WO2017110596A1 - Method for manufacturing cutting body, and device for cutting composite material - Google Patents

Method for manufacturing cutting body, and device for cutting composite material Download PDF

Info

Publication number
WO2017110596A1
WO2017110596A1 PCT/JP2016/087118 JP2016087118W WO2017110596A1 WO 2017110596 A1 WO2017110596 A1 WO 2017110596A1 JP 2016087118 W JP2016087118 W JP 2016087118W WO 2017110596 A1 WO2017110596 A1 WO 2017110596A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
cut
composite material
cutting blade
cutting device
Prior art date
Application number
PCT/JP2016/087118
Other languages
French (fr)
Japanese (ja)
Inventor
勇登 岡
裕也 秦
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2017110596A1 publication Critical patent/WO2017110596A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/04Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member
    • B26D1/06Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member wherein the cutting member reciprocates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/10Means for treating work or cutting member to facilitate cutting by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/18Means for removing cut-out material or waste
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/40Cutting-out; Stamping-out using a press, e.g. of the ram type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only

Definitions

  • the present invention relates to a method for producing a cut body by cutting a composite material containing reinforcing fibers and a resin, and a cutting apparatus for cutting the composite material.
  • fiber-reinforced composite materials including matrix resin and reinforcing fibers such as carbon fibers have attracted attention in the mechanical field. Since these composite materials have fibers dispersed in a matrix resin, they are excellent in tensile modulus, tensile strength, impact resistance and the like, and are being studied for structural members such as automobiles. These fiber-reinforced composite materials can be formed into a desired shape using injection molding, compression molding, or the like.
  • Patent Document 1 in the punching process of a plastic plate reinforced with high-strength fibers, the fiber at the cutting edge is surely cut by a minute gap provided between the male convex blade and the female concave blade.
  • Patent Document 2 describes a technique in which carbon steel is used for a Thomson blade and is hardened to increase hardness as a method for efficiently cutting a fiber reinforced resin material.
  • an object of the present invention is to provide a method of manufacturing a cut body obtained by cutting a composite material into a desired shape and a manufacturing apparatus thereof without significantly increasing the cost.
  • the method described in Patent Document 1 since the cut pieces are discharged vertically downward, it is necessary to provide holes corresponding to the pattern shape of the cut pieces on the lower base, and the equipment cost is reduced. It will increase.
  • a conveyor device such as a belt conveyor exists under the composite material.
  • a further object of the present invention is to provide a method for manufacturing a cutting body efficiently and a manufacturing apparatus therefor even when the shape of the cutting blade is a closed loop structure.
  • the present invention provides the following means.
  • a cutting device for cutting a composite material including a reinforcing fiber and a resin The cutting device has a cutting blade and a pressure device, and a fixing layer for fixing the cutting blade is provided between the cutting blade and the pressure device, At least one of the yield stress or the 0.2% proof stress of the fixed layer is 165 MPa or more.
  • Cutting device [2] The cutting device according to [1], comprising at least one cutting blade having a closed loop structure. [3] The cutting device according to [2], wherein the cutting device includes at least one discharge passage for discharging a cut piece cut from the composite material.
  • R A is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece, The maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage when expressed as R B, when the smallest of the R B for all the cross-section was R Bmin, R A ⁇ R Bmin Satisfying the cutting device.
  • R B is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece
  • R A is the maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage when expressed as R B, when the smallest of the R B for all the cross-section was R Bmin, R A ⁇ R Bmin Satisfying the cutting device.
  • the cutting device according to any one of [1] to [6], wherein the fixed layer is for fixing the cutting blade at a desired position in the vertical direction.
  • the cutting device has an elastic member, The elastic member is for detaching the cut body, which is a cut composite material, from the cutting blade.
  • the cutting device according to any one of [7].
  • the cutting device according to any one of [7].
  • the cutting device according to any one of [1] to [8], wherein the cutting device heats and cuts the composite material.
  • the fixed layer is iron or an alloy containing iron.
  • the reinforcing fiber contained in the composite material is carbon fiber
  • the resin is a thermoplastic resin
  • the cutting device is a device for producing a molding material.
  • the cutting apparatus according to any one of [10].
  • the cutting device according to any one of [1] to [11], wherein the cutting device includes two or more cutting blades.
  • a method of manufacturing a cut body by cutting a composite material containing reinforcing fibers and a resin using a cutting device equipped with a cutting blade and a pressure device, The cutting device is provided with a fixing layer for fixing the cutting blade between the cutting blade and the pressurizing device, At least one of the yield stress or the 0.2% proof stress of the fixed layer is 165 MPa or more. Manufacturing method of cut body.
  • R A is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece, The maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage when expressed as R B, when the smallest of the R B for all the cross-section was R Bmin, R A ⁇ R Bmin The manufacturing method of the cutting body which satisfies.
  • [17] The method for producing a cut body according to [15] or [16], wherein, in one cutting operation, 1 to 7 cutting pieces are discharged through the discharge passage per discharge passage.
  • [18] The method for manufacturing a cut body according to any one of [15] to [17], wherein a discharge passage is provided between the cutting blade and the pressure device.
  • the cutting device has an elastic member, The elastic member is for detaching the cut body, which is a cut composite material, from the cutting blade.
  • [21] The method for producing a cut body according to any one of [13] to [20], wherein the composite material is heated and cut.
  • [22] The method for producing a cut body according to any one of [13] to [21], wherein the fixed layer is iron or an alloy containing iron.
  • the reinforcing fiber included in the composite material is carbon fiber, the resin is a thermoplastic resin, and the cut body is a molding material.
  • [24] The cutting device according to any one of [13] to [23], wherein the cutting device includes two or more cutting blades.
  • the cutting apparatus in this invention is used, even if it cut
  • FIG. 4B is a schematic view seen from the A-A ′ cross section of FIG. (C) A schematic view of the B-B ′ cross section of FIG. (A) (b) An example of the cutting device provided with the elastic member.
  • FIG. 5B is a schematic view seen from the A-A ′ cross section of FIG. (A) (b) (c) (d) An example of a cutting blade having a closed loop structure.
  • FIG. 9B is a schematic view seen from the B-B ′ cross section of FIG.
  • FIG. 10B is a schematic diagram viewed from the B-B ′ cross section in FIG.
  • the type of reinforcing fiber used in the present invention can be appropriately selected according to the type of resin, the use of the composite material, and the like, and is not particularly limited.
  • any of inorganic fibers and organic fibers can be preferably used.
  • the inorganic fibers include carbon fibers, activated carbon fibers, graphite fibers, glass fibers, tungsten carbide fibers, silicon carbide fibers (silicon carbide fibers), ceramic fibers, alumina fibers, natural fibers, mineral fibers such as basalt, and boron fibers. , Boron nitride fiber, boron carbide fiber, and metal fiber.
  • Examples of the metal fiber include aluminum fiber, copper fiber, brass fiber, stainless steel fiber, and steel fiber.
  • As said glass fiber what consists of E glass, C glass, S glass, D glass, T glass, quartz glass fiber, borosilicate glass fiber, etc. can be mentioned.
  • Examples of the organic fibers include fibers made of resin materials such as polyaramid, PBO (polyparaphenylene benzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, and polyarylate.
  • two or more kinds of reinforcing fibers may be used in combination.
  • a plurality of types of inorganic fibers may be used in combination
  • a plurality of types of organic fibers may be used in combination
  • inorganic fibers and organic fibers may be used in combination.
  • the mode in which a plurality of types of organic fibers are used in combination include a mode in which polyaramid fibers and fibers made of other organic materials are used in combination.
  • the aspect which uses an inorganic fiber and an organic fiber together the aspect which uses a carbon fiber and a polyaramid fiber together can be mentioned, for example.
  • Carbon fibers in the present invention include carbon fibers, aramid fibers, high-strength polyethylene fibers, polyarylate fibers, glass fibers, and steel fibers.
  • carbon fibers can be preferably used.
  • Carbon fibers are generally polyacrylonitrile (PAN) carbon fiber, petroleum / coal pitch carbon fiber, rayon carbon fiber, cellulosic carbon fiber, lignin carbon fiber, phenolic carbon fiber, vapor growth carbon. Although fiber etc. are known, in the present invention, any of these carbon fibers can be suitably used.
  • the reinforcing fibers are used as the reinforcing fibers. This is because the elongation is relatively lower than that of the organic fiber, so that less shear stress is required when cutting.
  • PAN polyacrylonitrile
  • the tensile elastic modulus is preferably in the range of 100 to 600 GPa, more preferably in the range of 200 to 500 GPa, and in the range of 230 to 450 GPa. Is more preferable.
  • the tensile strength is preferably in the range of 2000 to 6000 MPa, more preferably in the range of 3000 to 6000 MPa.
  • the fiber length of the reinforcing fiber used in the present invention can be appropriately determined according to the type of reinforcing fiber, the type of resin, the orientation state of the reinforcing fiber in the composite material, and the like, and is not particularly limited. Absent. Therefore, in the present invention, continuous fibers may be used or discontinuous fibers may be used depending on the purpose. When discontinuous fibers are used, the average fiber length is usually preferably in the range of 0.1 mm to 500 mm, and more preferably in the range of 1 mm to 100 mm. In the present invention, reinforcing fibers having different fiber lengths may be used in combination. In other words, the reinforcing fiber used in the present invention may have a single peak in average fiber length, or may have a plurality of peaks.
  • the average fiber length of the carbon fiber when the carbon fiber is cut into a certain length with a rotary cutter or the like, the cut length corresponds to the average fiber length, which is also the number average fiber length and the weight average fiber length. .
  • the number average fiber length (Ln) and the weight average fiber length (Lw) are obtained by the following formulas (2) and (3) (constant)
  • the weight average fiber length (Lw) is calculated by the calculation formula (2) of the number average fiber length (Ln)).
  • Ln ⁇ Li / j
  • Lw ( ⁇ Li 2 ) / ( ⁇ Li) (3)
  • the measurement of the average fiber length in the present invention may be a number average fiber length or a weight average fiber length.
  • the fiber diameter of the reinforcing fiber used in the present invention may be appropriately determined according to the type of the reinforcing fiber, and is not particularly limited.
  • the average fiber diameter is usually preferably in the range of 3 ⁇ m to 50 ⁇ m, more preferably in the range of 4 ⁇ m to 12 ⁇ m, and in the range of 5 ⁇ m to 8 ⁇ m. More preferably.
  • the average fiber diameter is usually preferably in the range of 3 to 30 ⁇ m.
  • the said average fiber diameter shall point out the diameter of the single yarn of a reinforced fiber.
  • the reinforcing fiber when the reinforcing fiber is in the form of a fiber bundle, it refers to the diameter of the reinforcing fiber (single yarn) constituting the fiber bundle, not the diameter of the fiber bundle.
  • the average fiber diameter of the reinforcing fibers can be measured by, for example, a method described in JIS R7607: 2000.
  • the reinforcing fiber used in the present invention may be in the form of a single yarn consisting of a single yarn, or in the form of a fiber bundle consisting of a plurality of single yarns.
  • the reinforcing fiber used in the present invention may be only a single yarn, may be a fiber bundle, or a mixture of both.
  • the fiber bundle shown here indicates that two or more single yarns are close to each other by a sizing agent or electrostatic force.
  • the number of single yarns constituting each fiber bundle may be substantially uniform or different in each fiber bundle.
  • the reinforcing fibers used in the present invention are carbon fibers and the carbon fibers are in a fiber bundle shape, the number of single yarns constituting each fiber bundle is not particularly limited, but usually 2 to 10 It is considered to be within the range of 10,000.
  • carbon fibers are in the form of fiber bundles in which thousands to tens of thousands of filaments are gathered.
  • the reinforcing fiber if the carbon fiber is used as it is, the entangled portion of the fiber bundle may be locally thick and it may be difficult to obtain a thin composite material. For this reason, when carbon fiber is used as the reinforcing fiber, the fiber bundle is usually used after being widened or opened.
  • orientation state of the reinforcing fibers in the composite material examples include, for example, a unidirectional orientation in which the major axis direction of the reinforcing fibers is oriented in one direction, and a two-dimensional orientation in which the major axis direction is randomly oriented in the in-plane thickness direction of the composite material. Random orientation can be mentioned.
  • the orientation state of the reinforcing fibers in the present invention may be either the unidirectional orientation or the two-dimensional random orientation. Further, it may be an irregular orientation intermediate between the unidirectional orientation and the two-dimensional random orientation (an orientation state in which the major axis direction of the reinforcing fiber is not completely oriented in one direction and is not completely random). Furthermore, depending on the fiber length of the reinforcing fiber, the long axis direction of the reinforcing fiber may be oriented so as to have an angle with respect to the in-plane direction of the composite material, and the fibers are oriented so as to be entangled in a cotton-like manner. Further, the fibers may be oriented such as bi-directional woven fabrics such as plain weave and twill weave, multi-axial woven fabrics, non-woven fabrics, mats, knits, braids, paper made of reinforced fibers, and the like.
  • the volume fraction of reinforcing fiber (Vf) contained in the composite material defined by the formula (1) is not particularly limited, but is preferably 5 to 80%. It is more preferably 10 to 80%, further preferably 10 to 70%, still more preferably 20 to 50%, and most preferably 30 to 40%.
  • Formula (1) 100 ⁇ reinforced fiber volume / (reinforced fiber volume + resin volume) When the reinforcing fiber volume ratio (Vf) is 5% or more, the reinforcing effect is sufficiently exhibited. On the contrary, if Vf is 80% or less, voids are hardly generated in the obtained composite material, and the physical properties are easily improved.
  • the resin used in the present invention is not particularly limited, and may be a thermoplastic resin or a thermosetting resin.
  • thermoplastic resin When the resin contained in the composite material in the present invention is a thermoplastic resin, it becomes a cut body after being cut into a desired shape, which is preferable because it is used as a molding material for compression molding.
  • the molding material for compression molding will be described later.
  • the said thermoplastic resin is not specifically limited, According to the use etc. of a composite material, what has a desired softening point or melting
  • thermoplastic resin examples include polyolefin resin, polystyrene resin, thermoplastic polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), polycarbonate resin, (meth) acrylic resin, polyarylate resin, polyphenylene ether resin, polyimide resin, Examples thereof include polyether nitrile resins, phenoxy resins, polyphenylene sulfide resins, polysulfone resins, polyketone resins, polyether ketone resins, thermoplastic urethane resins, fluorine resins, thermoplastic polybenzimidazole resins, and vinyl resins.
  • polystyrene resin examples include polyethylene resin, polypropylene resin, polybutadiene resin, and polymethylpentene resin.
  • vinyl resin examples include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, and polyvinyl alcohol resin.
  • polystyrene resin examples include polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), and the like.
  • polyamide resin examples include polyamide 6 resin (nylon 6), polyamide 11 resin (nylon 11), polyamide 12 resin (nylon 12), polyamide 46 resin (nylon 46), polyamide 66 resin (nylon 66), and polyamide 610.
  • Resin (nylon 610) etc. can be mentioned.
  • polyester resin examples include polyethylene terephthalate resin, polyethylene naphthalate resin, boribylene terephthalate resin, polytrimethylene terephthalate resin, and liquid crystal polyester.
  • (meth) acrylic resin examples include polymethyl methacrylate.
  • polyphenylene ether resin examples include modified polyphenylene ether.
  • thermoplastic polyimide resin examples include thermoplastic polyimide, polyamideimide resin, polyetherimide resin, and the like.
  • polysulfone resin examples include a modified polysulfone resin and a polyethersulfone resin.
  • polyetherketone resin examples include polyetherketone resin, polyetheretherketone resin, and polyetherketoneketone resin.
  • fluororesin, polytetrafluoroethylene etc. can be mentioned, for example.
  • thermoplastic resin used in the present invention may be only one type or two or more types.
  • modes in which two or more types of thermoplastic resins are used in combination include modes in which thermoplastic resins having different softening points or melting points are used in combination, modes in which thermoplastic resins having different average molecular weights are used in combination, and the like. However, this is not the case.
  • thermosetting resin Although there is no limitation in particular as a thermosetting resin used for this invention, the epoxy resin which is excellent in the balance of heat resistance, a mechanical characteristic, and adhesiveness with carbon fiber is used preferably, Especially, amines, phenols, carbon -It is preferable to use an epoxy resin whose precursor is a compound having a carbon double bond. In addition, these thermosetting resins may be self-curing by heating, or may be blended with a curing agent or a curing accelerator.
  • Examples of epoxy resins having amines as precursors include tetraglycidyldiaminodiphenylmethanes, glycidyl compounds of aminophenol, glycidylanilines, and glycidyl compounds of xylenediamine. Tetraglycidyldiaminodiphenylmethanes are preferred because of their excellent heat resistance.
  • Examples of epoxy resins having phenols as precursors include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, and resorcinol type epoxy resins.
  • Examples of the epoxy resin using a compound having a carbon / carbon double bond as a precursor include polycyclic epoxy resins.
  • epoxy resins may be used singly or may be appropriately mixed and used.
  • a combination of a glycidylamine type epoxy resin and a bifunctional glycidyl ether type epoxy resin is particularly preferable because it has both heat resistance, water resistance and workability.
  • thermosetting resin composition when an epoxy resin is used as the thermosetting resin, any compound having an active group capable of reacting with an epoxy group can be used. , Dicyandiamide, dibasic acid dihydrazide alone or in a mixed system.
  • aromatic amines include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and metaxylenediamine. These curing agents may be used alone or may be appropriately blended and used. Aromatic amines are particularly preferred because they can impart heat resistance to the cured resin.
  • thermosetting resins other than epoxy resins include cyanate ester resins, bismaleimide resins, and benzoxazine resins.
  • the composite material used in the present invention can be produced by a generally known method.
  • an isotropic substrate described in WO2012 / 105080 pamphlet and JP2013-49298A is preferably used.
  • the carbon fibers are not oriented in a specific direction and are dispersed in a random direction in the plane.
  • the cutting device in the present invention is for cutting a composite material, and is shown in FIG. 1, for example.
  • the positioning layer of the pressure device and the fixed layer is preferably fixed by a clamping mechanism (a sandwiching mechanism) (the fixed layer and the pressure device are in contact but preferably not directly fixed).
  • the positioning layer and the fixing layer of the fixing layer are preferably fastened by bolts.
  • the cutting blade is preferably fixed by press-fitting into a slit provided in the positioning layer of the cutting blade.
  • the positioning layer of the cutting blade and the positioning layer of the fixed layer are preferably fastened by bolts.
  • Pressurizing device There is no limitation on the pressurizing device, and a known device can be used. For example, an electric motor is used as a pressure source, and a hydraulic pump is used as a pressure source. Further, as the reciprocating mechanism, it is possible to include any of a screw mechanism, a crank mechanism, a link mechanism, a cylinder mechanism, or a combination of a plurality of them. Further, a fixing layer (103 in FIG. 1) can be attached to the pressurizing device (102 in FIG. 1). A fixed layer can be attached to the bottom (pressure surface) of the pressure device.
  • the method for producing a cut body in the present invention is preferably produced by cutting a composite material with a cutting table.
  • a known cutting table can be used, and there is no particular limitation as long as it can support the composite material.
  • the cutting table in the present invention is intended for continuous cutting, and a fiber reinforced resin material is placed in a mold and burrs are removed with a punching blade. It does not include molds such as those described in JP-084038 and Japanese Unexamined Patent Publication No. 2013-99817. That is, the present invention does not trim the end material at the same time as molding, but continuously cuts the composite material to obtain a cut body.
  • Fixed layer In the present invention, at least one of the yield stress and the 0.2% yield strength of the fixed layer (for example, 103 in FIG. 1) is 165 MPa or more. This is because there is a problem that the fixed layer is plastically deformed when the composite material is continuously cut. Therefore, at least one of yield stress and 0.2% proof stress must be 165 MPa or more. .
  • the fixing layer in the present invention is for fixing the cutting blade at a specific position in the vertical direction, and can fix the cutting blade at a fixed position in the vertical direction.
  • At least one of the yield stress and the 0.2% yield strength of the fixed layer is preferably 200 MPa or more.
  • the fixed layer is more preferably iron or an alloy containing iron, and even more preferably an iron-containing alloy.
  • the upper limit of at least one of yield stress or 0.2% yield strength is preferably 1500 MPa or less, more preferably 1000 MPa or less, and even more preferably 700 MPa or less. Yield stress or 0.2% proof stress is measured based on JIS Z 2241: 2011.
  • the thickness of the fixed layer depends on the size of the discharge passage described later, but is preferably 1 mm or more, more preferably 5 mm or more, and even more preferably 10 mm or more.
  • the upper limit of the thickness of the fixed layer is preferably 100 mm or less, more preferably 80 mm or less.
  • the width of the fixed layer is not particularly limited as long as it can support the cutting blade, but is preferably 0.5 mm or more, and more preferably 3 mm or more.
  • the upper limit of the width of the fixed layer is preferably 100 mm or less, more preferably 70 mm or less.
  • shape of a fixed layer is not specifically limited, A rectangular parallelepiped is mentioned as an example.
  • the fixed layer in the present invention can suppress an uneven load on the cutting blade, and can apply a uniform load over the entire cutting blade.
  • the composite material can be continuously cut even when a plurality of cutting blades are provided in the cutting device or when a plurality of cutting blade shapes are provided.
  • Cutting blade The cutting blade in this invention is shown by 104 of FIG. 1, FIG. 2, for example.
  • the blade material, hardness, blade edge shape, etc. to be used can be appropriately selected according to the material properties, thickness, etc., but the blade hardness is preferably HRC28-70, and more preferably the hardness HRC45-63. preferable.
  • the hardness of HRC28 or higher is preferable because the durability of the cutting blade is improved.
  • HRC70 or less is preferable because the toughness of the blade is improved.
  • the angle of the cutting edge of the cutting blade is preferably 25 to 60 degrees, and the R dimension of the blade tip is preferably 0.2 mm or less. When the angle of the cutting blade is 25 degrees or more, durability is improved, and when the angle is 60 degrees or less, cutting with a low linear pressure is preferable.
  • the R dimension of the blade tip is 0.2 mm or less because cutting can be performed with a low linear pressure.
  • the root thickness of the blade is preferably 0.5 to 2.0 mm. If it is 2.0 mm or less, it is preferable because it can be cut with a low linear pressure, and if it is 0.5 mm or more, durability is improved, which is preferable.
  • the shape of the cutting blade is not particularly limited, and may be a closed loop structure or an open structure.
  • the open structure means that the cutting blade is open, and the drawings viewed from the cutting edge side of the cutting blade are cutting blades as shown in FIGS. 7A to 7C, for example. That is, the open structure means that the line connecting the cutting edge of the cutting blade is not closed.
  • a cut piece cut from the composite material may or may not be generated. For example, when the cutting blade shown on the right in FIG. 8D is used, no cut piece is generated (left in FIG. 8D). On the other hand, when a corner of the composite material is cut using a cutting blade as shown on the right in FIG.
  • the closed loop structure refers to a shape as seen from the cutting edge side of the cutting blade, for example, as shown in FIGS. 6 (a) to 6 (d). Not only a circle but also an ellipse, a triangle, a square, various polygons, Those having an indefinite shape are also included. That is, the closed loop structure means that the line connecting the cutting edge of the cutting blade is closed. When it is cut with a cutting blade having a closed loop structure, a cut piece is generated in many cases (for example, (a) and (b) in FIG. 8).
  • disconnected from the composite material in this invention is the remaining part byproduced from the cut body obtained by cut
  • Discharge passage In order to avoid the clogging of the cut piece from the closed-loop structure cutting blade, the cut piece passes through the inside of the closed-loop structure of the cut blade, and then the discharge passage (401 in FIG. 4) provided in the fixed layer. ) And is preferably discharged out of the cutting device. That is, it is preferable that the cutting device according to the present invention includes at least one discharge passage for discharging a cut piece cut from the composite material. If the cut pieces do not clog the closed-loop structured cutting blade, it is easy to continuously cut the composite material. When the cutting blade has a closed-loop structure, when the cutting pieces are discharged continuously vertically rather than dropping vertically, the cutting pieces continue to be inserted inside the closed-loop cutting blade one after another. Therefore, it is advantageous in terms of equipment.
  • the cutting device preferably includes a discharge passage between the cutting blade and the pressure device.
  • the discharge passage shown in FIG. 4 two fixing layers for fixing the cutting blade are provided (103 in FIG. 4), and the space between the fixed layers is the discharge passage (401 in FIG. 4).
  • the discharge passage provided in the fixed layer is connected to the discharge passage provided in the positioning layer (105 in FIG. 4) of the fixed layer, and the cut pieces are cut using air (402 in FIG. 4B) or the like. It is good to discharge outside the device.
  • the shape and structure of the discharge passage are not limited to those shown in FIG.
  • the material for the positioning layer of the fixed layer for providing the discharge passage is not particularly limited as long as it is inexpensive and easy to process. For example, it is preferable to use a veneer plate.
  • a cheap and easy-to-process material for example, a veneer plate
  • the position of the cutting blade tends to become unstable due to the load during cutting, as shown in FIG.
  • At least one of the yield stress or the 0.2% proof stress of the fixed layer is 165 MPa or more, and the positioning layer of the fixed layer is made of a material that is inexpensive and easy to process (for example, a veneer plate). Even when a cutting blade having a closed loop structure is used, it is easy to discharge the cut pieces, and the positional accuracy (with time) of the cutting blade can be kept high.
  • the maximum cross-sectional area in the plate thickness direction of the cut piece is S k1
  • the minimum cross-sectional area of the discharge passage is S k2 .
  • One or more cutting pieces are discharged through the discharge passage in one cutting of the composite material, and the total value of S k1 of each cutting piece is ⁇ S k1 , and the cutting device has one or more cutting pieces.
  • a discharge passage when the total value of S k2 of each discharge passage of a [sigma] s k2, it is preferable that ⁇ S k1 ⁇ S k2.
  • the minimum cross-sectional area of the discharge passage refers to the minimum area in the plane direction perpendicular to the traveling direction of the passage.
  • R A is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece (the diameter of the smallest circle among the circles including the projected figure in the thickness direction of the cut piece so that the projected figure does not protrude).
  • Maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage (diameter of the largest circle of the circle that may be present in without protruding from the interior of the cross-section of the discharge passage) when expressed as R B, for all of the cross-section the smallest of the R B when the R Bmin of R A ⁇ R Bmin It is preferable to satisfy.
  • FIG. 9 shows an example of a cutting device having one discharge passage for eight cutting blades having a closed loop structure
  • FIG. 9 shows a cutting device having eight discharge passages for eight cutting blades having a closed loop structure. An example is shown in FIG.
  • the cutting device in this invention has an elastic member.
  • the elastic member is for detaching the cut body, which is a cut composite material, from the cutting blade, for example, as indicated by reference numeral 501 in FIG.
  • the elastic member does not hinder cutting by elastic deformation when cutting the composite material (when the composite material is pushed and cut by the cutting blade, the elastic member is compressed in the upward direction in FIG. 5).
  • the cut body (composite material after cutting) is easily detached from the cutting blade by the stored elastic energy.
  • the vertically downward position of the elastic member protrudes below the cutting edge of the cutting blade (for example, 501 in FIG. 5).
  • a method of manually detaching the cut body from the cutting blade or mechanically detaching may be provided separately.
  • Fixed layer positioning layer (105 in FIG. 1)
  • the positioning layer of the fixed layer is preferably made of a material that can be easily processed for providing the discharge passage, and examples thereof include a wood board (may be a single board or a plywood board). A plywood board is preferred.
  • the fixed layer and the pressurizing device are not directly fastened by bolts or the like so that it can correspond to various cut patterns of the composite material, and the fixed layer is not easily displaced in the horizontal direction. It is preferable to provide a positioning layer.
  • the positioning layer of the fixed layer is preferably fixed to the pressure device by a clamping mechanism (a sandwiching mechanism) (the fixed layer and the pressure device are in contact but preferably not fixed by a bolt or the like).
  • the positioning layer and the fixing layer of the fixing layer are preferably fastened by bolts.
  • Cutting blade positioning layer (106 in FIG. 1)
  • the cutting blade is directly fastened to the fixed layer so that cutting blades of various shapes can be selected and used easily and can be easily replaced when the blade is worn. It is preferable to provide a positioning layer for the cutting blade so that the cutting blade is not easily displaced in the horizontal direction.
  • the cutting blade is preferably fixed by press-fitting into a slit provided in the positioning layer of the cutting blade.
  • the positioning layer of the cutting blade and the positioning layer of the fixed layer are preferably fastened by bolts.
  • the method for producing a cut body in the present invention is a method for producing a cut body by cutting a composite material containing reinforcing fibers and a resin using a cutting device provided with a cutting blade and a pressure device. Is provided with a fixing layer for fixing the cutting blade between the cutting blade and the pressure device, and at least one of the yield stress or the 0.2% proof stress of the fixing layer is 165 MPa or more.
  • the cutting is preferably performed by placing the composite material on a cutting table and lowering the cutting blade once with respect to one composite material with the cutting blade. What is necessary is just to make a cutting blade reciprocate up and down whenever a body is manufactured.
  • the heating method is not particularly limited, and any method can be used. Specifically, a method using a hot air dryer or an electric heating type dryer, a method of sandwiching between a hot plate in a mold, a belt conveyor, a hot roller, etc., dielectric heating or induction heating (IH) by infrared, microwave, high frequency, etc. Is illustrated.
  • the cut body is preferably used as a molding material for compression molding.
  • the cut body is preferably used as a molding material for compression molding.
  • the molding material in a desired shape in advance, it is possible to produce a molded article having a good appearance without generating wrinkles during compression molding.
  • a composite material containing carbon fibers having a fiber length of 1 to 100 mm is used as a molding material for compression molding, it is difficult to flow at the time of molding, and the above-mentioned problem appears prominently.
  • a fiber-reinforced molded body having a complicated three-dimensional shape can be manufactured by compression molding, and molding that does not reduce the appearance and strength. You can get a body.
  • a cut body that has been cut into a desired shape in advance as a molding material a molded body with good quality and yield can be obtained.
  • the composite material and the cut body obtained by cutting the composite material preferably include a thermoplastic resin.
  • the average fiber length of the reinforcing fibers is measured by measuring the fiber length of 300 fibers randomly extracted from the sample left after removing the resin by heating the composite material to 500 ° C. in the air, in units of 1 mm. Until the average was obtained. In all examples, the weight average fiber length of the carbon fiber was 20 mm.
  • Example 1 Preparation of the cutting device 1.1 Cutting blade For a circular shape (closed loop structure) using 440160 manufactured by Osaka Die Seisakusho, with a root thickness of 1.0 mm, a cutting edge R of 0.05 mm or less, a cutting edge angle of 45 degrees, an HRC of 54, and an inner diameter of 16 mm. It was. When the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece is R A , R A is 16 mm.
  • SS400 Fixed Layer An iron alloy (SS400, yield stress or 0.2% proof stress is 215 MPa) having a rectangular parallelepiped with a thickness of 20 mm, a width of 16 mm, and a length of 20 mm is provided at the base of the cutting blade (see FIG. 5 (a)).
  • the fixed layers were placed 20 mm apart.
  • SS400 is a general structural rolled steel specified in JIS G 3101: 2010.
  • R Bmin when the smallest of the R B for all the cross-section was R Bmin, R Bmin is 20 mm.
  • 1.4 Pressurizer DAE YANG HYDRAULIC TECHNOLOGY MACHINERY DYMSP-50 was used.
  • 1.5 Elastic member Styrene butadiene foam rubber is used, and it has a donut shape with a thickness of 8 mm and a width of 20 mm, and surrounds a cutting blade having a closed loop structure (thickness is the vertical direction of the paper in FIG. 5, width is the horizontal direction of FIG. 5) .
  • 1.6 Plywood was used for the positioning layer of the fixed layer and the positioning layer of the cutting blade.
  • the positioning layer of the fixed layer was provided with a discharge passage so as to be continuous with the discharge passage provided in the fixed layer so that the cut pieces can be discharged out of the cutting device.
  • the prepared cutting blade, fixed layer, discharge passage, pressurizing device, elastic member, and positioning layer were installed as shown in FIGS.
  • Example 2 Except not using an elastic member, the composite material 1 was cut
  • Example 3 The composite material 1 was cut using the same cutting device as in Example 1 except that the number of cutting blades was set to 8 and the number of discharge passages was kept at 1 to produce a cut body.
  • the cutting device used is shown by the schematic diagram shown in FIG. The results are shown in Table 1. Since the cut pieces were clogged in the discharge passage, the continuous cutting was interrupted.
  • Example 4 The composite material 1 was cut using the same cutting device as in Example 3 except that one discharge passage was provided for each cutting blade, and a cut body was manufactured.
  • the used cutting apparatus is shown by the schematic diagram shown in FIG. The results are shown in Table 1.
  • Example 5 The composite material 1 was cut using the same cutting device as in Example 1 except that the cutting blade had an open structure and the shape shown in FIG. The results are shown in Table 1.
  • Example 6 A cut body was manufactured in the same manner as in Example 1 except that the thickness of the iron alloy used as the fixed layer was 5 mm. Since the thickness of the fixed layer was 5 mm, RBmin of the cross section of the discharge passage was 5 mm. As a result, when the cut piece flows through the discharge passage, it can be discharged if it can be discharged without rotating. However, when the cut piece rotates, the discharge passage is clogged.
  • the composite material (cut body) cut using the cutting device of the present invention can be molded by compression molding.
  • the molded body can be used for various components such as an inner plate, an outer plate, a structural member of an automobile, various electric products, a frame of a machine, a casing, and the like. Preferably, it can be used as an automobile part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Moulding By Coating Moulds (AREA)
  • Details Of Cutting Devices (AREA)
  • Nonmetal Cutting Devices (AREA)

Abstract

The present invention provides: a cutting device for cutting a composite material that contains reinforcing fibers and a plastic material, wherein the cutting device has a cutting blade and a pressurizing device, a securing layer for securing the cutting blade is provided between the cutting blade and the pressuring device, the yield stress and/or the 0.2% proof stress of the securing layer is 165 MPa or greater; and a method for manufacturing a cutting body in which the cutting device is used.

