 to 178 °. The range of 30 to 150 ° is more preferable. In addition, the direction of each cutting line does not need to correspond.

また、この例では、一方向不連続繊維プリプレグ10に含まれる繊維材料は、1本の長繊維束(繊維材料)から形成されたものであるが、複数本の長繊維束が幅方向に並べられた繊維材料から形成されたものであってもよい。その場合、巻出装置21から複数の長繊維束を幅方向に並べた状態で巻き出せばよい。このような方法によれば、幅の大きな一方向不連続繊維プリプレグを得ることができる。
以上説明したように、切断線11の形成パターン、本数、間隔、方向や、切断工程に供給される長繊維束の本数などは、一方向不連続繊維プリプレグの用途や、成形品に求められる物性などに応じて適宜設計でき、特に制限はない。
In this example, the fiber material included in the unidirectional discontinuous fiber prepreg 10 is formed from one long fiber bundle (fiber material), but a plurality of long fiber bundles are arranged in the width direction. It may be formed from a formed fiber material. In that case, it is only necessary to unwind a plurality of long fiber bundles arranged in the width direction from the unwinding device 21. According to such a method, a wide unidirectional discontinuous fiber prepreg can be obtained.
As described above, the formation pattern, number, interval, direction of the cutting line 11, the number of long fiber bundles supplied to the cutting process, etc. are the properties required for the use of the unidirectional discontinuous fiber prepreg and the molded product. It can design suitably according to etc. and there is no restriction | limiting in particular.

10 一方向不連続繊維プリプレグ(不連続繊維を有するプリプレグ)
11 切断線
22 帯状物
24 熱可塑性樹脂のフィルム
26 切断装置
27 連続処理装置
10 Unidirectional discontinuous fiber prepreg (prepreg having discontinuous fibers)
11 Cutting Line 22 Band 24 Film of Thermoplastic Resin 26 Cutting Device 27 Continuous Processing Device

Claims (3)

連続繊維を引き揃えてなる帯状物と、熱可塑性樹脂層とが積層した積層体を形成する積層体形成工程と、
レーザ光の照射により、前記帯状物中の連続繊維をその長手方向の複数箇所において切断し、前記連続繊維と交差する方向の切断部を形成する切断工程と、
前記熱可塑性樹脂層を前記帯状物に含浸しプリプレグを得る含浸工程と、
を有する、不連続繊維を有するプリプレグの製造方法。
A laminated body forming step of forming a laminated body in which a strip formed by arranging continuous fibers and a thermoplastic resin layer are laminated;
A cutting step of cutting continuous fibers in the strip at a plurality of locations in the longitudinal direction by irradiation with laser light, and forming cut portions in a direction intersecting with the continuous fibers;
An impregnation step of impregnating the thermoplastic resin layer into the strip to obtain a prepreg;
A method for producing a prepreg having discontinuous fibers.
切断工程を含浸工程の後に行う請求項1記載の不連続繊維を有するプリプレグの製造方法。   The manufacturing method of the prepreg which has a discontinuous fiber of Claim 1 which performs a cutting process after an impregnation process. 請求項1または2の製造方法によって製造される不連続繊維を有するプリプレグ。   A prepreg having discontinuous fibers produced by the production method according to claim 1 or 2.
JP2010233882A 2010-10-18 2010-10-18 Method for producing prepreg having discontinuous fibers Active JP5768354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233882A JP5768354B2 (en) 2010-10-18 2010-10-18 Method for producing prepreg having discontinuous fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233882A JP5768354B2 (en) 2010-10-18 2010-10-18 Method for producing prepreg having discontinuous fibers

Publications (2)

Publication Number Publication Date
JP2012087190A true JP2012087190A (en) 2012-05-10
JP5768354B2 JP5768354B2 (en) 2015-08-26

Family

ID=46259178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233882A Active JP5768354B2 (en) 2010-10-18 2010-10-18 Method for producing prepreg having discontinuous fibers

Country Status (1)