Description

切断体の製造方法、及び複合材料の切断装置Cutting body manufacturing method and composite material cutting apparatus
 本発明は、強化繊維と樹脂とを含む複合材料を切断して切断体を製造する方法、及び複合材料を切断する切断装置に関するものである。 The present invention relates to a method for producing a cut body by cutting a composite material containing reinforcing fibers and a resin, and a cutting apparatus for cutting the composite material.
 近年、機械分野において、マトリクス樹脂と、炭素繊維などの強化繊維を含む、いわゆる繊維強化複合材料が注目されている。これら複合材料はマトリクス樹脂内で繊維が分散されているため、引張弾性率や引張強度、耐衝撃性などに優れており、自動車等の構造部材などに検討されている。これら繊維強化複合材料は、射出成形、圧縮成形等を用いて目的とする形状に成形できる。 In recent years, so-called fiber-reinforced composite materials including matrix resin and reinforcing fibers such as carbon fibers have attracted attention in the mechanical field. Since these composite materials have fibers dispersed in a matrix resin, they are excellent in tensile modulus, tensile strength, impact resistance and the like, and are being studied for structural members such as automobiles. These fiber-reinforced composite materials can be formed into a desired shape using injection molding, compression molding, or the like.
 一般的に、繊維強化樹脂は汎用樹脂と比較して機械強度に優れるため、機械加工が難しくなる傾向がある。特に、汎用樹脂と比較して、加工刃の耐久性が大幅に低下する事が多く、繊維強化樹脂を用いた製品の量産化を阻害する要因の一つになっていた。また、加工刃を使用しない方法として、ウォータージェットやレーザー切断などがあるが、量産を考慮すると、コストや加工時間に難がある。 Generally, since fiber reinforced resin is excellent in mechanical strength as compared with general-purpose resin, machining tends to be difficult. In particular, as compared with general-purpose resins, the durability of the machining blade is often greatly reduced, which has been one of the factors that hinder the mass production of products using fiber-reinforced resins. In addition, methods that do not use a processing blade include water jet and laser cutting, but considering mass production, there are difficulties in cost and processing time.
 特許文献1には、高強度繊維で補強しているプラスチック板の打ち抜き加工において、裁断縁の繊維を雄型の凸状刃と雌型の凹状刃に設けられた微小な隙間で確実に切断するという技術が提案されている。
 特許文献2には、繊維強化樹脂材を能率よく切断する手法として、トムソン刃に炭素鋼を用い、焼き入れして硬度を高めるという技術が記載されている。
In Patent Document 1, in the punching process of a plastic plate reinforced with high-strength fibers, the fiber at the cutting edge is surely cut by a minute gap provided between the male convex blade and the female concave blade. The technology is proposed.
Patent Document 2 describes a technique in which carbon steel is used for a Thomson blade and is hardened to increase hardness as a method for efficiently cutting a fiber reinforced resin material.
日本国特開2015-104797号公報Japanese Unexamined Patent Publication No. 2015-104797 日本国特開2013-091128号公報Japanese Unexamined Patent Publication No. 2013-091128
 しかしながら、特許文献1、2に記載の方法では、切断刃の位置決め精度に関する検討は行われていない。そこで本発明の目的は、大幅なコスト増無しに、複合材料を所望の形状に切断した切断体を製造する方法、およびその製造装置を提供することである。
 また、更なる課題として、特許文献1に記載の方法では、鉛直下向きに、切断小片を排出しているために、下台に切断小片のパターン形状に応じた穴を設ける必要があり、設備費の増加となってしまう。特に、生産性向上の観点から、ベルトコンベアー等の搬送装置を用いて複合材料を搬送しながら連続的に切断体を製造する場合は、複合材料の下にベルトコンベアー等の搬送装置が存在するために、鉛直下向きに切断小片を排出することはできない。更に、特許文献1、2に記載の方法では、刃の形状が閉断面であるものの、切断小片を、切断刃の閉ループ構造を通過させて排出することは、構造上不可能である。
 そこで本発明の更なる目的は、切断刃の形状が閉ループ構造であっても、効率よく切断体を製造する方法、およびその製造装置を提供することである。
However, in the methods described in Patent Documents 1 and 2, no examination has been made regarding the positioning accuracy of the cutting blade. Accordingly, an object of the present invention is to provide a method of manufacturing a cut body obtained by cutting a composite material into a desired shape and a manufacturing apparatus thereof without significantly increasing the cost.
Further, as a further problem, in the method described in Patent Document 1, since the cut pieces are discharged vertically downward, it is necessary to provide holes corresponding to the pattern shape of the cut pieces on the lower base, and the equipment cost is reduced. It will increase. In particular, from the viewpoint of improving productivity, when a cut body is continuously manufactured while conveying a composite material using a conveyor device such as a belt conveyor, a conveyor device such as a belt conveyor exists under the composite material. In addition, the cut piece cannot be discharged vertically downward. Furthermore, in the methods described in Patent Documents 1 and 2, although the blade has a closed cross section, it is structurally impossible to discharge the cut piece through the closed loop structure of the cutting blade.
Therefore, a further object of the present invention is to provide a method for manufacturing a cutting body efficiently and a manufacturing apparatus therefor even when the shape of the cutting blade is a closed loop structure.
 上記課題を解決するために、本発明は以下の手段を提供する。 In order to solve the above problems, the present invention provides the following means.
[1]
 強化繊維と樹脂とを含む複合材料を切断する切断装置であって、
 切断装置は切断刃と加圧装置を有し、切断刃と加圧装置との間に、切断刃を固定するための固定層を設け、
 該固定層の降伏応力又は0.2%耐力の、少なくともいずれか一方が165MPa以上である、
 切断装置。
[2]
 形状が閉ループ構造である切断刃を、少なくとも1つ備える、[1]に記載の切断装置。
[3]
 切断装置は、複合材料から切断された切断小片を排出するための排出通路を、少なくとも1つ備える、[2]に記載の切断装置。
[4]
 [3]に記載の切断装置であって、
 切断小片の板厚方向の投影図形を含む円の最小径をRとし、
 排出通路の断面の内部に存在し得る円の最大径をRと表す場合に、すべての断面についてのRのうち最小のものをRBminとしたとき、
 R<RBmin
を満たす、切断装置。
[5]
 1回の切断時において、排出通路1個につき、排出通路を通って排出される切断小片は1~7個である、[3]又は[4]に記載の切断装置。
[6]
 排出通路を切断刃と加圧装置との間に備える、[3]~[5]のいずれか1つに記載の切断装置。
[7]
 固定層が、鉛直方向の所望の位置に切断刃を固定するためのものである、[1]~[6]のいずれか1つに記載の切断装置。
[8]
 切断装置は弾性部材を有し、
 該弾性部材は、切断された複合材料である切断体を、切断刃から脱離するためのものである、
 [1]~[7]のいずれか1つに記載の切断装置。
[9]
 切断装置は、複合材料を加熱して切断する、[1]~[8]のいずれか1つに記載の切断装置。
[10]
 固定層が、鉄又は鉄を含む合金である、[1]~[9]のいずれか1つに記載の切断装置。
[11]
 複合材料に含まれる強化繊維が炭素繊維、樹脂が熱可塑性樹脂であり、切断装置が成形材料を製造するための装置である、
 [1]~[10]のいずれか1つに記載の切断装置。
[12]
 切断装置は、切断刃を2個以上備えている、[1]~[11]のいずれか1つに記載の切断装置。
[13]
 切断刃と加圧装置を備えた切断装置を用いて、強化繊維と樹脂とを含む複合材料を切断し、切断体を製造する方法であって、
 切断装置は、切断刃と加圧装置との間に、切断刃を固定するための固定層を設け、
 該固定層の降伏応力又は0.2%耐力の、少なくともいずれか一方が165MPa以上である、
 切断体の製造方法。
[14]
 切断装置は、形状が閉ループ構造である切断刃を、少なくとも1つ備える、[13]に記載の切断体の製造方法。
[15]
 切断装置は、複合材料から切断された切断小片を排出するための排出通路を、少なくとも1つ備える、[14]に記載の切断体の製造方法。
[16]
 [15]に記載の切断体の製造方法であって、
 切断小片の板厚方向の投影図形を含む円の最小径をRとし、
 排出通路の断面の内部に存在し得る円の最大径をRと表す場合に、すべての断面についてのRのうち最小のものをRBminとしたとき、
 R<RBmin
を満たす、切断体の製造方法。
[17]
 1回の切断時において、排出通路1個につき、排出通路を通って排出される切断小片は1~7個である、[15]又は[16]に記載の切断体の製造方法。
[18]
 排出通路を切断刃と加圧装置との間に備える、[15]~[17]のいずれか1つに記載の切断体の製造方法。
[19]
 固定層が、鉛直方向の所望の位置に切断刃を固定するためのものである、[13]~[18]のいずれか1つに記載の切断体の製造方法。
[20]
 切断装置は弾性部材を有し、
 該弾性部材は、切断された複合材料である切断体を、切断刃から脱離するためのものである、
 [13]~[19]のいずれか1つに記載の切断体の製造方法。
[21]
 複合材料を加熱して切断する、[13]~[20]のいずれか1つに記載の切断体の製造方法。
[22]
 固定層が、鉄又は鉄を含む合金である、[13]~[21]のいずれか1つに記載の切断体の製造方法。
[23]
 複合材料に含まれる強化繊維が炭素繊維、樹脂が熱可塑性樹脂であり、切断体が成形材料である、
 [13]~[22]のいずれか1つに記載の切断体の製造方法。
[24]
 切断装置は、切断刃を2個以上備えている、[13]~[23]のいずれか1つに記載の切断体の製造方法。
[1]
A cutting device for cutting a composite material including a reinforcing fiber and a resin,
The cutting device has a cutting blade and a pressure device, and a fixing layer for fixing the cutting blade is provided between the cutting blade and the pressure device,
At least one of the yield stress or the 0.2% proof stress of the fixed layer is 165 MPa or more.
Cutting device.
[2]
The cutting device according to [1], comprising at least one cutting blade having a closed loop structure.
[3]
The cutting device according to [2], wherein the cutting device includes at least one discharge passage for discharging a cut piece cut from the composite material.
[4]
The cutting device according to [3],
R A is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece,
The maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage when expressed as R B, when the smallest of the R B for all the cross-section was R Bmin,
R A <R Bmin
Satisfying the cutting device.
[5]
The cutting apparatus according to [3] or [4], wherein, in one cutting operation, 1 to 7 cutting pieces are discharged through the discharge passage for each discharge passage.
[6]
The cutting device according to any one of [3] to [5], wherein a discharge passage is provided between the cutting blade and the pressurizing device.
[7]
The cutting device according to any one of [1] to [6], wherein the fixed layer is for fixing the cutting blade at a desired position in the vertical direction.
[8]
The cutting device has an elastic member,
The elastic member is for detaching the cut body, which is a cut composite material, from the cutting blade.
[1] The cutting device according to any one of [7].
[9]
The cutting device according to any one of [1] to [8], wherein the cutting device heats and cuts the composite material.
[10]
The cutting device according to any one of [1] to [9], wherein the fixed layer is iron or an alloy containing iron.
[11]
The reinforcing fiber contained in the composite material is carbon fiber, the resin is a thermoplastic resin, and the cutting device is a device for producing a molding material.
[1] The cutting apparatus according to any one of [10].
[12]
The cutting device according to any one of [1] to [11], wherein the cutting device includes two or more cutting blades.
[13]
A method of manufacturing a cut body by cutting a composite material containing reinforcing fibers and a resin using a cutting device equipped with a cutting blade and a pressure device,
The cutting device is provided with a fixing layer for fixing the cutting blade between the cutting blade and the pressurizing device,
At least one of the yield stress or the 0.2% proof stress of the fixed layer is 165 MPa or more.
Manufacturing method of cut body.
[14]
The cutting device according to [13], wherein the cutting device includes at least one cutting blade having a closed loop structure.
[15]
The cutting device according to [14], wherein the cutting device includes at least one discharge passage for discharging a cut piece cut from the composite material.
[16]
[15] A method for producing a cut body according to [15],
R A is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece,
The maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage when expressed as R B, when the smallest of the R B for all the cross-section was R Bmin,
R A <R Bmin
The manufacturing method of the cutting body which satisfies.
[17]
The method for producing a cut body according to [15] or [16], wherein, in one cutting operation, 1 to 7 cutting pieces are discharged through the discharge passage per discharge passage.
[18]
The method for manufacturing a cut body according to any one of [15] to [17], wherein a discharge passage is provided between the cutting blade and the pressure device.
[19]
The method for manufacturing a cut body according to any one of [13] to [18], wherein the fixed layer is for fixing the cutting blade at a desired position in the vertical direction.
[20]
The cutting device has an elastic member,
The elastic member is for detaching the cut body, which is a cut composite material, from the cutting blade.
[13] The method for producing a cut body according to any one of [19] to [19].
[21]
The method for producing a cut body according to any one of [13] to [20], wherein the composite material is heated and cut.
[22]
The method for producing a cut body according to any one of [13] to [21], wherein the fixed layer is iron or an alloy containing iron.
[23]
The reinforcing fiber included in the composite material is carbon fiber, the resin is a thermoplastic resin, and the cut body is a molding material.
[13] The method for producing a cut body according to any one of [22].
[24]
The cutting device according to any one of [13] to [23], wherein the cutting device includes two or more cutting blades.
 本発明における切断装置を用いれば、連続して複合材料を切断しても、切断刃の位置精度を高いまま維持することができる。
 また、本発明における好ましい態様を採用すれば、形状が閉ループ構造の切断刃を用いても、切断小片を円滑に排出でき、連続して複合材料を切断し、切断体を製造することができる。
If the cutting apparatus in this invention is used, even if it cut | disconnects a composite material continuously, the positional accuracy of a cutting blade can be maintained with high.
Moreover, if the preferable aspect in this invention is employ | adopted, even if it uses the cutting blade of a closed loop structure, a cutting piece can be discharged | emitted smoothly, a composite material can be cut | disconnected continuously and a cut body can be manufactured.
本発明における切断装置の一例。An example of the cutting device in the present invention. 閉ループ構造の切断刃を使用した、切断装置の一例。An example of a cutting device using a closed-loop structured cutting blade. 従来の切断装置。Conventional cutting device. (a)(b)(c)切断刃の形状が閉ループ構造であって、複合材料から切断された切断小片を排出するための排出通路を設けた、切断装置の一例。(b)図4(a)のA-A’断面から見た模式図。(c)図4(b)のB-B’断面を、紙面上から見た模式図。(A) (b) (c) An example of a cutting device in which the shape of the cutting blade is a closed loop structure, and a discharge passage for discharging a cut piece cut from the composite material is provided. FIG. 4B is a schematic view seen from the A-A ′ cross section of FIG. (C) A schematic view of the B-B ′ cross section of FIG. (a)(b)弾性部材を備えた切断装置の一例。(b)図5(a)のA-A’断面から見た模式図。(A) (b) An example of the cutting device provided with the elastic member. FIG. 5B is a schematic view seen from the A-A ′ cross section of FIG. (a)(b)(c)(d)閉ループ構造の切断刃の一例。(A) (b) (c) (d) An example of a cutting blade having a closed loop structure. (a)(b)(c)開構造の切断刃の一例。(A) (b) (c) An example of a cutting blade having an open structure. (a)(b)(c)切断小片が発生する複合材料の切断のパターン((a)(b)(c)の左)と、対応する刃の形状((a)(b)(c)の右)。(d)切断小片が発生しない複合材料の切断のパターン((d)の左)と、対応する刃の形状((d)の右)。(A) (b) (c) Cutting pattern of composite material (left of (a) (b) (c)) and corresponding blade shape ((a) (b) (c) Right). (D) The cutting pattern (left of (d)) and the corresponding blade shape (right of (d)) of the composite material in which no cut pieces are generated. (a)閉ループ構造の切断刃8個に対して、排出通路が1個である切断装置の一例。(b)図9(a)のB-B’断面から見た模式図。(A) An example of a cutting device having one discharge passage for eight cutting blades having a closed loop structure. FIG. 9B is a schematic view seen from the B-B ′ cross section of FIG. (a)閉ループ構造の切断刃8個に対して、排出通路を8個備えた切断装置の一例。(b)図10(a)のB-B’断面から見た模式図。(A) An example of a cutting device provided with eight discharge passages with respect to eight cutting blades having a closed loop structure. FIG. 10B is a schematic diagram viewed from the B-B ′ cross section in FIG.
[強化繊維]
 本発明に用いられる強化繊維の種類は、樹脂の種類や複合材料の用途等に応じて適宜選択することができるものであり、特に限定されるものではない。このため、本発明に用いられる強化繊維としては、無機繊維又は有機繊維のいずれであっても好適に用いることができる。上記無機繊維としては、例えば、炭素繊維、活性炭繊維、黒鉛繊維、ガラス繊維、タングステンカーバイド繊維、シリコンカーバイド繊維(炭化ケイ素繊維)、セラミックス繊維、アルミナ繊維、天然繊維、玄武岩などの鉱物繊維、ボロン繊維、窒化ホウ素繊維、炭化ホウ素繊維、及び金属繊維等を挙げることができる。
[Reinforcing fiber]