Country Link
JP (1) JP5768354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992682A (en) * 2014-02-14 2016-10-05 三菱丽阳株式会社 Fiber-reinforced plastic and production method therefor
JP2020049938A (en) * 2018-09-25 2020-04-02 東芝機械株式会社 Composite material sheet manufacturing apparatus and manufacturing method of composite material sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127190A (en) * 1985-11-25 1987-06-09 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of cutting sheet material by laser
JPS63247012A (en) * 1987-04-02 1988-10-13 Mitsui Toatsu Chem Inc Preparation of fiber reinforced thermoplastic
JPH0394988A (en) * 1989-09-05 1991-04-19 Mitsubishi Electric Corp Method for cutting prepreg
JPH04312256A (en) * 1991-04-12 1992-11-04 Asahi Chem Ind Co Ltd Gear and cam consisting of long-fiber reinforced thermoplastic resin
JP2006138031A (en) * 2004-11-11 2006-06-01 Toray Ind Inc Reinforcing fiber substrate, preform and method for producing them
JP2009079319A (en) * 2007-09-26 2009-04-16 Ibiden Co Ltd Inorganic fiber mat, holding sealer, sound absorber, and method for manufacturing inorganic fiber mat
US20090104418A1 (en) * 2005-08-18 2009-04-23 Teijin Techno Products Limited Isotropic fiber-reinforced thermoplastic resin sheet, and process for production and molded plate thereof
JP2010018723A (en) * 2008-07-11 2010-01-28 Toray Ind Inc Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
US20100068518A1 (en) * 2007-03-20 2010-03-18 Masato Honma Molding material, prepreg and fiber-reinforced composite material, and method for producing fiber-reinforced molding substrate
US20100215887A1 (en) * 2006-11-22 2010-08-26 Fukui Prefectural Government Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127190A (en) * 1985-11-25 1987-06-09 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of cutting sheet material by laser
JPS63247012A (en) * 1987-04-02 1988-10-13 Mitsui Toatsu Chem Inc Preparation of fiber reinforced thermoplastic
JPH0394988A (en) * 1989-09-05 1991-04-19 Mitsubishi Electric Corp Method for cutting prepreg
JPH04312256A (en) * 1991-04-12 1992-11-04 Asahi Chem Ind Co Ltd Gear and cam consisting of long-fiber reinforced thermoplastic resin
JP2006138031A (en) * 2004-11-11 2006-06-01 Toray Ind Inc Reinforcing fiber substrate, preform and method for producing them
US20090104418A1 (en) * 2005-08-18 2009-04-23 Teijin Techno Products Limited Isotropic fiber-reinforced thermoplastic resin sheet, and process for production and molded plate thereof
US20100215887A1 (en) * 2006-11-22 2010-08-26 Fukui Prefectural Government Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
US20100068518A1 (en) * 2007-03-20 2010-03-18 Masato Honma Molding material, prepreg and fiber-reinforced composite material, and method for producing fiber-reinforced molding substrate
JP2009079319A (en) * 2007-09-26 2009-04-16 Ibiden Co Ltd Inorganic fiber mat, holding sealer, sound absorber, and method for manufacturing inorganic fiber mat
JP2010018723A (en) * 2008-07-11 2010-01-28 Toray Ind Inc Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014053158; 今井 信一: '高輝度パルスYAGレーザーと加工応用' レーザー研究 Vol.20(1992)No.1, 19910926, p.2-10, 社団法人レーザー学会 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992682A (en) * 2014-02-14 2016-10-05 三菱丽阳株式会社 Fiber-reinforced plastic and production method therefor
EP3120984A1 (en) * 2014-02-14 2017-01-25 Mitsubishi Rayon Co., Ltd. Fiber-reinforced plastic and production method therefor
EP3120984A4 (en) * 2014-02-14 2017-03-29 Mitsubishi Rayon Co., Ltd. Fiber-reinforced plastic and production method therefor
CN105992682B (en) * 2014-02-14 2018-04-17 三菱化学株式会社 Fibre reinforced plastics and its manufacture method
US10773473B2 (en) 2014-02-14 2020-09-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
US11034103B2 (en) 2014-02-14 2021-06-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
JP2020049938A (en) * 2018-09-25 2020-04-02 東芝機械株式会社 Composite material sheet manufacturing apparatus and manufacturing method of composite material sheet

Also Published As

Publication number Publication date
JP5768354B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
US11518116B2 (en) Method and apparatus for producing fiber-reinforced resin molding material
JP4522498B2 (en) Method for producing a transverse web
CN108026415A (en) For manufacturing the device of adhesive tape
JP5768354B2 (en) Method for producing prepreg having discontinuous fibers
TWI616570B (en) Nonwoven fabric and reinforced laminate
JP2012087420A (en) Manufacturing method of unidirectional discontinuous fabric belt
JP6593557B2 (en) Fiber reinforced resin molding material manufacturing method and fiber reinforced resin molding material manufacturing apparatus
JP5946622B2 (en) Manufacturing method of mesh
US10370784B2 (en) Mesh nonwoven fabric
JP2021066081A (en) Fiber-reinforced composite material, manufacturing method of the same, and manufacturing method of resin molding
JP6119837B2 (en) Method for producing unidirectional discontinuous fiber band
JP5636864B2 (en) Method for producing prepreg having discontinuous fibers
KR100789926B1 (en) Manufacturing appararus and method for polyuretan groove
US20230340213A1 (en) Fiber-reinforced resin sheet, fiber-reinforced composite material, and molded article
JPS6228226B2 (en)
US20230054996A1 (en) Conveyor belt, in particular spindle tape, with ultrasound or laser cut lateral sides
JP6876267B2 (en) Method of dividing fiber bundles, method of manufacturing long fiber bundles, and method of manufacturing fiber reinforced resin material
JP2020090608A (en) Manufacturing method of sheet molding compound
US20080041519A1 (en) Method of producing vacuum packaging film having air channel and method of producing vacuum packaging bag using the film
WO2020141602A1 (en) Cylindrical body, method for manufacturing cylindrical body, and device for manufacturing cylindrical body
JP6211492B2 (en) Insole manufacturing method and insole manufacturing device
JP2017222108A (en) Method for production of fiber-reinforced resin material
JP2015131430A (en) Method for producing fiber-reinforced thermoplastic resin composite material, and fiber-reinforced thermoplastic resin composite material
JPH1096151A (en) Resin coating of mesh woven or knitted fabric for engineering work
CN104395524A (en) Industrial fabric including spirally wound material strips with reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R151 Written notification of patent or utility model registration

Ref document number: 5768354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250