The type of reinforcing fiber used in the present invention can be appropriately selected according to the type of resin, the use of the composite material, and the like, and is not particularly limited. For this reason, as the reinforcing fiber used in the present invention, any of inorganic fibers and organic fibers can be preferably used. Examples of the inorganic fibers include carbon fibers, activated carbon fibers, graphite fibers, glass fibers, tungsten carbide fibers, silicon carbide fibers (silicon carbide fibers), ceramic fibers, alumina fibers, natural fibers, mineral fibers such as basalt, and boron fibers. , Boron nitride fiber, boron carbide fiber, and metal fiber.
 上記金属繊維としては、例えば、アルミニウム繊維、銅繊維、黄銅繊維、ステンレス繊維、スチール繊維を挙げることができる。
 上記ガラス繊維としては、Eガラス、Cガラス、Sガラス、Dガラス、Tガラス、石英ガラス繊維、ホウケイ酸ガラス繊維等からなるものを挙げることができる。
 上記有機繊維としては、例えば、ポリアラミド、PBO(ポリパラフェニレンベンズオキサゾール)、ポリフェニレンスルフィド、ポリエステル、アクリル、ポリアミド、ポリオレフィン、ポリビニルアルコール、ポリアリレート等の樹脂材料からなる繊維を挙げることができる。
Examples of the metal fiber include aluminum fiber, copper fiber, brass fiber, stainless steel fiber, and steel fiber.
As said glass fiber, what consists of E glass, C glass, S glass, D glass, T glass, quartz glass fiber, borosilicate glass fiber, etc. can be mentioned.
Examples of the organic fibers include fibers made of resin materials such as polyaramid, PBO (polyparaphenylene benzoxazole), polyphenylene sulfide, polyester, acrylic, polyamide, polyolefin, polyvinyl alcohol, and polyarylate.
 本発明においては、2種類以上の強化繊維を併用してもよい。この場合、複数種の無機繊維を併用してもよく、複数種の有機繊維を併用してもよく、無機繊維と有機繊維とを併用してもよい。複数種の無機繊維を併用する態様としては、例えば、炭素繊維と金属繊維とを併用する態様、炭素繊維とガラス繊維を併用する態様等を挙げることができる。一方、複数種の有機繊維を併用する態様としては、例えば、ポリアラミド繊維と他の有機材料からなる繊維とを併用する態様等を挙げることができる。さらに、無機繊維と有機繊維を併用する態様としては、例えば、炭素繊維とポリアラミド繊維とを併用する態様を挙げることができる。 In the present invention, two or more kinds of reinforcing fibers may be used in combination. In this case, a plurality of types of inorganic fibers may be used in combination, a plurality of types of organic fibers may be used in combination, or inorganic fibers and organic fibers may be used in combination. As an aspect which uses multiple types of inorganic fiber together, the aspect which uses together a carbon fiber and a metal fiber, the aspect which uses a carbon fiber and glass fiber together, etc. can be mentioned, for example. On the other hand, examples of the mode in which a plurality of types of organic fibers are used in combination include a mode in which polyaramid fibers and fibers made of other organic materials are used in combination. Furthermore, as an aspect which uses an inorganic fiber and an organic fiber together, the aspect which uses a carbon fiber and a polyaramid fiber together can be mentioned, for example.
 本発明における好ましい強化繊維は、炭素繊維、アラミド繊維、高強力ポリエチレン繊維、ポリアリレート繊維、ガラス繊維、スチール繊維を挙げる事ができ、中でも炭素繊維を好ましく用いる事ができる。炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、本発明においてはこれらのいずれの炭素繊維であっても好適に用いることができる。 Favorable reinforcing fibers in the present invention include carbon fibers, aramid fibers, high-strength polyethylene fibers, polyarylate fibers, glass fibers, and steel fibers. Among these, carbon fibers can be preferably used. Carbon fibers are generally polyacrylonitrile (PAN) carbon fiber, petroleum / coal pitch carbon fiber, rayon carbon fiber, cellulosic carbon fiber, lignin carbon fiber, phenolic carbon fiber, vapor growth carbon. Although fiber etc. are known, in the present invention, any of these carbon fibers can be suitably used.
(炭素繊維)
 強化繊維として無機繊維を使用することが好ましい。有機繊維に比べて伸度が比較的低いために、切断する際のせん断応力が少なくて良いためである。
 中でも、本発明においては引張強度に優れる点でポリアクリロニトリル(PAN)系炭素繊維を用いることが好ましい。強化繊維としてPAN系炭素繊維を用いる場合、その引張弾性率は100~600GPaの範囲内であることが好ましく、200~500GPaの範囲内であることがより好ましく、230~450GPaの範囲内であることがさらに好ましい。また、引張強度は2000~6000MPaの範囲内であることが好ましく、3000~6000MPaの範囲内であることがより好ましい。
(Carbon fiber)
It is preferable to use inorganic fibers as the reinforcing fibers. This is because the elongation is relatively lower than that of the organic fiber, so that less shear stress is required when cutting.
Among these, in the present invention, it is preferable to use polyacrylonitrile (PAN) -based carbon fibers in terms of excellent tensile strength. When a PAN-based carbon fiber is used as the reinforcing fiber, the tensile elastic modulus is preferably in the range of 100 to 600 GPa, more preferably in the range of 200 to 500 GPa, and in the range of 230 to 450 GPa. Is more preferable. The tensile strength is preferably in the range of 2000 to 6000 MPa, more preferably in the range of 3000 to 6000 MPa.
(強化繊維の繊維長)
 本発明に用いられる強化繊維の繊維長は、強化繊維の種類や樹脂の種類、複合材料中における強化繊維の配向状態等に応じて適宜決定することができるものであり、特に限定されるものではない。したがって、本発明においては目的に応じて連続繊維を用いてもよく、不連続繊維を用いてもよい。
 不連続繊維を用いる場合、平均繊維長は、通常、0.1mm~500mmの範囲内であることが好ましく、1mm~100mmの範囲内であることがより好ましい。本発明においては繊維長が互いに異なる強化繊維を併用してもよい。換言すると、本発明に用いられる強化繊維は、平均繊維長に単一のピークを有するものであってもよく、あるいは複数のピークを有するものであってもよい。
(Fiber length of reinforcing fiber)
The fiber length of the reinforcing fiber used in the present invention can be appropriately determined according to the type of reinforcing fiber, the type of resin, the orientation state of the reinforcing fiber in the composite material, and the like, and is not particularly limited. Absent. Therefore, in the present invention, continuous fibers may be used or discontinuous fibers may be used depending on the purpose.
When discontinuous fibers are used, the average fiber length is usually preferably in the range of 0.1 mm to 500 mm, and more preferably in the range of 1 mm to 100 mm. In the present invention, reinforcing fibers having different fiber lengths may be used in combination. In other words, the reinforcing fiber used in the present invention may have a single peak in average fiber length, or may have a plurality of peaks.
 炭素繊維の平均繊維長は、ロータリーカッター等で炭素繊維を一定長に切断して用いた場合は、そのカット長が平均繊維長にあたり、これは数平均繊維長でもあり、重量平均繊維長でもある。個々の炭素繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、以下の式(2),(3)により求められる(一定カット長の場合は、数平均繊維長(Ln)の計算式(2)で重量平均繊維長(Lw)を算出していることにもなる)。
 Ln=ΣLi/j ・・・式(2)
 Lw=(ΣLi)/(ΣLi) ・・・式(3)
 なお、本発明における平均繊維長の測定は、数平均繊維長であっても、重量平均繊維長であっても良い。
The average fiber length of the carbon fiber, when the carbon fiber is cut into a certain length with a rotary cutter or the like, the cut length corresponds to the average fiber length, which is also the number average fiber length and the weight average fiber length. . When the fiber length of each carbon fiber is Li and the number of measurement is j, the number average fiber length (Ln) and the weight average fiber length (Lw) are obtained by the following formulas (2) and (3) (constant) In the case of the cut length, the weight average fiber length (Lw) is calculated by the calculation formula (2) of the number average fiber length (Ln)).
Ln = ΣLi / j Expression (2)
Lw = (ΣLi 2 ) / (ΣLi) (3)
The measurement of the average fiber length in the present invention may be a number average fiber length or a weight average fiber length.
(強化繊維の繊維径)
 本発明に用いられる強化繊維の繊維径は、強化繊維の種類に応じて適宜決定すればよく、特に限定されるものではない。例えば、強化繊維として炭素繊維が用いられる場合、平均繊維径は、通常、3μm~50μmの範囲内であることが好ましく、4μm~12μmの範囲内であることがより好ましく、5μm~8μmの範囲内であることがさらに好ましい。一方、強化繊維としてガラス繊維を用いる場合、平均繊維径は、通常、3μm~30μmの範囲内であることが好ましい。ここで、上記平均繊維径は、強化繊維の単糸の直径を指すものとする。したがって、強化繊維が繊維束状である場合は、繊維束の径ではなく、繊維束を構成する強化繊維(単糸)の直径を指す。強化繊維の平均繊維径は、例えば、JIS R7607:2000に記載された方法によって測定することができる。
(Fiber diameter of reinforcing fiber)
The fiber diameter of the reinforcing fiber used in the present invention may be appropriately determined according to the type of the reinforcing fiber, and is not particularly limited. For example, when carbon fiber is used as the reinforcing fiber, the average fiber diameter is usually preferably in the range of 3 μm to 50 μm, more preferably in the range of 4 μm to 12 μm, and in the range of 5 μm to 8 μm. More preferably. On the other hand, when glass fiber is used as the reinforcing fiber, the average fiber diameter is usually preferably in the range of 3 to 30 μm. Here, the said average fiber diameter shall point out the diameter of the single yarn of a reinforced fiber. Therefore, when the reinforcing fiber is in the form of a fiber bundle, it refers to the diameter of the reinforcing fiber (single yarn) constituting the fiber bundle, not the diameter of the fiber bundle. The average fiber diameter of the reinforcing fibers can be measured by, for example, a method described in JIS R7607: 2000.
(強化繊維の繊維形態)
 本発明に用いられる強化繊維は、その種類の関わらず単糸からなる単糸状であってもよく、複数の単糸からなる繊維束状であってもよい。
 本発明に用いられる強化繊維は、単糸状のもののみであってもよく、繊維束状のもののみであってもよく、両者が混在していてもよい。ここで示す繊維束とは2本以上の単糸が集束剤や静電気力等により近接している事を示す。繊維束状のものを用いる場合、各繊維束を構成する単糸の数は、各繊維束においてほぼ均一であってもよく、あるいは異なっていてもよい。本発明に用いられる強化繊維が炭素繊維であって、炭素繊維が繊維束状である場合、各繊維束を構成する単糸の数は特に限定されるものではないが、通常、2本~10万本の範囲内とされる。
(Fiber form of reinforcing fiber)
Regardless of the type, the reinforcing fiber used in the present invention may be in the form of a single yarn consisting of a single yarn, or in the form of a fiber bundle consisting of a plurality of single yarns.
The reinforcing fiber used in the present invention may be only a single yarn, may be a fiber bundle, or a mixture of both. The fiber bundle shown here indicates that two or more single yarns are close to each other by a sizing agent or electrostatic force. When a fiber bundle is used, the number of single yarns constituting each fiber bundle may be substantially uniform or different in each fiber bundle. When the reinforcing fibers used in the present invention are carbon fibers and the carbon fibers are in a fiber bundle shape, the number of single yarns constituting each fiber bundle is not particularly limited, but usually 2 to 10 It is considered to be within the range of 10,000.
 一般的に、炭素繊維は、数千~数万本のフィラメントが集合した繊維束状となっている。強化繊維として炭素繊維を用いる場合に、炭素繊維をこのまま使用すると、繊維束の交絡部が局部的に厚くなり薄肉の複合材料を得ることが困難になる場合がある。このため、強化繊維として炭素繊維を用いる場合は、繊維束を拡幅したり、又は開繊したりして使用するのが通常である。
 複合材料における強化繊維の配向状態としては、例えば、強化繊維の長軸方向が一方向に配向した一方向配向や、上記長軸方向が複合材料の板厚面内方向においてランダムに配向した2次元ランダム配向を挙げることができる。
Generally, carbon fibers are in the form of fiber bundles in which thousands to tens of thousands of filaments are gathered. When carbon fiber is used as the reinforcing fiber, if the carbon fiber is used as it is, the entangled portion of the fiber bundle may be locally thick and it may be difficult to obtain a thin composite material. For this reason, when carbon fiber is used as the reinforcing fiber, the fiber bundle is usually used after being widened or opened.
Examples of the orientation state of the reinforcing fibers in the composite material include, for example, a unidirectional orientation in which the major axis direction of the reinforcing fibers is oriented in one direction, and a two-dimensional orientation in which the major axis direction is randomly oriented in the in-plane thickness direction of the composite material. Random orientation can be mentioned.
 本発明における強化繊維の配向状態は、上記一方向配向又は2次元ランダム配向のいずれであってもよい。また、上記一方向配向と2次元ランダム配向の中間の無規則配向(強化繊維の長軸方向が完全に一方向に配向しておらず、かつ完全にランダムでない配向状態)であってもよい。さらに、強化繊維の繊維長によっては、強化繊維の長軸方向が複合材料の面内方向に対して角度を有するように配向していてもよく、繊維が綿状に絡み合うように配向していてもよく、さらには繊維が平織や綾織などの二方向織物、多軸織物、不織布、マット、ニット、組紐、強化繊維を抄紙した紙等のように配向していてもよい。 The orientation state of the reinforcing fibers in the present invention may be either the unidirectional orientation or the two-dimensional random orientation. Further, it may be an irregular orientation intermediate between the unidirectional orientation and the two-dimensional random orientation (an orientation state in which the major axis direction of the reinforcing fiber is not completely oriented in one direction and is not completely random). Furthermore, depending on the fiber length of the reinforcing fiber, the long axis direction of the reinforcing fiber may be oriented so as to have an angle with respect to the in-plane direction of the composite material, and the fibers are oriented so as to be entangled in a cotton-like manner. Further, the fibers may be oriented such as bi-directional woven fabrics such as plain weave and twill weave, multi-axial woven fabrics, non-woven fabrics, mats, knits, braids, paper made of reinforced fibers, and the like.
[強化繊維の体積含有率(Vf)]
 本発明の複合材料に含まれる強化繊維及び樹脂について、式(1)で定義される、複合材料に含まれる強化繊維体積割合(Vf)に特に限定は無いが5~80%であることが好ましく、10~80%であることがより好ましく、10~70%であることが更に好ましく、20~50%であることがより一層好ましく、30~40%が最も好ましい。
 式(1) 100×強化繊維体積/(強化繊維体積+樹脂体積)
 強化繊維体積割合(Vf)が5%以上であれば、補強効果が十分に発現しやすくなる。反対に、Vfが80%以下であれば、得られる複合材料にボイドが発生しにくくなり、物性が向上しやすい。
[Volume content of reinforcing fiber (Vf)]
With respect to the reinforcing fiber and resin contained in the composite material of the present invention, the volume fraction of reinforcing fiber (Vf) contained in the composite material defined by the formula (1) is not particularly limited, but is preferably 5 to 80%. It is more preferably 10 to 80%, further preferably 10 to 70%, still more preferably 20 to 50%, and most preferably 30 to 40%.
Formula (1) 100 × reinforced fiber volume / (reinforced fiber volume + resin volume)
When the reinforcing fiber volume ratio (Vf) is 5% or more, the reinforcing effect is sufficiently exhibited. On the contrary, if Vf is 80% or less, voids are hardly generated in the obtained composite material, and the physical properties are easily improved.
[樹脂]
 本発明で用いられる樹脂に特に限定は無く、熱可塑性樹脂であっても熱硬化性樹脂であっても良い。
[resin]
The resin used in the present invention is not particularly limited, and may be a thermoplastic resin or a thermosetting resin.
(熱可塑性樹脂)
 本発明における複合材料に含まれる樹脂が熱可塑性樹脂である場合、所望の形状に切断された後に切断体となり、これは圧縮成形用の成形材料として利用されるため好ましい。
 圧縮成型用の成形材料に関しては後述する。
 上記熱可塑性樹脂は特に限定されるものではなく、複合材料の用途等に応じて所望の軟化点又は融点を有するものを適宜選択して用いることができる。通常、軟化点が180℃~350℃の範囲内のものが用いられるが、これに限定されるものではない。
(Thermoplastic resin)
When the resin contained in the composite material in the present invention is a thermoplastic resin, it becomes a cut body after being cut into a desired shape, which is preferable because it is used as a molding material for compression molding.
The molding material for compression molding will be described later.
The said thermoplastic resin is not specifically limited, According to the use etc. of a composite material, what has a desired softening point or melting | fusing point can be selected suitably, and can be used. Usually, those having a softening point in the range of 180 ° C. to 350 ° C. are used, but are not limited thereto.
 上記熱可塑性樹脂としては、ポリオレフィン樹脂、ポリスチレン樹脂、熱可塑性ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、熱可塑性ポリベンゾイミダゾール樹脂、ビニル系樹脂等を挙げることができる。 Examples of the thermoplastic resin include polyolefin resin, polystyrene resin, thermoplastic polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), polycarbonate resin, (meth) acrylic resin, polyarylate resin, polyphenylene ether resin, polyimide resin, Examples thereof include polyether nitrile resins, phenoxy resins, polyphenylene sulfide resins, polysulfone resins, polyketone resins, polyether ketone resins, thermoplastic urethane resins, fluorine resins, thermoplastic polybenzimidazole resins, and vinyl resins.
 上記ポリオレフィン樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂等を挙げることができる。
 上記ビニル系樹脂としては、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂等を挙げることができる。
 上記ポリスチレン樹脂としては、例えば、ポリスチレン樹脂、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等を挙げることができる。
Examples of the polyolefin resin include polyethylene resin, polypropylene resin, polybutadiene resin, and polymethylpentene resin.
Examples of the vinyl resin include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, and polyvinyl alcohol resin.
Examples of the polystyrene resin include polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), and the like.
 上記ポリアミド樹脂としては、例えば、ポリアミド6樹脂(ナイロン6)、ポリアミド11樹脂(ナイロン11)、ポリアミド12樹脂(ナイロン12)、ポリアミド46樹脂(ナイロン46)、ポリアミド66樹脂(ナイロン66)、ポリアミド610樹脂(ナイロン610)等を挙げることができる。
 上記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、液晶ポリエステル等を挙げることができる。上記(メタ)アクリル樹脂としては、例えば、ポリメチルメタクリレートを挙げることができる。
Examples of the polyamide resin include polyamide 6 resin (nylon 6), polyamide 11 resin (nylon 11), polyamide 12 resin (nylon 12), polyamide 46 resin (nylon 46), polyamide 66 resin (nylon 66), and polyamide 610. Resin (nylon 610) etc. can be mentioned.
Examples of the polyester resin include polyethylene terephthalate resin, polyethylene naphthalate resin, boribylene terephthalate resin, polytrimethylene terephthalate resin, and liquid crystal polyester. Examples of the (meth) acrylic resin include polymethyl methacrylate.
 上記ポリフェニレンエーテル樹脂としては、例えば、変性ポリフェニレンエーテル等を挙げることができる。上記熱可塑性ポリイミド樹脂としては、例えば、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等を挙げることができる。上記ポリスルホン樹脂としては、例えば、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂等を挙げることができる。
 上記ポリエーテルケトン樹脂としては、例えば、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂を挙げることができる。上記フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン等を挙げることができる。
Examples of the polyphenylene ether resin include modified polyphenylene ether. Examples of the thermoplastic polyimide resin include thermoplastic polyimide, polyamideimide resin, polyetherimide resin, and the like. Examples of the polysulfone resin include a modified polysulfone resin and a polyethersulfone resin.
Examples of the polyetherketone resin include polyetherketone resin, polyetheretherketone resin, and polyetherketoneketone resin. As said fluororesin, polytetrafluoroethylene etc. can be mentioned, for example.
 本発明に用いられる熱可塑性樹脂は1種類のみであってもよく、2種類以上であってもよい。2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化点又は融点が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。 The thermoplastic resin used in the present invention may be only one type or two or more types. Examples of modes in which two or more types of thermoplastic resins are used in combination include modes in which thermoplastic resins having different softening points or melting points are used in combination, modes in which thermoplastic resins having different average molecular weights are used in combination, and the like. However, this is not the case.
(熱硬化性樹脂)
 本発明に用いられる熱硬化性樹脂として特に限定は無いが、耐熱性、力学特性および炭素繊維との接着性のバランスに優れているエポキシ樹脂が好ましく用いられ、特に、アミン類、フェノール類、炭素・炭素二重結合を有する化合物を前駆体とするエポキシ樹脂を用いることが好ましい。また、これらの熱硬化性樹脂は、加熱により自己硬化するものであっても良いし、硬化剤や硬化促進剤などを配合するものであっても良い。
(Thermosetting resin)
Although there is no limitation in particular as a thermosetting resin used for this invention, the epoxy resin which is excellent in the balance of heat resistance, a mechanical characteristic, and adhesiveness with carbon fiber is used preferably, Especially, amines, phenols, carbon -It is preferable to use an epoxy resin whose precursor is a compound having a carbon double bond. In addition, these thermosetting resins may be self-curing by heating, or may be blended with a curing agent or a curing accelerator.
 アミン類を前駆体とするエポキシ樹脂として、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物類、グリシジルアニリン類、キシレンジアミンのグリシジル化合物などが挙げられる。テトラグリシジルジアミノジフェニルメタン類は耐熱性に優れるため好ましい。
 フェノール類を前駆体とするエポキシ樹脂として、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂が挙げられる。
 炭素・炭素二重結合を有する化合物を前駆体とするエポキシ樹脂としては、多環式エポキシ樹脂等が挙げられる。
 これらのエポキシ樹脂は、単独で用いても良いし、適宜配合して用いてもよい。グリシジルアミン型エポキシ樹脂と2官能グリシジルエーテル型エポキシ樹脂の組み合わせは、耐熱性、耐水性および作業性を併せ持つために特に好ましい。
Examples of epoxy resins having amines as precursors include tetraglycidyldiaminodiphenylmethanes, glycidyl compounds of aminophenol, glycidylanilines, and glycidyl compounds of xylenediamine. Tetraglycidyldiaminodiphenylmethanes are preferred because of their excellent heat resistance.
Examples of epoxy resins having phenols as precursors include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, and resorcinol type epoxy resins.
Examples of the epoxy resin using a compound having a carbon / carbon double bond as a precursor include polycyclic epoxy resins.
These epoxy resins may be used singly or may be appropriately mixed and used. A combination of a glycidylamine type epoxy resin and a bifunctional glycidyl ether type epoxy resin is particularly preferable because it has both heat resistance, water resistance and workability.
 熱硬化性樹脂としてエポキシ樹脂を用いた場合の熱硬化性樹脂組成物の硬化剤としては、エポキシ基と反応し得る活性基を有する化合物であればこれを用いることができるが、芳香族アミン類、ジシアンジアミド、二塩基酸ジヒドラジドの単体または、混合系を挙げることができる。芳香族アミン類としては、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、メタキシレンジアミンなどが挙げられる。これらの硬化剤は、単独で用いても良いし、適宜配合して用いてもよい。芳香族アミン類は、樹脂硬化物に耐熱性を付与することが出来るために特に好ましい。
 エポキシ樹脂以外の熱硬化性樹脂としては、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂などが使用できる。
As a curing agent for the thermosetting resin composition when an epoxy resin is used as the thermosetting resin, any compound having an active group capable of reacting with an epoxy group can be used. , Dicyandiamide, dibasic acid dihydrazide alone or in a mixed system. Examples of aromatic amines include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and metaxylenediamine. These curing agents may be used alone or may be appropriately blended and used. Aromatic amines are particularly preferred because they can impart heat resistance to the cured resin.
Examples of thermosetting resins other than epoxy resins include cyanate ester resins, bismaleimide resins, and benzoxazine resins.
[その他の剤]
 本発明で用いる複合材料中には、本発明の目的を損なわない範囲で、有機繊維または無機繊維の各種繊維状または非繊維状のフィラー、難燃剤、耐UV剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤を含んでいてもよい。
[Other agents]
In the composite material used in the present invention, various fibrous or non-fibrous fillers of organic fibers or inorganic fibers, flame retardants, UV-resistant agents, stabilizers, release agents, Additives such as pigments, softeners, plasticizers, and surfactants may be included.
[複合材料の製造方法]
 本発明に用いられる複合材料は、一般的に公知の方法を用いて製造することができ、例えば、WO2012/105080パンフレット、特開2013-49298号公報に記載の等方性基材を好ましく用いられる。該等方性基材を使用した複合材料は、その面内において、炭素繊維が特定の方向に配向しておらず、無作為な方向に分散して配置されている。
[Production method of composite material]
The composite material used in the present invention can be produced by a generally known method. For example, an isotropic substrate described in WO2012 / 105080 pamphlet and JP2013-49298A is preferably used. In the composite material using the isotropic substrate, the carbon fibers are not oriented in a specific direction and are dispersed in a random direction in the plane.
[切断装置]
 本発明における切断装置は、複合材料を切断するためのものであり、例えば図1で示される。
 加圧装置と固定層の位置決め層はクランプ機構(挟む機構)により固定されていることが好ましい(固定層と加圧装置は接触しているが、直接固定されていないことが好ましい)。
 固定層の位置決め層と固定層はボルトにより締結されていることが好ましい。
 切断刃は切断刃の位置決め層に設けられたスリットへの圧入により固定されていることが好ましい。
 切断刃の位置決め層と固定層の位置決め層はボルトにより締結されていることが好ましい。
[Cutting device]
The cutting device in the present invention is for cutting a composite material, and is shown in FIG. 1, for example.
The positioning layer of the pressure device and the fixed layer is preferably fixed by a clamping mechanism (a sandwiching mechanism) (the fixed layer and the pressure device are in contact but preferably not directly fixed).
The positioning layer and the fixing layer of the fixing layer are preferably fastened by bolts.
The cutting blade is preferably fixed by press-fitting into a slit provided in the positioning layer of the cutting blade.
The positioning layer of the cutting blade and the positioning layer of the fixed layer are preferably fastened by bolts.
1.加圧装置
 加圧装置に限定は無く、公知のものを使用できる。例えば、電動モーターを圧力源とするもの、油圧ポンプを圧力源とするものが挙げられる。また、往復運動機構として、スクリュー機構、クランク機構、リンク機構、シリンダ機構のいずれか、またはその複数を組合せた機構を備えていることが挙げられる。
 また、加圧装置(図1の102)には、固定層(図1の103)を取り付けることができる。加圧装置の底部(加圧面)に固定層を取り付けることができる。
1. Pressurizing device There is no limitation on the pressurizing device, and a known device can be used. For example, an electric motor is used as a pressure source, and a hydraulic pump is used as a pressure source. Further, as the reciprocating mechanism, it is possible to include any of a screw mechanism, a crank mechanism, a link mechanism, a cylinder mechanism, or a combination of a plurality of them.
Further, a fixing layer (103 in FIG. 1) can be attached to the pressurizing device (102 in FIG. 1). A fixed layer can be attached to the bottom (pressure surface) of the pressure device.
2.切断台
 本発明における切断体の製造方法は、好ましくは複合材料を切断台で切断して製造することが好ましい。切断台は公知の物を使用でき、複合材料を支えることができれば特に限定はない。また、本発明における切断台とは、連続して切断することを目的とするものであり、成形型内に繊維強化樹脂材を載置し、打ち抜き刃でバリ除去する、例えば日本国特開2011-084038や、日本国特開2013-99817に記載のような成形型は含まないものである。すなわち、本発明は、成形と同時に端材をトリミングするものではなく、連続して複合材料を切断して切断体を得るものである。
2. Cutting table The method for producing a cut body in the present invention is preferably produced by cutting a composite material with a cutting table. A known cutting table can be used, and there is no particular limitation as long as it can support the composite material. The cutting table in the present invention is intended for continuous cutting, and a fiber reinforced resin material is placed in a mold and burrs are removed with a punching blade. It does not include molds such as those described in JP-084038 and Japanese Unexamined Patent Publication No. 2013-99817. That is, the present invention does not trim the end material at the same time as molding, but continuously cuts the composite material to obtain a cut body.
3.固定層
 本発明における固定層(例えば図1の103)の降伏応力又は0.2%耐力の、少なくともいずれか一方は、165MPa以上である。これは、連続して複合材料を切断すると、固定層が塑性変形してしまうという課題があるため、降伏応力又は0.2%耐力の、少なくともいずれか一方は165MPa以上のものを用いる必要がある。固定層が塑性変形すると、例えば図3の301に示すように、切断刃の位置決め精度が低下する(すなわち切断刃の鉛直方向の位置ズレが発生する)。本発明における固定層は、鉛直方向の特定位置に、切断刃を固定させるためのものであり、鉛直方向の一定位置に切断刃を固定できる。
3. Fixed layer In the present invention, at least one of the yield stress and the 0.2% yield strength of the fixed layer (for example, 103 in FIG. 1) is 165 MPa or more. This is because there is a problem that the fixed layer is plastically deformed when the composite material is continuously cut. Therefore, at least one of yield stress and 0.2% proof stress must be 165 MPa or more. . When the fixed layer is plastically deformed, for example, as shown by 301 in FIG. 3, the positioning accuracy of the cutting blade is lowered (that is, the vertical displacement of the cutting blade occurs). The fixing layer in the present invention is for fixing the cutting blade at a specific position in the vertical direction, and can fix the cutting blade at a fixed position in the vertical direction.
 固定層の降伏応力又は0.2%耐力の、少なくともいずれか一方は、好ましくは200MPa以上である。具体的には、入手の容易性から、固定層が鉄又は鉄を含む合金であることがより好ましく、鉄を含む合金であることが更に好ましい。
 一方、降伏応力又は0.2%耐力の、少なくともいずれか一方の上限は、好ましくは1500MPa以下が好ましく、1000MPa以下がより好ましく、700MPa以下が更に好ましい。
 降伏応力又は0.2%耐力は、JIS Z 2241:2011に基づき測定される。
At least one of the yield stress and the 0.2% yield strength of the fixed layer is preferably 200 MPa or more. Specifically, from the viewpoint of availability, the fixed layer is more preferably iron or an alloy containing iron, and even more preferably an iron-containing alloy.
On the other hand, the upper limit of at least one of yield stress or 0.2% yield strength is preferably 1500 MPa or less, more preferably 1000 MPa or less, and even more preferably 700 MPa or less.
Yield stress or 0.2% proof stress is measured based on JIS Z 2241: 2011.
 固定層の厚みは後述する排出通路の大きさにもよるが、1mm以上が好ましく、5mm以上がより好ましく、10mm以上が更に好ましい。固定層の厚みの上限は、好ましくは100mm以下、より好ましくは80mm以下である。
 固定層の幅は、切断刃を支えることができれば特に限定はないが、0.5mm以上が好ましく、3mm以上がより好ましい。固定層の幅の上限は好ましくは100mm以下、より好ましくは70mm以下である。
 固定層の形状は特に限定されないが、一例として直方体が挙げられる。
 また、本発明における固定層は、切断刃への偏荷重を抑制することができ、切断刃全体にわたって均一な荷重をかけることができる。この特性を利用すれば、複数の切断刃を切断装置に設けた場合や、切断刃の形状を複数設けた場合であっても、連続して複合材料を切断することができる。
The thickness of the fixed layer depends on the size of the discharge passage described later, but is preferably 1 mm or more, more preferably 5 mm or more, and even more preferably 10 mm or more. The upper limit of the thickness of the fixed layer is preferably 100 mm or less, more preferably 80 mm or less.
The width of the fixed layer is not particularly limited as long as it can support the cutting blade, but is preferably 0.5 mm or more, and more preferably 3 mm or more. The upper limit of the width of the fixed layer is preferably 100 mm or less, more preferably 70 mm or less.
Although the shape of a fixed layer is not specifically limited, A rectangular parallelepiped is mentioned as an example.
Moreover, the fixed layer in the present invention can suppress an uneven load on the cutting blade, and can apply a uniform load over the entire cutting blade. By utilizing this characteristic, the composite material can be continuously cut even when a plurality of cutting blades are provided in the cutting device or when a plurality of cutting blade shapes are provided.
4.切断刃
 本発明における切断刃は、例えば図1、図2の104に示される。
4). Cutting blade The cutting blade in this invention is shown by 104 of FIG. 1, FIG. 2, for example.
4.1 種類
 使用する刃の材質、硬度、刃先形状などは材料の特性、厚み等に応じて適宜選択することができるが、刃の硬度はHRC28~70が好ましく、さらには硬度HRC45~63が好ましい。硬度がHRC28以上であると、切断刃の耐久性が向上して好ましい。HRC70以下であると、刃の靱性が向上して好ましい。
 切断刃の刃先の角度は、25度~60度が好ましく、刃先端のR寸法は、0.2mm以下であることが好ましい。切断刃の角度が25度以上であると、耐久性が向上して好ましく、60度以下であると低い線圧で切断できるため好ましい。刃先端のR寸法が0.2mm以下であると、低い線圧で切断できるため好ましい。
 刃の根元厚みは、0.5~2.0mmが好ましい。2.0mm以下であると、低い線圧で切断できるため好ましく、0.5mm以上であると、耐久性が向上して好ましい。
4.1 Types The blade material, hardness, blade edge shape, etc. to be used can be appropriately selected according to the material properties, thickness, etc., but the blade hardness is preferably HRC28-70, and more preferably the hardness HRC45-63. preferable. The hardness of HRC28 or higher is preferable because the durability of the cutting blade is improved. HRC70 or less is preferable because the toughness of the blade is improved.
The angle of the cutting edge of the cutting blade is preferably 25 to 60 degrees, and the R dimension of the blade tip is preferably 0.2 mm or less. When the angle of the cutting blade is 25 degrees or more, durability is improved, and when the angle is 60 degrees or less, cutting with a low linear pressure is preferable. It is preferable that the R dimension of the blade tip is 0.2 mm or less because cutting can be performed with a low linear pressure.
The root thickness of the blade is preferably 0.5 to 2.0 mm. If it is 2.0 mm or less, it is preferable because it can be cut with a low linear pressure, and if it is 0.5 mm or more, durability is improved, which is preferable.
4.2 形状
 切断刃の形状に特に限定はなく、閉ループ構造であっても、開構造であってもよい。
 ここで、開構造とは、切断刃が開いており、切断刃の刃先側から見た図が、例えば図7(a)~(c)のような切断刃である。すなわち、開構造とは、切断刃の刃先をつないでなる線が閉じていないことをいう。切断刃が開構造の場合、複合材料から切断された切断小片は発生する場合と、発生しない場合とがある。例えば図8(d)の右に示す切断刃を用いた場合には、切断小片は生じない(図8の(d)の左)。一方、図8(c)の右に示すような切断刃を用いて、複合材料の隅を切断すると、図8(c)の左で示す801のような切断小片が発生する。
 一方、閉ループ構造とは、切断刃の刃先側から見た図が、例えば図6(a)~(d)のような形状をいい、円だけでなく、楕円、三角、四角、各種多角形、不定形状であるものも含まれる。すなわち、閉ループ構造とは、切断刃の刃先をつないでなる線が閉じていることをいう。
 閉ループ構造の切断刃で切断されると、多くの場合で切断小片が発生する(例えば図8の(a)(b))。すなわち、切断刃の形状が閉ループ構造である場合、複合材料から切断された切断小片が切断刃に挟まりやすく、切断小片を排出するのが困難になるという、新たな課題が生じる。
 なお、本発明における複合材料から切断された切断小片とは、複合材料を所望の形状に切断して得られた切断体から副生された、残りの部分である。
4.2 Shape The shape of the cutting blade is not particularly limited, and may be a closed loop structure or an open structure.
Here, the open structure means that the cutting blade is open, and the drawings viewed from the cutting edge side of the cutting blade are cutting blades as shown in FIGS. 7A to 7C, for example. That is, the open structure means that the line connecting the cutting edge of the cutting blade is not closed. When the cutting blade has an open structure, a cut piece cut from the composite material may or may not be generated. For example, when the cutting blade shown on the right in FIG. 8D is used, no cut piece is generated (left in FIG. 8D). On the other hand, when a corner of the composite material is cut using a cutting blade as shown on the right in FIG. 8C, a cut piece 801 shown on the left in FIG. 8C is generated.
On the other hand, the closed loop structure refers to a shape as seen from the cutting edge side of the cutting blade, for example, as shown in FIGS. 6 (a) to 6 (d). Not only a circle but also an ellipse, a triangle, a square, various polygons, Those having an indefinite shape are also included. That is, the closed loop structure means that the line connecting the cutting edge of the cutting blade is closed.
When it is cut with a cutting blade having a closed loop structure, a cut piece is generated in many cases (for example, (a) and (b) in FIG. 8). That is, when the shape of the cutting blade is a closed loop structure, a new problem arises that the cutting piece cut from the composite material is easily caught by the cutting blade, and it becomes difficult to discharge the cutting piece.
In addition, the cut piece cut | disconnected from the composite material in this invention is the remaining part byproduced from the cut body obtained by cut | disconnecting a composite material to a desired shape.
5.排出通路
 閉ループ構造の切断刃に、切断小片が挟まって詰まるのを避けるためには、切断小片は、切断刃の閉ループ構造の内部を通過した後、固定層に設けた排出通路(図4の401)を通って、切断装置外に排出されることが好ましい。すなわち、本発明における切断装置は、複合材料から切断された切断小片を排出するための排出通路を、少なくとも1つ備えることが好ましい。切断小片が閉ループ構造の切断刃に詰まらなければ、連続して複合材料を切断するのが容易となる。
 切断刃が閉ループ構造の形状である場合、切断小片を鉛直下向きに落とすよりも、鉛直上向きに排出する方が、連続して切断する場合、次々と切断小片が閉ループ切断刃の内側に挿入され続けるため、設備上有利である。
 切断装置は、排出通路を切断刃と加圧装置との間に備えることが好ましい。
5). Discharge passage In order to avoid the clogging of the cut piece from the closed-loop structure cutting blade, the cut piece passes through the inside of the closed-loop structure of the cut blade, and then the discharge passage (401 in FIG. 4) provided in the fixed layer. ) And is preferably discharged out of the cutting device. That is, it is preferable that the cutting device according to the present invention includes at least one discharge passage for discharging a cut piece cut from the composite material. If the cut pieces do not clog the closed-loop structured cutting blade, it is easy to continuously cut the composite material.
When the cutting blade has a closed-loop structure, when the cutting pieces are discharged continuously vertically rather than dropping vertically, the cutting pieces continue to be inserted inside the closed-loop cutting blade one after another. Therefore, it is advantageous in terms of equipment.
The cutting device preferably includes a discharge passage between the cutting blade and the pressure device.
 例えば図4に示す排出通路では、切断刃を固定するための固定層を2つ設けており(図4の103)、固定層の間が排出通路(図4の401)となる。固定層に設けられた排出通路は、固定層の位置決め層(図4の105)に設けられた排出通路に繋がっており、エアー(図4(b)の402)など用いて、切断小片を切断装置外に排出すると良い。なお、切断小片を切断装置外に排出できれば、排出通路の形状、構造は図4のものに限定されない。
 排出通路を設けるための固定層の位置決め層の素材は、安価で加工しやすいものであれば特に限定は無いが、例えばベニヤ板などを用いることが好ましい。
 なお、安価で加工しやすい素材(例えばベニヤ板)を、固定層にまで使用してしまうと、図3に示すように、切断時の荷重により、切断刃の位置が不安定になりやすい。
For example, in the discharge passage shown in FIG. 4, two fixing layers for fixing the cutting blade are provided (103 in FIG. 4), and the space between the fixed layers is the discharge passage (401 in FIG. 4). The discharge passage provided in the fixed layer is connected to the discharge passage provided in the positioning layer (105 in FIG. 4) of the fixed layer, and the cut pieces are cut using air (402 in FIG. 4B) or the like. It is good to discharge outside the device. As long as the cut piece can be discharged out of the cutting apparatus, the shape and structure of the discharge passage are not limited to those shown in FIG.
The material for the positioning layer of the fixed layer for providing the discharge passage is not particularly limited as long as it is inexpensive and easy to process. For example, it is preferable to use a veneer plate.
In addition, if a cheap and easy-to-process material (for example, a veneer plate) is used up to the fixed layer, the position of the cutting blade tends to become unstable due to the load during cutting, as shown in FIG.
 本発明の切断装置においては、固定層の降伏応力又は0.2%耐力の、少なくともいずれか一方が165MPa以上とし、固定層の位置決め層を安価で加工しやすい素材(例えばベニヤ板)にすることで、閉ループ構造の切断刃を用いた場合であっても、切断小片を排出しやすく、かつ切断刃の(経時での)位置精度を高く保つ事が出来る。 In the cutting device of the present invention, at least one of the yield stress or the 0.2% proof stress of the fixed layer is 165 MPa or more, and the positioning layer of the fixed layer is made of a material that is inexpensive and easy to process (for example, a veneer plate). Even when a cutting blade having a closed loop structure is used, it is easy to discharge the cut pieces, and the positional accuracy (with time) of the cutting blade can be kept high.
(排出通路の面積大きさ)
 形状が閉ループ構造である切断刃を、少なくとも1つ備え、複合材料から切断された切断小片を排出するための排出通路を、少なくとも1個備える場合、
 本発明における切断装置は、切断小片の板厚方向の最大断面積をSk1、排出通路の最小断面積をSk2とし、
 1回あたりの複合材料の切断で、排出通路を通って排出される切断小片が1個以上であって、各々の切断小片のSk1の合計値をΣSk1とし、切断装置には1個以上の排出通路を備え、各々の排出通路のSk2の合計値をΣSk2としたとき、ΣSk1<ΣSk2であることが好ましい。
(Area size of discharge passage)
When at least one cutting blade having a closed loop structure is provided and at least one discharge passage for discharging a cutting piece cut from the composite material,
In the cutting device according to the present invention, the maximum cross-sectional area in the plate thickness direction of the cut piece is S k1 , and the minimum cross-sectional area of the discharge passage is S k2 .
One or more cutting pieces are discharged through the discharge passage in one cutting of the composite material, and the total value of S k1 of each cutting piece is ΣS k1 , and the cutting device has one or more cutting pieces. a discharge passage, when the total value of S k2 of each discharge passage of a [sigma] s k2, it is preferable that ΣS k1 <ΣS k2.
 ここで、排出通路の最小断面積とは通路の進行方向に向かって垂直な面方向の最小面積をいう。ΣSk1<ΣSk2を満たすことで、切断小片が排出通路の中で詰まらないという、優れた効果を奏する。
 また、切断小片のSk1は、その切断小片が通る排出通路のSk2よりも小さいことが好ましい。
Here, the minimum cross-sectional area of the discharge passage refers to the minimum area in the plane direction perpendicular to the traveling direction of the passage. By satisfying ΣS k1 <ΣS k2 , there is an excellent effect that the cut pieces are not clogged in the discharge passage.
Moreover, it is preferable that S k1 of the cut piece is smaller than S k2 of the discharge passage through which the cut piece passes.
 本発明の切断装置および、切断体の製造方法においては、
 切断小片の板厚方向の投影図形を含む円の最小径(切断小片の板厚方向の投影図形を投影図形がはみ出さないように含む円のうち最小の円の直径)をRとし、
 排出通路の断面の内部に存在し得る円の最大径(排出通路の断面の内部からはみ出さずに存在し得る円のうち最大の円の直径)をRと表す場合に、すべての断面についてのRのうち最小のものをRBminとしたとき、
 R<RBmin
を満たすことが好ましい。
In the cutting device of the present invention and the method for producing a cut body,
R A is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece (the diameter of the smallest circle among the circles including the projected figure in the thickness direction of the cut piece so that the projected figure does not protrude).
Maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage (diameter of the largest circle of the circle that may be present in without protruding from the interior of the cross-section of the discharge passage) when expressed as R B, for all of the cross-section the smallest of the R B when the R Bmin of
R A <R Bmin
It is preferable to satisfy.
 また、1回の切断時において、排出通路1個につき、排出通路を通って排出される切断小片は1~7個が好ましく、排出通路を通って排出される切断小片は1~4個がより好ましく、排出通路を通って排出される切断小片は1~2個が更に好ましい。1回当たりに排出される切断小片の数と、排出通路の数とが同数であることが、最も好ましい。
 なお、閉ループ構造の切断刃8個に対して、排出通路が1個である切断装置の一例を図9に、閉ループ構造の切断刃8個に対して、排出通路を8個備えた切断装置の一例を図10に示す。
Further, it is preferable that 1 to 7 cutting pieces are discharged through the discharging passage per discharging passage at one cutting, and 1 to 4 cutting pieces are discharged through the discharging passage. Preferably, 1 to 2 cutting pieces discharged through the discharge passage are more preferable. Most preferably, the number of cut pieces discharged per time and the number of discharge passages are the same.
FIG. 9 shows an example of a cutting device having one discharge passage for eight cutting blades having a closed loop structure, and FIG. 9 shows a cutting device having eight discharge passages for eight cutting blades having a closed loop structure. An example is shown in FIG.
6.弾性部材
 本発明における切断装置は、弾性部材を有していることが好ましい。該弾性部材は、切断された複合材料である切断体を、切断刃から脱離するためのものであり、例えば図5の501で示すものである。弾性部材は、複合材料を切断する際には、弾性変形によって切断を妨げない(複合材料が切断刃によって押して切られる際には、弾性部材は図5の紙面上方向に圧縮される)。一方、複合材料の切断後には、蓄えられた弾性エネルギーにより、切断体(切断後の複合材料)を、切断刃から脱離させやすくする。また、弾性部材の鉛直下向きの位置は、切断刃の刃先よりも下に突出していることが好ましい(例えば図5の501)。
 なお、弾性部材を用いない場合に連続して複合材料を切断するには、人手で切断刃から切断体を脱離したり、機械的に脱離したりする方法を別途設ければ良い。
6). Elastic member It is preferable that the cutting device in this invention has an elastic member. The elastic member is for detaching the cut body, which is a cut composite material, from the cutting blade, for example, as indicated by reference numeral 501 in FIG. The elastic member does not hinder cutting by elastic deformation when cutting the composite material (when the composite material is pushed and cut by the cutting blade, the elastic member is compressed in the upward direction in FIG. 5). On the other hand, after cutting the composite material, the cut body (composite material after cutting) is easily detached from the cutting blade by the stored elastic energy. Moreover, it is preferable that the vertically downward position of the elastic member protrudes below the cutting edge of the cutting blade (for example, 501 in FIG. 5).
In order to continuously cut the composite material when no elastic member is used, a method of manually detaching the cut body from the cutting blade or mechanically detaching may be provided separately.
7.固定層の位置決め層(図1の105)
 固定層の水平方向の位置決め精度を高めるために、固定層の位置決め層を設けると好ましい。前述のとおり、固定層の位置決め層は、排出通路を設けるための加工をしやすい材料からできていることが好ましく、例えば木質板(単板であっても合板であってもよい)が挙げられ、ベニヤ板であることが好ましい。
 本発明においては、複合材料の様々なカットパターンに対応できるように、固定層と加圧装置とがボルト等により直接締結されておらず、かつ固定層が水平方向にずれにくいように、固定層の位置決め層を設けることが好ましい。
 固定層の位置決め層はクランプ機構(挟む機構)により加圧装置と固定されていることが好ましい(固定層と加圧装置は接触しているが、ボルト等では固定されていないことが好ましい)。
 固定層の位置決め層と固定層はボルトにより締結されていることが好ましい。
7). Fixed layer positioning layer (105 in FIG. 1)
In order to increase the horizontal positioning accuracy of the fixed layer, it is preferable to provide a fixed layer positioning layer. As described above, the positioning layer of the fixed layer is preferably made of a material that can be easily processed for providing the discharge passage, and examples thereof include a wood board (may be a single board or a plywood board). A plywood board is preferred.
In the present invention, the fixed layer and the pressurizing device are not directly fastened by bolts or the like so that it can correspond to various cut patterns of the composite material, and the fixed layer is not easily displaced in the horizontal direction. It is preferable to provide a positioning layer.
The positioning layer of the fixed layer is preferably fixed to the pressure device by a clamping mechanism (a sandwiching mechanism) (the fixed layer and the pressure device are in contact but preferably not fixed by a bolt or the like).
The positioning layer and the fixing layer of the fixing layer are preferably fastened by bolts.
8.切断刃の位置決め層(図1の106)
 切断刃の水平方向の位置決め精度を高めるために、切断刃の位置決め層を設けると好ましい。
 本発明においては、様々な形状の切断刃を選択して容易に用いることができるように、また、刃が摩耗した際に容易に取り換えることができるように、切断刃は固定層に直接締結されておらず、かつ切断刃が水平方向にずれにくいように、切断刃の位置決め層を設けることが好ましい。
 切断刃は切断刃の位置決め層に設けられたスリットへの圧入により固定されていることが好ましい。
 切断刃の位置決め層と固定層の位置決め層はボルトにより締結されていることが好ましい。
8). Cutting blade positioning layer (106 in FIG. 1)
In order to increase the horizontal positioning accuracy of the cutting blade, it is preferable to provide a cutting blade positioning layer.
In the present invention, the cutting blade is directly fastened to the fixed layer so that cutting blades of various shapes can be selected and used easily and can be easily replaced when the blade is worn. It is preferable to provide a positioning layer for the cutting blade so that the cutting blade is not easily displaced in the horizontal direction.
The cutting blade is preferably fixed by press-fitting into a slit provided in the positioning layer of the cutting blade.
The positioning layer of the cutting blade and the positioning layer of the fixed layer are preferably fastened by bolts.
[切断体の製造方法]
 本発明における切断体の製造方法は、切断刃と加圧装置を備えた切断装置を用いて、強化繊維と樹脂とを含む複合材料を切断し、切断体を製造する方法であって、切断装置は、切断刃と加圧装置との間に、切断刃を固定するための固定層を設け、該固定層の降伏応力又は0.2%耐力の、少なくともいずれか一方は165MPa以上である。
 切断は、好ましくは切断台の上に複合材料を配置し、切断刃を1つの複合材料に対して1度切断刃で下降させればよく、連続して複合材料を切断する際には、切断体を製造するごとに、切断刃を上下に往復運動させれば良い。
[Method of manufacturing cut body]
The method for producing a cut body in the present invention is a method for producing a cut body by cutting a composite material containing reinforcing fibers and a resin using a cutting device provided with a cutting blade and a pressure device. Is provided with a fixing layer for fixing the cutting blade between the cutting blade and the pressure device, and at least one of the yield stress or the 0.2% proof stress of the fixing layer is 165 MPa or more.
The cutting is preferably performed by placing the composite material on a cutting table and lowering the cutting blade once with respect to one composite material with the cutting blade. What is necessary is just to make a cutting blade reciprocate up and down whenever a body is manufactured.
 本発明における複合材料の切断には、予め複合材料を加熱しておくことが好ましい。複合材料が軟化して切断に必要な線圧が低くなるためである。複合材料を加熱する場合、加熱方法に特に限定はなく、いかなる方法の利用も可能である。具体的には、熱風乾燥機や電気加熱型乾燥機を用いる方法、金型・ベルトコンベアー・熱ローラーなどにおいて熱板に挟む方法、赤外線・マイクロ波・高周波などによる誘電加熱や誘導加熱(IH)が例示されている。 For the cutting of the composite material in the present invention, it is preferable to heat the composite material in advance. This is because the composite material is softened and the linear pressure required for cutting is reduced. When the composite material is heated, the heating method is not particularly limited, and any method can be used. Specifically, a method using a hot air dryer or an electric heating type dryer, a method of sandwiching between a hot plate in a mold, a belt conveyor, a hot roller, etc., dielectric heating or induction heating (IH) by infrared, microwave, high frequency, etc. Is illustrated.
[成形材料]
 本発明における複合材料に含まれる樹脂が熱可塑性樹脂である場合、切断体は圧縮成形用の成形材料として利用されることが好ましい。強化繊維と熱可塑性樹脂とを含む複合材料を、圧縮成形して複雑形状を有する成形体を製造する際、得られる成形体はその複雑形状部分に皺などが発生した外観が劣るものになる場合がある。このような問題に対して、予め成形材料を所望の形状にしておくことで、圧縮成形時に皺を発生させず外観良好な成形体を製造する事が出来る。特に、繊維長が1~100mmの炭素繊維を含む複合材料を、圧縮成形用の成形材料として使用する場合、成形時に流動させるのが難しく、上記課題は顕著なものとしてあらわれる。
[Molding materials]
When the resin contained in the composite material in the present invention is a thermoplastic resin, the cut body is preferably used as a molding material for compression molding. When producing a molded product having a complex shape by compression molding a composite material containing reinforcing fibers and a thermoplastic resin, the resulting molded product has a poor appearance with wrinkles and the like in the complex shape portion. There is. With respect to such a problem, by forming the molding material in a desired shape in advance, it is possible to produce a molded article having a good appearance without generating wrinkles during compression molding. In particular, when a composite material containing carbon fibers having a fiber length of 1 to 100 mm is used as a molding material for compression molding, it is difficult to flow at the time of molding, and the above-mentioned problem appears prominently.
 本発明における切断装置を用いて、所望の形状に切断された切断体を成形材料として用いることで、圧縮成形により複雑な立体形状をなす繊維強化成形体を製造でき、外観および強度を低下しない成形体を得ることができる。予め所望の形状に切断された切断体を成形材料とすることで、品質や歩留りの良い成形体を得ることができる。
 上記観点から、複合材料、および複合材料を切断して得られる切断体は、熱可塑性樹脂を含むことが好ましい。
By using a cutting body cut into a desired shape as a molding material by using the cutting device according to the present invention, a fiber-reinforced molded body having a complicated three-dimensional shape can be manufactured by compression molding, and molding that does not reduce the appearance and strength. You can get a body. By using a cut body that has been cut into a desired shape in advance as a molding material, a molded body with good quality and yield can be obtained.
From the above viewpoint, the composite material and the cut body obtained by cutting the composite material preferably include a thermoplastic resin.
 以下に実施例を示すが、本発明はこれらに制限されるものではない。なお、本実施例における各値は、以下の方法に従って求めた。 Examples are shown below, but the present invention is not limited thereto. In addition, each value in a present Example was calculated | required according to the following method.
(1)強化繊維の平均繊維長の測定は、複合材料を大気下で500℃に加熱し樹脂を除去して残ったサンプルから無作為に抽出した300本の繊維の繊維長をノギスにより1mm単位まで測定し、その平均を求めた。
 全ての実施例において、炭素繊維の重量平均繊維長は20mmであった。
(1) The average fiber length of the reinforcing fibers is measured by measuring the fiber length of 300 fibers randomly extracted from the sample left after removing the resin by heating the composite material to 500 ° C. in the air, in units of 1 mm. Until the average was obtained.
In all examples, the weight average fiber length of the carbon fiber was 20 mm.
(2)連続可能切断回数
 各実施例に記載の複合材料を、切断不良が出るまで切断し、切断不良が出るまでの切断回数をカウントして評価した。
(2) Number of continuous possible cuttings The composite materials described in each example were cut until a cutting failure occurred, and the number of cuttings until a cutting failure appeared was counted and evaluated.
(3)複合材料切断後(1回)の切断刃の位置精度
 Excellent:切断刃の鉛直方向の位置に変化は無かった。
 Bad:切断刃の鉛直方向の位置が1mm以上変化した。
(3) Position accuracy of the cutting blade after cutting the composite material (exceeded) Excellent: There was no change in the position of the cutting blade in the vertical direction.
Bad: The vertical position of the cutting blade changed by 1 mm or more.
(4)切断小片の排出通路の詰まり
 Excellent:切断小片は排出通路に詰まらず、切断装置外に排出できた。
 Better:切断小片が排出通路を流れる際、回転せずに排出できる場合は排出できたが、切断小片が回転してしまうと排出通路に詰まった。
 Bad:切断小片が排出通路に詰まり、切断装置外に排出できなかった。
(4) Clogging of discharge passage of cut pieces Excellent: The cut pieces were not clogged in the discharge passage and could be discharged out of the cutting apparatus.
Better: When the cut piece flows through the discharge passage, it can be discharged if it can be discharged without rotating, but when the cut piece rotates, the discharge passage is clogged.
Bad: The cutting piece was clogged in the discharge passage, and could not be discharged out of the cutting device.
[複合材料の製造例1]
 強化繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40-24KS(平均繊維径7μm)をナイロン系サイジング剤処理したものを使用し、熱可塑性樹脂として、ユニチカ社製のナイロン6樹脂A1030を用いて、WO2012/105080パンフレットに記載された方法に基づき、等方性材料を作成し、240℃で90s間予熱後、2.0MPaの圧力をかけながら180s間、240℃にてホットプレスした。ついで、加圧状態で50℃まで冷却し、厚さ2.7mmの体積繊維含有率Vf=35%の平板を得、これを複合材料1とした。
[Production Example 1 of Composite Material]
As a reinforcing fiber, a carbon fiber “Tenax” (registered trademark) STS40-24KS (average fiber diameter 7 μm) manufactured by Toho Tenax Co., Ltd., treated with a nylon sizing agent is used. As a thermoplastic resin, nylon 6 manufactured by Unitika Co., Ltd. is used. Based on the method described in the pamphlet of WO2012 / 105080 using resin A1030, an isotropic material is prepared, preheated at 240 ° C for 90 s, and then heated at 240 ° C for 180 s while applying a pressure of 2.0 MPa. Pressed. Subsequently, it cooled to 50 degreeC in the pressurization state, the flat fiber of volume fiber content rate Vf = 35% of thickness 2.7mm was obtained, and this was made into the composite material 1.
[実施例1]
1.切断装置の準備
1.1 切断刃
 大阪抜型製作所製の440160を用い、根元厚みが1.0mm、刃先Rは0.05mm以下、刃先角度45度、HRC54、内径16mmの円形状(閉ループ構造)用いた。
 切断小片の板厚方向の投影図形を含む円の最小径をRとすると、Rは16mmである。
1.2 固定層
 鉄合金(SS400、降伏応力又は0.2%耐力は215MPa)で、厚み20mm、幅16mm、長さ20mmの直方体のものを、前記切断刃の根元に2個設けた(図5(a)を参照)。固定層は20mm離して設置した。なお、固定層の上に切断刃を載せる際、切断刃にフランジ部を設け、固定層との接触面積を増やした。なお、SS400は、JIS G 3101:2010に規定される一般構造用圧延鋼材である。
1.3 排出通路
 上記2つの固定層を設ける際に、20mm離して設置することで、切断小片のR(16mm)よりも大きい排出通路を設けた。
 排出通路の断面の内部に存在し得る円の最大径をRと表す場合に、すべての断面についてのRのうち最小のものをRBminとしたとき、RBminは20mmである。
1.4 加圧装置
 DAE YANG HYDRAULIC TECHNOLOGY MACHINERY製DYMSP-50を用いた。
1.5 弾性部材
 スチレンブタジエン発泡ゴムを用い、厚み8mm、幅20mmのドーナツ形状のもので、閉ループ構造の切断刃を囲んだ(厚みは図5の紙面上下方向、幅は図5の左右方向)。
1.6 固定層の位置決め層、切断刃の位置決め層にはベニヤ板を用いた。固定層の位置決め層には、固定層に設けた排出通路と連続させ、切断装置外まで切断小片を排出できるように、排出通路を設けた。
 上記準備した切断刃、固定層、排出通路、加圧装置、弾性部材、位置決め層は、図5(a)(b)のように設置した。
[Example 1]
1. Preparation of the cutting device 1.1 Cutting blade For a circular shape (closed loop structure) using 440160 manufactured by Osaka Die Seisakusho, with a root thickness of 1.0 mm, a cutting edge R of 0.05 mm or less, a cutting edge angle of 45 degrees, an HRC of 54, and an inner diameter of 16 mm. It was.
When the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece is R A , R A is 16 mm.
1.2 Fixed Layer An iron alloy (SS400, yield stress or 0.2% proof stress is 215 MPa) having a rectangular parallelepiped with a thickness of 20 mm, a width of 16 mm, and a length of 20 mm is provided at the base of the cutting blade (see FIG. 5 (a)). The fixed layers were placed 20 mm apart. In addition, when mounting a cutting blade on a fixed layer, the flange part was provided in the cutting blade and the contact area with the fixed layer was increased. SS400 is a general structural rolled steel specified in JIS G 3101: 2010.
1.3 Discharge passage When providing the above-mentioned two fixed layers, a discharge passage larger than R A (16 mm) of the cut piece was provided by being separated by 20 mm.
The maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage when expressed as R B, when the smallest of the R B for all the cross-section was R Bmin, R Bmin is 20 mm.
1.4 Pressurizer DAE YANG HYDRAULIC TECHNOLOGY MACHINERY DYMSP-50 was used.
1.5 Elastic member Styrene butadiene foam rubber is used, and it has a donut shape with a thickness of 8 mm and a width of 20 mm, and surrounds a cutting blade having a closed loop structure (thickness is the vertical direction of the paper in FIG. 5, width is the horizontal direction of FIG. 5) .
1.6 Plywood was used for the positioning layer of the fixed layer and the positioning layer of the cutting blade. The positioning layer of the fixed layer was provided with a discharge passage so as to be continuous with the discharge passage provided in the fixed layer so that the cut pieces can be discharged out of the cutting device.
The prepared cutting blade, fixed layer, discharge passage, pressurizing device, elastic member, and positioning layer were installed as shown in FIGS.
2.複合材料の切断
 上記切断装置を用い、線圧14ton/mに設定して、150℃に加熱した複合材料1を連続的に切断し、切断体を製造した。結果を表1に示す。
2. Cutting the composite material Using the above-described cutting apparatus, the composite material 1 heated to 150 ° C. was continuously cut at a linear pressure of 14 ton / m to produce a cut body. The results are shown in Table 1.
[実施例2]
 弾性部材を用いなかったこと以外は、実施例1と同様の切断装置を用いて複合材料1を切断し、切断体を製造した。結果を表1に示す。切断体は、弾性部材を用いないため、人手で切断刃から脱離させ、切断を続けた。
[Example 2]
Except not using an elastic member, the composite material 1 was cut | disconnected using the cutting device similar to Example 1, and the cut body was manufactured. The results are shown in Table 1. Since the cut body does not use an elastic member, it was manually detached from the cutting blade and continued to be cut.
[実施例3]
 切断刃の数を8個にし、排出通路の数は1個のままにしたこと以外は、実施例1と同様の切断装置を用いて複合材料1を切断し、切断体を製造した。用いた切断装置は、図9に示す模式図で示される。結果を表1に示す。排出通路に切断小片が詰まったため、途中で連続切断を中断した。
[Example 3]
The composite material 1 was cut using the same cutting device as in Example 1 except that the number of cutting blades was set to 8 and the number of discharge passages was kept at 1 to produce a cut body. The cutting device used is shown by the schematic diagram shown in FIG. The results are shown in Table 1. Since the cut pieces were clogged in the discharge passage, the continuous cutting was interrupted.
[実施例4]
 排出通路を、切断刃ごとに1個ずつ設けたこと以外は、実施例3と同様の切断装置を用いて複合材料1を切断し、切断体を製造した。用いた切断装置は、図10に示す模式図で示される。結果を表1に示す。
[Example 4]
The composite material 1 was cut using the same cutting device as in Example 3 except that one discharge passage was provided for each cutting blade, and a cut body was manufactured. The used cutting apparatus is shown by the schematic diagram shown in FIG. The results are shown in Table 1.
[実施例5]
 切断刃を開構造であり、図7(a)の形状のものを用いたこと以外は、実施例1と同様の切断装置を用いて複合材料1を切断し、切断体を製造した。結果を表1に示す。
[Example 5]
The composite material 1 was cut using the same cutting device as in Example 1 except that the cutting blade had an open structure and the shape shown in FIG. The results are shown in Table 1.
[実施例6]
 固定層として用いた鉄合金の厚みを5mmとしたこと以外は、実施例1と同様にして切断体を製造した。固定層の厚みが5mmであるため、排出通路の断面のRBminは5mmであった。この結果、切断小片が排出通路を流れる際、回転せずに排出できる場合は排出できたが、切断小片が回転してしまうと排出通路に詰まった。
[Example 6]
A cut body was manufactured in the same manner as in Example 1 except that the thickness of the iron alloy used as the fixed layer was 5 mm. Since the thickness of the fixed layer was 5 mm, RBmin of the cross section of the discharge passage was 5 mm. As a result, when the cut piece flows through the discharge passage, it can be discharged if it can be discharged without rotating. However, when the cut piece rotates, the discharge passage is clogged.
[比較例1]
 固定層にベニヤ板を使用した切断装置を用いたこと以外は、実施例5と同様にして複合材料1を切断した。結果を表1に示す。
[Comparative Example 1]
The composite material 1 was cut in the same manner as in Example 5 except that a cutting device using a plywood was used for the fixed layer. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 本発明の切断装置を用いて切断された複合材料(切断体)は、圧縮成形することで成形体を得ることができる。該成形体は、各種構成部材、例えば自動車の内板、外板、構造部材、また各種電気製品、機械のフレームや筐体等に用いることができる。好ましくは、自動車部品として利用できる。 The composite material (cut body) cut using the cutting device of the present invention can be molded by compression molding. The molded body can be used for various components such as an inner plate, an outer plate, a structural member of an automobile, various electric products, a frame of a machine, a casing, and the like. Preferably, it can be used as an automobile part.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2015年12月24日出願の日本特許出願(特願2015-251704)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on December 24, 2015 (Japanese Patent Application No. 2015-251704), the contents of which are incorporated herein by reference.
101 切断装置
102 加圧装置
103 切断刃を固定するための固定層
104 切断刃
105 固定層の位置決め層(例えばベニヤ板)
106 切断刃の位置決め層
201 形状が閉ループ構造である切断刃を用いた切断装置
301 切断刃の位置決め精度が低下し、2つの切断刃の高さに生じた差
401 排出通路
402 エアーの流れ
501 弾性部材
801 切断小片
DESCRIPTION OF SYMBOLS 101 Cutting device 102 Pressurizing device 103 Fixed layer 104 for fixing a cutting blade Cutting blade 105 Positioning layer of fixed layer (for example, plywood)
106 Cutting blade positioning layer 201 Cutting device 301 using a cutting blade having a closed loop structure The positioning accuracy of the cutting blade is reduced, and the difference 401 generated in the heights of the two cutting blades 401 Discharge passage 402 Air flow 501 Elasticity Member 801 Cutting piece

Claims (24)

  1.  強化繊維と樹脂とを含む複合材料を切断する切断装置であって、
     切断装置は切断刃と加圧装置を有し、切断刃と加圧装置との間に、切断刃を固定するための固定層を設け、
     該固定層の降伏応力又は0.2%耐力の、少なくともいずれか一方が165MPa以上である、
     切断装置。
    A cutting device for cutting a composite material including a reinforcing fiber and a resin,
    The cutting device has a cutting blade and a pressure device, and a fixing layer for fixing the cutting blade is provided between the cutting blade and the pressure device,
    At least one of the yield stress or the 0.2% proof stress of the fixed layer is 165 MPa or more.
    Cutting device.
  2.  形状が閉ループ構造である切断刃を、少なくとも1つ備える、請求項1に記載の切断装置。 The cutting device according to claim 1, comprising at least one cutting blade having a closed loop structure.
  3.  切断装置は、複合材料から切断された切断小片を排出するための排出通路を、少なくとも1つ備える、請求項2に記載の切断装置。 The cutting apparatus according to claim 2, wherein the cutting apparatus includes at least one discharge passage for discharging a cut piece cut from the composite material.
  4.  請求項3に記載の切断装置であって、
     切断小片の板厚方向の投影図形を含む円の最小径をRとし、
     排出通路の断面の内部に存在し得る円の最大径をRと表す場合に、すべての断面についてのRのうち最小のものをRBminとしたとき、
     R<RBmin
    を満たす、切断装置。
    The cutting device according to claim 3,
    R A is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece,
    The maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage when expressed as R B, when the smallest of the R B for all the cross-section was R Bmin,
    R A <R Bmin
    Satisfying the cutting device.
  5.  1回の切断時において、排出通路1個につき、排出通路を通って排出される切断小片は1~7個である、請求項3又は4に記載の切断装置。 The cutting apparatus according to claim 3 or 4, wherein 1 to 7 cutting pieces are discharged through the discharge passage for each discharge passage at one time of cutting.
  6.  排出通路を切断刃と加圧装置との間に備える、請求項3~5のいずれか1項に記載の切断装置。 The cutting apparatus according to any one of claims 3 to 5, wherein a discharge passage is provided between the cutting blade and the pressurizing apparatus.
  7.  固定層が、鉛直方向の所望の位置に切断刃を固定するためのものである、請求項1~6のいずれか1項に記載の切断装置。 The cutting apparatus according to any one of claims 1 to 6, wherein the fixing layer is for fixing the cutting blade at a desired position in the vertical direction.
  8.  切断装置は弾性部材を有し、
     該弾性部材は、切断された複合材料である切断体を、切断刃から脱離するためのものである、
     請求項1~7のいずれか1項に記載の切断装置。
    The cutting device has an elastic member,
    The elastic member is for detaching the cut body, which is a cut composite material, from the cutting blade.
    The cutting device according to any one of claims 1 to 7.
  9.  切断装置は、複合材料を加熱して切断する、請求項1~8のいずれか1項に記載の切断装置。 The cutting device according to any one of claims 1 to 8, wherein the cutting device heats and cuts the composite material.
  10.  固定層が、鉄又は鉄を含む合金である、請求項1~9のいずれか1項に記載の切断装置。 The cutting device according to any one of claims 1 to 9, wherein the fixed layer is iron or an alloy containing iron.
  11.  複合材料に含まれる強化繊維が炭素繊維、樹脂が熱可塑性樹脂であり、切断装置が成形材料を製造するための装置である、
     請求項1~10のいずれか1項に記載の切断装置。
    The reinforcing fiber contained in the composite material is carbon fiber, the resin is a thermoplastic resin, and the cutting device is a device for producing a molding material.
    The cutting device according to any one of claims 1 to 10.
  12.  切断装置は、切断刃を2個以上備えている、請求項1~11のいずれか1項に記載の切断装置。 The cutting device according to any one of claims 1 to 11, wherein the cutting device comprises two or more cutting blades.
  13.  切断刃と加圧装置を備えた切断装置を用いて、強化繊維と樹脂とを含む複合材料を切断し、切断体を製造する方法であって、
     切断装置は、切断刃と加圧装置との間に、切断刃を固定するための固定層を設け、
     該固定層の降伏応力又は0.2%耐力の、少なくともいずれか一方が165MPa以上である、
     切断体の製造方法。
    A method of manufacturing a cut body by cutting a composite material containing reinforcing fibers and a resin using a cutting device equipped with a cutting blade and a pressure device,
    The cutting device is provided with a fixing layer for fixing the cutting blade between the cutting blade and the pressurizing device,
    At least one of the yield stress or the 0.2% proof stress of the fixed layer is 165 MPa or more.
    Manufacturing method of cut body.
  14.  切断装置は、形状が閉ループ構造である切断刃を、少なくとも1つ備える、請求項13に記載の切断体の製造方法。 The cutting device according to claim 13, wherein the cutting device includes at least one cutting blade having a closed loop structure.
  15.  切断装置は、複合材料から切断された切断小片を排出するための排出通路を、少なくとも1つ備える、請求項14に記載の切断体の製造方法。 The cutting apparatus according to claim 14, wherein the cutting device includes at least one discharge passage for discharging a cut piece cut from the composite material.
  16.  請求項15に記載の切断体の製造方法であって、
     切断小片の板厚方向の投影図形を含む円の最小径をRとし、
     排出通路の断面の内部に存在し得る円の最大径をRと表す場合に、すべての断面についてのRのうち最小のものをRBminとしたとき、
     R<RBmin
    を満たす、切断体の製造方法。
    It is a manufacturing method of the cutting object according to claim 15,
    R A is the minimum diameter of the circle including the projected figure in the thickness direction of the cut piece,
    The maximum diameter of the circle that may be present in the interior of the cross section of the discharge passage when expressed as R B, when the smallest of the R B for all the cross-section was R Bmin,
    R A <R Bmin
    The manufacturing method of the cutting body which satisfies.
  17.  1回の切断時において、排出通路1個につき、排出通路を通って排出される切断小片は1~7個である、請求項15又は16に記載の切断体の製造方法。 The method for producing a cut body according to claim 15 or 16, wherein 1 to 7 pieces of cut pieces are discharged through the discharge passage for each discharge passage at one time of cutting.
  18.  排出通路を切断刃と加圧装置との間に備える、請求項15~17のいずれか1項に記載の切断体の製造方法。 The method for manufacturing a cut body according to any one of claims 15 to 17, wherein a discharge passage is provided between the cutting blade and the pressure device.
  19.  固定層が、鉛直方向の所望の位置に切断刃を固定するためのものである、請求項13~18のいずれか1項に記載の切断体の製造方法。 The method for manufacturing a cut body according to any one of claims 13 to 18, wherein the fixing layer is for fixing the cutting blade at a desired position in the vertical direction.
  20.  切断装置は弾性部材を有し、
     該弾性部材は、切断された複合材料である切断体を、切断刃から脱離するためのものである、
     請求項13~19のいずれか1項に記載の切断体の製造方法。
    The cutting device has an elastic member,
    The elastic member is for detaching the cut body, which is a cut composite material, from the cutting blade.
    The method for producing a cut body according to any one of claims 13 to 19.
  21.  複合材料を加熱して切断する、請求項13~20のいずれか1項に記載の切断体の製造方法。 The method for producing a cut body according to any one of claims 13 to 20, wherein the composite material is heated and cut.
  22.  固定層が、鉄又は鉄を含む合金である、請求項13~21のいずれか1項に記載の切断体の製造方法。 The method for producing a cut body according to any one of claims 13 to 21, wherein the fixed layer is iron or an alloy containing iron.
  23.  複合材料に含まれる強化繊維が炭素繊維、樹脂が熱可塑性樹脂であり、切断体が成形材料である、
     請求項13~22のいずれか1項に記載の切断体の製造方法。
    The reinforcing fiber included in the composite material is carbon fiber, the resin is a thermoplastic resin, and the cut body is a molding material.
    The method for producing a cut body according to any one of claims 13 to 22.
  24.  切断装置は、切断刃を2個以上備えている、請求項13~23のいずれか1項に記載の切断体の製造方法。
     
    The cutting body manufacturing method according to any one of claims 13 to 23, wherein the cutting device comprises two or more cutting blades.
PCT/JP2016/087118 2015-12-24 2016-12-13 Method for manufacturing cutting body, and device for cutting composite material WO2017110596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-251704 2015-12-24
JP2015251704A JP2019058953A (en) 2015-12-24 2015-12-24 Method for manufacturing cut body and apparatus for cutting composite material

Publications (1)

Publication Number Publication Date
WO2017110596A1 true WO2017110596A1 (en) 2017-06-29

Family

ID=59090227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087118 WO2017110596A1 (en) 2015-12-24 2016-12-13 Method for manufacturing cutting body, and device for cutting composite material

Country Status (2)

Country Link
JP (1) JP2019058953A (en)
WO (1) WO2017110596A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116728A (en) * 2018-12-13 2020-08-06 住友化学株式会社 Punching device, and, punching method of polarizer
JP2021178383A (en) * 2020-05-13 2021-11-18 株式会社水谷製作所 Thomson processing mold

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111989A (en) * 1975-03-27 1976-10-02 Asahi Chem Ind Co Ltd Nethod and apparatus for pressing nonmetallic material
JPS5926313U (en) * 1982-08-10 1984-02-18 藤田 勇 Continuous sheet forming and punching equipment
JPS6294297A (en) * 1985-10-20 1987-04-30 大日本印刷株式会社 New cutter and usage thereof
JPH09295300A (en) * 1996-05-07 1997-11-18 Wacoal Corp Press cutting blade die
JP2005271189A (en) * 2004-02-23 2005-10-06 Takahashi Keisei:Kk Cutting blade for punching die, and punching die
JP2005297163A (en) * 2004-04-15 2005-10-27 Tsukatani Hamono Seisakusho:Kk Punching blade
JP2013091128A (en) * 2011-10-25 2013-05-16 Tatsu Kioka Cutter for high-strength fiber reinforced plastic plate
JP2015055018A (en) * 2013-09-12 2015-03-23 イビデン株式会社 Punching die and method for manufacturing mat
JP2015150654A (en) * 2014-02-15 2015-08-24 国立大学法人愛媛大学 Processing method of carbon fiber-reinforced plastic and processing device of the carbon fiber-reinforced plastic

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51111989A (en) * 1975-03-27 1976-10-02 Asahi Chem Ind Co Ltd Nethod and apparatus for pressing nonmetallic material
JPS5926313U (en) * 1982-08-10 1984-02-18 藤田 勇 Continuous sheet forming and punching equipment
JPS6294297A (en) * 1985-10-20 1987-04-30 大日本印刷株式会社 New cutter and usage thereof
JPH09295300A (en) * 1996-05-07 1997-11-18 Wacoal Corp Press cutting blade die
JP2005271189A (en) * 2004-02-23 2005-10-06 Takahashi Keisei:Kk Cutting blade for punching die, and punching die
JP2005297163A (en) * 2004-04-15 2005-10-27 Tsukatani Hamono Seisakusho:Kk Punching blade
JP2013091128A (en) * 2011-10-25 2013-05-16 Tatsu Kioka Cutter for high-strength fiber reinforced plastic plate
JP2015055018A (en) * 2013-09-12 2015-03-23 イビデン株式会社 Punching die and method for manufacturing mat
JP2015150654A (en) * 2014-02-15 2015-08-24 国立大学法人愛媛大学 Processing method of carbon fiber-reinforced plastic and processing device of the carbon fiber-reinforced plastic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116728A (en) * 2018-12-13 2020-08-06 住友化学株式会社 Punching device, and, punching method of polarizer
JP2021178383A (en) * 2020-05-13 2021-11-18 株式会社水谷製作所 Thomson processing mold
JP7178114B2 (en) 2020-05-13 2022-11-25 株式会社水谷製作所 Thomson processing type

Also Published As

Publication number Publication date
JP2019058953A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP4789940B2 (en) Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate
TWI448596B (en) Random felt and reinforced fiber composites
JP5627803B2 (en) Random mats and fiber reinforced composites
US9193840B2 (en) Carbon fiber composite material
WO2014021315A1 (en) Random mat, and compact of fibre-reinforced composite material
JP2011178890A (en) Carbon fiber composite material
US8829103B2 (en) Carbon fiber composite material
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
JP6106810B2 (en) Carbon fiber reinforced resin composite material
JPWO2015125646A1 (en) Resin shock absorber
WO2017110596A1 (en) Method for manufacturing cutting body, and device for cutting composite material
JP4988230B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
EP3950283A1 (en) Fiber-reinforced resin molding material molded product and method for producing same
JP2019522740A (en) Carbon fiber random mat and carbon fiber composite material
JP5932576B2 (en) Fiber reinforced plastic molding substrate
US11746200B2 (en) Fiber-reinforced resin molding material and molded article
JP2012158846A (en) Random mat having superior design
JP5864038B1 (en) FIBER-REINFORCED RESIN BODY HAVING CACHED UNIT AND METHOD FOR PRODUCING THE SAME
JP2017205977A (en) Preform, method for producing the preform, and fiber-reinforced plastic using the preform
JP6092923B2 (en) Carbon fiber composite material
US10300621B2 (en) Method for producing cut bodies and method for cutting fiber-reinforced resin
JP2014051554A (en) Fiber reinforced plastic molding substrate
JP2008308626A (en) Sheet-like fiber-reinforced composite material and production method therefor
JP2018001718A (en) Preform, method for producing preform, and fiber-reinforced plastic using the preform
JP2023124032A (en) Method for producing composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP