JPH04311750A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPH04311750A
JPH04311750A JP10351891A JP10351891A JPH04311750A JP H04311750 A JPH04311750 A JP H04311750A JP 10351891 A JP10351891 A JP 10351891A JP 10351891 A JP10351891 A JP 10351891A JP H04311750 A JPH04311750 A JP H04311750A
Authority
JP
Japan
Prior art keywords
phenylene ether
resin
aminated
modified
ether resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10351891A
Other languages
Japanese (ja)
Inventor
Michiharu Kihira
紀平 道治
Mitsutoshi Aritomi
有富 充利
Haruo Omura
大村 治夫
Hiroshi Nakano
博 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP10351891A priority Critical patent/JPH04311750A/en
Priority to EP19910115849 priority patent/EP0476619A3/en
Priority to US07/762,112 priority patent/US5191030A/en
Publication of JPH04311750A publication Critical patent/JPH04311750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a composition excellent in compatibility, stable finely dispersed structure, mechanical strength, heat resistance, dimensional stability and molding and processing properties by blending an aminated phenylene ether-based resin with a modified olefinic resin. CONSTITUTION:(A) 10-90wt.% aminated phenylene ether-based resin is blended with (B) 90-10wt.% olefinic resin modified by introducing epoxy group. A component using a random copolymer obtained by combining 2,6-dimethyl-1,4-phenylene ether unit with 2,3,6-trimethyl-1,4-phenylene ether unit is preferable as the component A.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自動車、電気・電子分
野の機器材料として有用な、フェニレンエーテル系樹脂
とエポキシ基を導入して変性したオレフィン系樹脂とを
配合したことにより、フェニレンエーテル系樹脂の特徴
である耐熱性、機械的強度及び寸法精度並びにオレフィ
ン系樹脂の特徴である成形性及び耐有機溶剤性を兼備さ
せた高性能な熱可塑性樹脂組成物に関する。
[Industrial Application Field] The present invention is a phenylene ether resin that is useful as a material for equipment in the automobile, electrical and electronic fields, and is made by blending a phenylene ether resin with an olefin resin modified by introducing an epoxy group. The present invention relates to a high-performance thermoplastic resin composition that combines the heat resistance, mechanical strength, and dimensional accuracy that are characteristic of resins, as well as the moldability and organic solvent resistance that are characteristic of olefin resins.

【0002】0002

【従来の技術】フェニレン環に非置換又は置換基を有す
るフェニレンエーテル系樹脂、特に、ポリ(2,6−ジ
メチル−1,4−フェニレンエーテル)は耐熱性及び機
械的強度が優れ、いわゆるエンジニアリングプラスチッ
クとして有用であるが、溶融粘度が高いので、射出成形
等による成形加工が困難であるという望ましくない性質
を有している。また耐衝撃強度及び耐溶剤性も、耐熱エ
ンジニアリングプラスチックとしての多くの用途分野で
不十分である。
[Prior Art] Phenylene ether resins having unsubstituted or substituent groups on the phenylene ring, especially poly(2,6-dimethyl-1,4-phenylene ether), have excellent heat resistance and mechanical strength, and are so-called engineering plastics. However, because of its high melt viscosity, it has the undesirable property of being difficult to mold by injection molding or the like. Also, impact strength and solvent resistance are insufficient in many fields of application as heat-resistant engineering plastics.

【0003】単独の樹脂材料では、所望の諸性質を十分
に満たすことができない場合の試みの一つとして、他の
樹脂材料を混合することにより、不十分な性質を補うと
いう考え方はよく知られている。フェニレンエーテル系
樹脂と相溶性がよく、成形加工性の良好なスチレン系樹
脂を配合してフェニレンエーテル系樹脂の成形性を改良
した材料は、広く実用に供されているが、この場合、両
成分とも耐溶剤性は良好でなく、結果として混合組成物
も耐溶剤性が十分でない。
[0003] It is a well-known idea that when a single resin material cannot sufficiently satisfy the desired properties, one attempt is made to compensate for the insufficient properties by mixing other resin materials. ing. Materials in which the moldability of phenylene ether resins is improved by blending them with styrene resins, which are highly compatible with phenylene ether resins and have good moldability, are widely used in practical applications. Both have poor solvent resistance, and as a result, the mixed composition also does not have sufficient solvent resistance.

【0004】オレフィン系樹脂は、成形加工性、耐有機
溶剤性などが優れ、低比重で安価であることから広く成
形品の製造に利用されているが、耐熱性がそれほど高く
なく、エンジニアリングプラスチック用途への利用には
障害となっている。
Olefin resins have excellent moldability, organic solvent resistance, etc., low specific gravity, and are inexpensive, so they are widely used in the production of molded products, but their heat resistance is not so high and they are used for engineering plastics. This poses an obstacle to its use.

【0005】このため、フェニレンエーテル系樹脂とオ
レフィン系樹脂の両者の良好な性質を併せ持ち、望まし
くない点を補う組成物が得られれば、利用分野の広い優
れた樹脂材料の提供が可能となる。しかしながら、フェ
ニレンエーテル系樹脂とオレフィン系樹脂は、非相溶で
あり、親和性を有していないため、単に2成分を混合し
た場合には、この二相構造の界面の接着性は良好ではな
い。そのため、得られた成形品の二相界面が欠陥部とな
り、機械的強度及び耐衝撃性が低下する。また、この二
相は均一かつ微細な分散形態となり難く、射出成形など
の成形加工時にせん断応力を受けたとき、層状剥離(デ
ラミネーション)を生じやすい。
Therefore, if a composition can be obtained that has the good properties of both phenylene ether resin and olefin resin and compensates for the undesirable points, it will be possible to provide an excellent resin material that can be used in a wide range of fields. However, phenylene ether resins and olefin resins are incompatible and have no affinity, so if the two components are simply mixed, the adhesion at the interface of this two-phase structure is not good. . Therefore, the two-phase interface of the obtained molded product becomes a defective part, resulting in a decrease in mechanical strength and impact resistance. Furthermore, these two phases are difficult to form into a uniform and finely dispersed form, and are likely to cause delamination when subjected to shear stress during molding processing such as injection molding.

【0006】上記の問題を解決するために考えられる一
般的方法の一つは、2成分相互の親和性を改良するため
に、各々の樹脂を、互いに反応する官能基で変性し、高
温で溶融反応させることにより、化学結合を介したブロ
ック又はグラフト共重合体を得る方法である。このよう
な観点からフェニレンエーテル系樹脂の反応性を高める
目的で多くの官能化変性フェニレンエーテル系樹脂の使
用が提案されている。例えばカルボキシル基又はカルボ
ン酸無水物官能化フェニレンエーテル系樹脂を用いる方
法(特表昭62−500456号、特開昭63−106
56号、同63−54427号及び同63−12805
6号各公報等)、エポキシ基変性フェニレンエーテル系
樹脂を用いる方法(特開昭62−257957号及び特
表昭63−503388号各公報等)、アミド基、イミ
ド基官能化フェニレンエーテル系樹脂を用いる方法(特
表昭63−500803号、同63−503391号及
び特開昭61−16963号各公報等)、アルコキシシ
リル基官能化フェニレンエーテル系樹脂を用いる方法(
特表昭63−503392号公報)等が開示され、これ
らの官能化フェニレンエーテル系樹脂を前駆体として使
用し、官能基を有する構造の樹脂、例えばポリアミド、
飽和ポリエステル又は官能化変性されたオレフィン系樹
脂との樹脂組成物が数多く提案されている。しかしなが
ら、未だ、官能基の導入数が不十分で、相溶性の向上が
望まれているのが実情である。
One of the general methods considered to solve the above problem is to modify each resin with functional groups that react with each other in order to improve the mutual affinity of the two components, and to melt them at high temperatures. This is a method of obtaining a block or graft copolymer through chemical bonding through reaction. From this point of view, the use of many functionalized modified phenylene ether resins has been proposed for the purpose of increasing the reactivity of phenylene ether resins. For example, a method using a carboxyl group- or carboxylic anhydride-functionalized phenylene ether resin (Japanese Patent Application Publication No. 62-500456, Japanese Patent Application Laid-Open No. 63-106
No. 56, No. 63-54427 and No. 63-12805
No. 6 publications, etc.), methods using epoxy group-modified phenylene ether resins (Japanese Patent Application Laid-Open No. 62-257957 and Japanese Patent Publication No. 63-503388, etc.), amide group- and imido group-functionalized phenylene ether resins. Methods using phenylene ether resins functionalized with alkoxysilyl groups (such as Japanese Patent Application Publications No. 63-500803, No. 63-503391, and JP-A-61-16963),
Japanese Patent Application Publication No. 63-503392) etc. are disclosed, and these functionalized phenylene ether resins are used as precursors to produce resins having a structure having functional groups, such as polyamide,
A number of resin compositions with saturated polyesters or functionalized modified olefinic resins have been proposed. However, the actual situation is that the number of functional groups introduced is still insufficient and improvement in compatibility is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は、フェニレン
エーテル系樹脂とオレフィン系樹脂との相溶性を改良し
て、溶融混練により、安定な微細分散構造を有し、優れ
た機械的強度、耐熱性、寸法精度、成形加工性及び耐溶
剤性を有する熱可塑性樹脂組成物を提供することを目的
とする。
[Problems to be Solved by the Invention] The present invention improves the compatibility between a phenylene ether resin and an olefin resin, and achieves a stable finely dispersed structure by melt-kneading, and has excellent mechanical strength and heat resistance. The object of the present invention is to provide a thermoplastic resin composition having good properties, dimensional accuracy, moldability, and solvent resistance.

【0008】[0008]

【課題を解決するための手段】本発明は、下記の成分(
A)及び(B)からなることを特徴とする熱可塑性樹脂
組成物である。
[Means for Solving the Problems] The present invention provides the following components (
A thermoplastic resin composition comprising A) and (B).

【0009】 (A)  アミノ化フェニレンエーテル系樹脂    
          10〜90重量%(B)  エポ
キシ基を導入して変性したオレフィン系樹脂  90〜
10重量%
(A) Aminated phenylene ether resin
10-90% by weight (B) Olefin resin modified by introducing epoxy groups 90-90% by weight
10% by weight

【0010】本発明のアミノ化フェニレンエ
ーテル系樹脂(A)とエポキシ基を導入して変性したオ
レフィン系樹脂(以下、変性オレフィン系樹脂という)
(B)との組成物は、両樹脂間の相溶性が著しく改善さ
れ、フェニレンエーテル系樹脂の特徴と、オレフィン系
樹脂との特徴を兼ね備えた優れた機械的特性、成形加工
性、寸法精度及び耐溶剤性を有する成形材料として極め
て有用なものである。以下、本発明の熱可塑性樹脂組成
物の構成について、詳細に説明する。
Olefin resin modified by introducing the aminated phenylene ether resin (A) of the present invention and an epoxy group (hereinafter referred to as modified olefin resin)
The composition with (B) has significantly improved compatibility between both resins, and has excellent mechanical properties, moldability, dimensional accuracy and It is extremely useful as a molding material with solvent resistance. Hereinafter, the structure of the thermoplastic resin composition of the present invention will be explained in detail.

【0011】成分(A):アミノ化フェニレンエーテル
系樹脂 本発明で使用するアミノ化フェニレンエーテル系樹脂は
、フェニレンエーテル系樹脂に、変性剤によりアミノ基
を付加したフェニレンエーテル系樹脂であって、例えば
、フェニレンエーテル系樹脂と変性剤とを、フェニレン
エーテル系樹脂を溶解できる有機溶媒の存在下又は非存
在下で、室温から350℃の温度で反応させて製造する
ことができる。
Component (A): Aminated phenylene ether resin The aminated phenylene ether resin used in the present invention is a phenylene ether resin obtained by adding an amino group to a phenylene ether resin using a modifier. It can be produced by reacting a phenylene ether resin and a modifier at a temperature from room temperature to 350° C. in the presence or absence of an organic solvent that can dissolve the phenylene ether resin.

【0012】(1)フェニレンエーテル系樹脂本発明で
使用するフェニレンエーテル系樹脂は、一般式(I)
(1) Phenylene ether resin The phenylene ether resin used in the present invention has the general formula (I)

【0013】[0013]

【化1】[Chemical formula 1]

【0014】(式中、Q1 は各々ハロゲン原子、第一
級若しくは第二級アルキル基、アルケニル基、フェニル
基、アミノアルキル基、炭化水素オキシ基又はハロ炭化
水素オキシ基を表し、Q2 は各々水素原子、ハロゲン
原子、第一級若しくは第二級アルキル基、フェニル基、
ハロアルキル基、炭化水素オキシ基又はハロ炭化水素オ
キシ基を表す。nは10以上の数を表す)で示される構
造を有する単独重合体又はその共重合体である。
(In the formula, Q1 each represents a halogen atom, a primary or secondary alkyl group, an alkenyl group, a phenyl group, an aminoalkyl group, a hydrocarbonoxy group, or a halohydrocarbonoxy group, and each Q2 represents hydrogen. atoms, halogen atoms, primary or secondary alkyl groups, phenyl groups,
Represents a haloalkyl group, a hydrocarbonoxy group, or a halohydrocarbonoxy group. n represents a number of 10 or more) or a copolymer thereof.

【0015】Q1 及びQ2 の第一級アルキル基の好
適な例は、メチル、エチル、n−プロピル、n−ブチル
、n−アミル、イソアミル、2−メチルブチル、n−ヘ
キシル、2,3−ジメチルブチル、2−、3−若しくは
4−メチルペンチル又はヘプチルである。第二級アルキ
ル基の好適な例は、イソプロピル、sec −ブチル又
は1−メチルペンチルである。Q1 のアルケニル基の
好適な例としては、アリルである。多くの場合、Q1 
はアルキル基又はフェニル基、特に炭素数1〜4のアル
キル基であり、Q2 は水素原子である。
Preferred examples of primary alkyl groups for Q1 and Q2 are methyl, ethyl, n-propyl, n-butyl, n-amyl, isoamyl, 2-methylbutyl, n-hexyl, 2,3-dimethylbutyl. , 2-, 3- or 4-methylpentyl or heptyl. Suitable examples of secondary alkyl groups are isopropyl, sec-butyl or 1-methylpentyl. A preferable example of the alkenyl group for Q1 is allyl. In many cases, Q1
is an alkyl group or a phenyl group, especially an alkyl group having 1 to 4 carbon atoms, and Q2 is a hydrogen atom.

【0016】好適なフェニレンエーテル系樹脂(I)の
単独重合体としては、例えば、2,6−ジメチル−1,
4−フェニレンエーテル単位からなるものである。好適
な共重合体としては、上記単位と2,3,6−トリメチ
ル−1,4−フェニレンエーテル単位との組合せからな
るランダム共重合体である。多くの好適な単独重合体又
はランダム共重合体が、特許、文献に記載されている。 例えば、分子量、溶融粘度及び/又は耐衝撃強度等の特
性を改良する分子構成部分を含むフェニレンエーテル系
樹脂も、また好適である。例えばアクリロニトリル又は
スチレン等のビニル芳香族化合物などのビニルモノマー
あるいはポリスチレン又はそのエラストマーなどのポリ
マーをフェニレンエーテル系樹脂上にグラフト共重合さ
せた樹脂等である。
Suitable homopolymers of the phenylene ether resin (I) include, for example, 2,6-dimethyl-1,
It consists of 4-phenylene ether units. A suitable copolymer is a random copolymer consisting of a combination of the above units and 2,3,6-trimethyl-1,4-phenylene ether units. Many suitable homopolymers or random copolymers are described in the patent literature. Phenylene ether based resins containing molecular moieties that improve properties such as, for example, molecular weight, melt viscosity and/or impact strength are also suitable. For example, it is a resin in which a vinyl monomer such as a vinyl aromatic compound such as acrylonitrile or styrene, or a polymer such as polystyrene or an elastomer thereof is graft copolymerized on a phenylene ether resin.

【0017】フェニレンエーテル系樹脂(I)の分子量
は通常クロロホルム中で測定した、30℃の固有粘度が
0.2〜0.8dl/g 程度に相当するものである。
The molecular weight of the phenylene ether resin (I) usually corresponds to an intrinsic viscosity of about 0.2 to 0.8 dl/g at 30°C as measured in chloroform.

【0018】フェニレンエーテル系樹脂(I)は、通常
前記のモノマーの酸化カップリングにより製造される。 フェニレンエーテル系樹脂の酸化カップリング重合に関
しては、数多くの触媒系が知られてしる。触媒の選択に
関しては特に制限はなく、公知の触媒のいずれも用いる
ことができる。例えば、銅、マンガン、コバルト等の重
金属化合物の少なくとも1種を通常は種々の他の物質と
の組合せで含むもの等である。
The phenylene ether resin (I) is usually produced by oxidative coupling of the monomers mentioned above. A number of catalyst systems are known for the oxidative coupling polymerization of phenylene ether resins. There are no particular restrictions on the selection of the catalyst, and any known catalyst can be used. For example, those containing at least one heavy metal compound such as copper, manganese, cobalt, etc., usually in combination with various other substances.

【0019】(2)  アミノ化 前記のフェニレンエーテル系樹脂にアミノ基を導入する
方法は特に限定はないが、各種の方法によって行うこと
ができる。例えば、本発明者等の一部によって見出され
た以下の方法がある。
(2) Amination The method for introducing amino groups into the above-mentioned phenylene ether resin is not particularly limited, but various methods can be used. For example, there is the following method discovered by some of the inventors.

【0020】(a)フェニレンエーテル系樹脂(I)に
、一般式(IIa) R−(N=C=O)m             (I
Ia)(式中、Rは二価以上の炭素数1〜32の脂肪族
炭化水素基、芳香族炭化水素基又は芳香脂肪族炭化水素
基を表し、mは2以上の整数である)で示される多官能
イソシアネートを反応させて得られる末端イソシアネー
ト変性フェニレンエーテル系樹脂のイソシアナト基を加
水分解させ、一般式 (IIIa)
(a) Phenylene ether resin (I) has general formula (IIa) R-(N=C=O)m (I
Ia) (wherein R represents a divalent or higher aliphatic hydrocarbon group having 1 to 32 carbon atoms, an aromatic hydrocarbon group, or an aromatic aliphatic hydrocarbon group, and m is an integer of 2 or more) The isocyanato group of the terminal isocyanate-modified phenylene ether resin obtained by reacting the polyfunctional isocyanate obtained by the reaction with the polyfunctional isocyanate obtained by the general formula (IIIa) is

【0021】[0021]

【化2】[Case 2]

【0022】(式中、Q1 、Q2 、R、m及びnは
前記と同じ)で示される末端アミノ化フェニレンエーテ
ル系樹脂を製造する方法(特願平2−180379号明
細書)。
A method for producing a terminally aminated phenylene ether resin represented by the formula (in which Q1, Q2, R, m and n are the same as above) (Japanese Patent Application No. 180379/1999).

【0023】(b)フェニレンエーテル系樹脂(I)に
、一般式 (IIb) X−R−NH2        (IIb)(式中、R
は炭素数1〜32の脂肪族炭化水素基、芳香族炭化水素
基又は芳香脂肪族炭化水素基を表し、Xはハロゲン原子
を表す)で示されるハロゲン化第一アミンを反応させて
、一般式(IIIb)
(b) Phenylene ether resin (I) has the general formula (IIb) X-R-NH2 (IIb) (wherein R
represents an aliphatic hydrocarbon group, aromatic hydrocarbon group, or araliphatic hydrocarbon group having 1 to 32 carbon atoms, and X represents a halogen atom) to react with a halogenated primary amine represented by the general formula (IIIb)

【0024】[0024]

【化3】[Chemical formula 3]

【0025】(式中、Q1 、Q2 、R及びnは前記
と同じ)で示される末端アミノ化フェニレンエーテル系
樹脂を製造する方法(特願平2−247378号明細書
)。
A method for producing a terminally aminated phenylene ether resin represented by the formula (in which Q1, Q2, R and n are the same as above) (Japanese Patent Application No. 2-247378).

【0026】(c)末端エポキシ化フェニレンエーテル
系樹脂にポリアミン化合物を反応させて、一般式 (I
IIc)
(c) Terminal epoxidized phenylene ether resin is reacted with a polyamine compound to form the general formula (I
IIc)

【0027】[0027]

【化4】[C4]

【0028】(式中、Q1 、Q2 及びnは前記と同
じ。 Bはポリアミン残基を表す)で示される末端アミノ化フ
ェニレンエーテル系樹脂を製造する方法(特願平2−1
90436号明細書)。
A method for producing a terminally aminated phenylene ether resin represented by the formula (wherein Q1, Q2 and n are the same as above; B represents a polyamine residue) (Patent Application No. 2-1)
90436 specification).

【0029】(d)フェニレンエーテル系樹脂(I)に
分子内に(i)炭素−炭素二重結合又は炭素−炭素三重
結合と (ii) アミノ基を同時に有する化合物を反
応させアミノ化フェニレンエーテル系樹脂を製造する方
法(特開昭62−257957号公報)等の方法により
アミノ基を導入することができる。
(d) Phenylene ether resin (I) is reacted with a compound having (i) a carbon-carbon double bond or a carbon-carbon triple bond and (ii) an amino group simultaneously in the molecule to form an aminated phenylene ether resin. An amino group can be introduced by a method such as a method for producing a resin (Japanese Patent Laid-Open No. 62-257957).

【0030】成分(B):変性オレフィン系樹脂(1)
オレフィン系樹脂 本発明で使用する変性オレフィン系樹脂(B)に用いる
オレフィン系樹脂は、エチレン、プロピレン、ブテン若
しくはヘキセン等のα−オレフィン単独重合体又はこれ
らのα−オレフィン同士の共重合体、あるいはこれらの
α−オレフィンと共重合可能な他の不飽和モノマーとの
共重合体を含むものである。具体的には(極)低密度ポ
リエチレン、中密度ポリエチレン、高密度ポリエチレン
、ポリプロピレン、エチレン−プロピレン共重合体、エ
チレン−酢酸ビニル共重合体、エチレン−(メタ)アク
リル酸共重合体若しくはそのイオン架橋体、エチレン−
(メタ)アクリル酸エステル共重合体又はこれらの重合
体の混合物あるいは無水マレイン酸、(メタ)アクリル
酸、(メタ)アクリル酸低級アルキルエステル(アルキ
ル基の炭素数は1〜8)等のグラフト共重合体等も含む
ものである。更にこれらの共重合成分としてジアルケニ
ルベンゼン、メチルオクタジエン又はメチルヘキサジエ
ン等の多不飽和化合物を共重合成分とするオレフィン系
樹脂を含むものである。
Component (B): Modified olefin resin (1)
Olefin resin The olefin resin used in the modified olefin resin (B) used in the present invention is an α-olefin homopolymer such as ethylene, propylene, butene or hexene, or a copolymer of these α-olefins, or It includes a copolymer of these α-olefins and other copolymerizable unsaturated monomers. Specifically, (very) low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-(meth)acrylic acid copolymer or ionic crosslinking thereof. body, ethylene-
(meth)acrylic acid ester copolymers, mixtures of these polymers, or graft copolymers of maleic anhydride, (meth)acrylic acid, lower alkyl (meth)acrylic esters (the number of carbon atoms in the alkyl group is 1 to 8), etc. It also includes polymers and the like. Furthermore, it contains an olefin resin having a polyunsaturated compound such as dialkenylbenzene, methyloctadiene or methylhexadiene as a copolymerization component.

【0031】(2)オレフィン系樹脂へのエポキシ基の
導入
(2) Introduction of epoxy groups into olefin resin

【0032】オレフィン系樹脂にエポキシ基を導入する
方法は、特に限定されず、公知の方法が全て適用される
The method for introducing epoxy groups into the olefin resin is not particularly limited, and all known methods can be applied.

【0033】例えば、(i)オレフィン系樹脂をエチレ
ン性二重結合とエポキシ基を有する化合物、具体的には
、グリシジルメタクリレート又はグリシジルマレート等
を用い、有機過酸化物などのラジカル発生剤の存在下で
変性する方法であり、この方法によるエポキシ基の導入
量は、変性されたオレフィン系樹脂中の前記化合物の含
有量として、好ましくは0.01〜30重量%、より好
ましくは0.1〜10重量%である。0.01重量%未
満では、本発明による改良効果がほとんどなく、30重
要%超過では、組成物の機械的性質が発揮され難い。
For example, (i) the olefin resin is treated with a compound having an ethylenic double bond and an epoxy group, specifically glycidyl methacrylate or glycidyl maleate, and the presence of a radical generator such as an organic peroxide. The amount of epoxy groups introduced by this method is preferably 0.01 to 30% by weight, more preferably 0.1 to 30% by weight, based on the content of the compound in the modified olefin resin. It is 10% by weight. If it is less than 0.01% by weight, there is almost no improvement effect according to the present invention, and if it exceeds 30% by weight, it is difficult for the composition to exhibit its mechanical properties.

【0034】また、共重合成分として、ジアルケニルベ
ンゼン、メチルオクタジェン又はメチルヘキサジエン等
の多不飽和化合物を共重合成分とするオレフィン系樹脂
においては、(ii) オレフィン系樹脂中のエチレン
性不飽和結合の、(イ)過蟻酸、過酢酸、過安息香酸な
どの過酸による酸化、(ロ)バナジウム、タングステン
、モリブデン化合物などの触媒の存在下又は非存在下で
の過酸化水素又はヒドロ過酸化物のよる酸化、(ハ)ア
ルカリ性過酸化水素による酸化、(ニ)マンガンポルフ
ィリン錯体などの金属ポルフィリン錯体の存在下又は非
存在下での次亜塩素酸ナトリウムなどによる酸化などの
方法、更に、(iii)オレフィン系樹脂中のエチレン
性不飽和結合に、分子内に1つ以上のエポキシ基を含有
する化合物、具体的にはチオグリシドール、チオグリコ
ール酸グリシジルなどのチオール化合物などを付加反応
させる方法などがあり、これら(ii) 、(iii)
 の方法によるエポキシ基の導入量は、オレフィン系樹
脂中のエチレン性不飽和結合の1%以上であるのが好ま
しく、5%以上であるのがより好ましく、10%以上で
あるのがさらに好ましい。1%未満では、本発明による
改良効果がほとんどない。
[0034] In addition, in an olefin resin containing a polyunsaturated compound such as dialkenylbenzene, methyloctadine, or methylhexadiene as a copolymerization component, (ii) ethylenic unsaturation in the olefin resin (a) Oxidation of bonds with peracids such as performic acid, peracetic acid, perbenzoic acid, etc.; (b) Hydrogen peroxide or hydroperoxidation in the presence or absence of catalysts such as vanadium, tungsten, molybdenum compounds. (3) oxidation with alkaline hydrogen peroxide; (d) oxidation with sodium hypochlorite in the presence or absence of a metal porphyrin complex such as a manganese porphyrin complex; iii) A method of adding a compound containing one or more epoxy groups in the molecule, specifically a thiol compound such as thioglycidol or glycidyl thioglycolate, to an ethylenically unsaturated bond in an olefinic resin. There are these (ii) and (iii)
The amount of epoxy groups introduced by the method described above is preferably 1% or more, more preferably 5% or more, and even more preferably 10% or more of the ethylenically unsaturated bonds in the olefin resin. If it is less than 1%, there is almost no improvement effect by the present invention.

【0035】これら(ii) 、(iii) の反応は
、オレフィン系樹脂が、溶解又は融解状態で実施される
ことが多いが、溶媒による膨潤状態で実施してもさしつ
かえない、使用する溶媒としては、脂肪族、脂環族、芳
香族の炭化水素及びそれらのハロゲン化物、炭素数6以
上のエステル、エーテル、ケトン及びに二硫化炭素の中
から選ばれることが多く、2種以上の混合溶媒も使用し
得る。エチレン性不飽和結合に対する反応率が必ずしも
100%の要はなく、実質的エポキシ基が導入されてい
れば、副反応による生成物が混入してもさしつかえない
[0035] These reactions (ii) and (iii) are often carried out with the olefin resin in a dissolved or molten state, but they may also be carried out in a swollen state with a solvent. , aliphatic, alicyclic, aromatic hydrocarbons and their halides, esters with 6 or more carbon atoms, ethers, ketones, and carbon disulfide, and mixed solvents of two or more types are also used. Can be used. The reaction rate with respect to ethylenically unsaturated bonds does not necessarily have to be 100%, and as long as substantial epoxy groups are introduced, there is no problem even if products from side reactions are mixed in.

【0036】熱可塑性樹脂組成物: (1)成分(A)及び成分(B)の配合比熱可塑性樹脂
組成物の成形加工性、機械的強度、耐溶剤性、寸法精度
、高温剛性等の性質は、各構成成分の特徴とその配合比
で調整できる場合が多いものの、例えば剛性と耐衝撃強
度のように、発現機構の相反する性質は、両立させるの
が困難な場合が多い。実用上の目的のためには、通常、
成形性、機械的強度、高温剛性等の諸性質の調和を適切
にするという観点から行われる。従って、本発明におけ
る組成物の各成分の配合比には、実用的には下記の範囲
が有用であるといえる。
Thermoplastic resin composition: (1) Blending ratio of component (A) and component (B) Properties such as moldability, mechanical strength, solvent resistance, dimensional accuracy, and high temperature rigidity of the thermoplastic resin composition Although it is often possible to adjust the characteristics of each constituent component and their blending ratio, it is often difficult to reconcile contradictory properties of the development mechanism, such as rigidity and impact strength, for example. For practical purposes, usually
This is done from the perspective of achieving an appropriate balance of various properties such as formability, mechanical strength, and high-temperature rigidity. Therefore, it can be said that the following ranges are practically useful for the blending ratio of each component of the composition in the present invention.

【0037】 成分(A):アミノ化フェニレンエーテル系樹脂   
       10〜90重量%成分(B):変性オレ
フィン系樹脂                   
   90〜10重量%これらの範囲で、配合比の選択
は、最終成形品の要求性能によって決定される。
Component (A): Aminated phenylene ether resin
10-90% by weight Component (B): Modified olefin resin
90-10% by weight Within these ranges, the selection of the blending ratio is determined by the required performance of the final molded article.

【0038】本発明で用いる成分(A)は、アミノ化フ
ェニレンエーテル系樹脂単独であってもよいし、同変性
フェニレンエーテル系樹脂と未変性フェニレンエーテル
系樹脂との混合物であってもよい。また本発明で用いる
成分(B)は、変性オレフィン系樹脂単独であってもよ
いし、同変性オレフィン系樹脂と未変性オレフィン系樹
脂との混合物であってもよい。
Component (A) used in the present invention may be an aminated phenylene ether resin alone or a mixture of the same modified phenylene ether resin and an unmodified phenylene ether resin. Moreover, the component (B) used in the present invention may be a modified olefin resin alone or a mixture of the same modified olefin resin and an unmodified olefin resin.

【0039】(2)付加的成分 本発明の熱可塑性樹脂組成物には、他の付加的成分を添
加することができる。例えば、酸化防止剤、耐候性改良
剤、造核剤、難燃剤、スリップ剤、可塑剤、スチレン系
樹脂、流動性改良剤、離型剤、顔料、分散剤等を付加成
分として使用できる。また有機・無機充填剤、補強剤、
例えばガラス繊維、マイカ、タルク、ワラストナイト、
チタン酸カリウム、炭酸カルシウム、シリカ等の添加は
剛性、耐熱性、寸法精度、寸法安定性等の向上に有効で
ある。更に、ゴム成分の添加、特にスチレン−ブタジエ
ン共重合体ゴム及びそれの水素添加物、エチレン−プロ
ピレン共重合体ゴム、エチレン−プロピレン−ジエン共
重合体ゴム等は、組成物の耐衝撃強度向上に特に有効で
ある。ゴムの配合量は、目標とする物性値ににより異な
るが、例えば、組成物の剛性と耐衝撃強度のバランス改
良の場合は、組成物の樹脂成分100重量部当り、5〜
30重量%である。
(2) Additional Components Other additional components may be added to the thermoplastic resin composition of the present invention. For example, antioxidants, weather resistance improvers, nucleating agents, flame retardants, slip agents, plasticizers, styrene resins, fluidity improvers, mold release agents, pigments, dispersants, etc. can be used as additional components. In addition, organic/inorganic fillers, reinforcing agents,
For example, glass fiber, mica, talc, wollastonite,
Addition of potassium titanate, calcium carbonate, silica, etc. is effective in improving rigidity, heat resistance, dimensional accuracy, dimensional stability, etc. Furthermore, the addition of rubber components, particularly styrene-butadiene copolymer rubber and its hydrogenated products, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, etc., can improve the impact strength of the composition. Particularly effective. The amount of rubber blended varies depending on the target physical property value, but for example, in the case of improving the balance between rigidity and impact strength of the composition, it is 5 to 5 parts by weight per 100 parts by weight of the resin component of the composition.
It is 30% by weight.

【0040】(3)組成物の混合方法 本発明の熱可塑性樹脂組成物は、上記の各成分を、各種
混練機、例えば一軸押出機、二軸押出機、バンバリーミ
キサー等で混練混合する方法等を用いることができる。 また混合の順序は、可能ないずれの順序によってもよい
が、溶融混練法によって混合する場合には、粘度の高い
ものから逐次混合する方法は好ましい方法である。
(3) Method for mixing the composition The thermoplastic resin composition of the present invention can be prepared by kneading and mixing the above-mentioned components using various kneaders, such as a single screw extruder, a twin screw extruder, a Banbury mixer, etc. can be used. Further, the order of mixing may be any possible order, but when mixing by melt kneading, it is preferable to mix sequentially starting from the one with the highest viscosity.

【0041】[0041]

【実施例】以下、実施例により、本発明を詳細に説明す
るが、これにより本発明の範囲が特に限定されるもので
はない。
[Examples] The present invention will be explained in detail below with reference to Examples, but the scope of the present invention is not particularly limited by these examples.

【0042】製造例1:アミノ化フェニレンエーテル系
樹脂の製造 ポリ(2,6−ジメチル−1,4−フェニレンエーテル
)(日本ポリエーテル社製、30℃におけるクロロホル
ム中で測定した固有粘度:0.3dl/g)500g 
にトルエン5リットルを加え、窒素雰囲気下、70℃で
加熱撹拌してフェニレンエーテル系樹脂を溶解させた。 続いて塩基性触媒として、50%水酸化ナトリウム水溶
液175g 、相間移動触媒として、トリオクチルメチ
ルアンモニウムクロライド50g を加えた後、90℃
に混合物の温度を上げ、30分撹拌を続けた。続いて3
−クロルプロピルアミン75g を250mlの水に溶
解させ、15分かけて添加した。更に、7時間加熱撹拌
後、反応混合物を、メタノール25リットルに注ぎ、生
成した変性樹脂を析出させた。これをろ別した後、水2
5リットルで洗浄し、更にメタノール25リットルで洗
浄した。80℃で減圧加熱乾燥して、アミノ化フェニレ
ンエーテル系樹脂を得た。回収率は99%であった。ア
ミノ基の確認及びフェニレンエーテル系樹脂の末端フェ
ノール性水酸基の反応率は、アミノ化フェノールエーテ
ル系樹脂の1.5重量%の四塩化炭素溶液を光路長10
mmの石英セルを使用して、赤外線(吸収)スペクトル
を測定することにより実施した。3380cm−1の位
置にアミノ基による吸収が認められた。また、反応率は
、反応前後のフェニレンエーテル系樹脂の末端フェノー
ル性水酸基の吸光度(3622cm−1)の値より計算
したところ、100%であった。更に、核磁気共鳴吸収
スペクトルにより、ハロゲン化第一アミンの付加数は、
1分子であることが判明した。
Production Example 1: Production of aminated phenylene ether resin Poly(2,6-dimethyl-1,4-phenylene ether) (manufactured by Nippon Polyether Co., Ltd., intrinsic viscosity measured in chloroform at 30°C: 0. 3dl/g) 500g
5 liters of toluene was added to the mixture, and the mixture was heated and stirred at 70°C under a nitrogen atmosphere to dissolve the phenylene ether resin. Subsequently, 175 g of a 50% aqueous sodium hydroxide solution as a basic catalyst and 50 g of trioctylmethylammonium chloride as a phase transfer catalyst were added, and the mixture was heated to 90°C.
The temperature of the mixture was raised to 100 mL and stirring continued for 30 minutes. followed by 3
-75 g of chloropropylamine was dissolved in 250 ml of water and added over 15 minutes. After further heating and stirring for 7 hours, the reaction mixture was poured into 25 liters of methanol to precipitate the produced modified resin. After filtering this, water 2
It was washed with 5 liters of water and further washed with 25 liters of methanol. The mixture was dried under reduced pressure at 80° C. to obtain an aminated phenylene ether resin. The recovery rate was 99%. Confirmation of the amino group and reaction rate of the terminal phenolic hydroxyl group of the phenylene ether resin were confirmed by adding a 1.5% by weight carbon tetrachloride solution of the aminated phenol ether resin to an optical path length of 10
This was carried out by measuring the infrared (absorption) spectrum using a mm quartz cell. Absorption due to amino group was observed at the position of 3380 cm-1. The reaction rate was calculated from the absorbance (3622 cm-1) of the terminal phenolic hydroxyl group of the phenylene ether resin before and after the reaction, and was 100%. Furthermore, according to nuclear magnetic resonance absorption spectroscopy, the number of halogenated primary amines added is
It turned out to be one molecule.

【0043】製造例2:変性オレフィン系樹脂(1)の
製造 プロピレン樹脂のホモポリマー粉末(ASTM  D1
238に準拠して測定した230℃のメルトフローレー
ト(MFR):1g /10分)250g とグリシジ
ルメタクリレート100g を、あらかじめ十分に窒素
置換した10リットルの撹拌機付きのガラス製のフラス
コに投入し、クロルベンゼン5リットルを加え、110
℃に加熱撹拌し溶解した。この溶液にクロルベンゼン5
00mlに溶解したベンゾイルパーオキシド25g を
2時間かけて滴下し、滴下終了後、更に、110℃で3
時間反応させた。得られた反応物を15リットルのアセ
トン中に注ぎ、生成物を析出させろ過洗浄する操作を3
回実施した後、次いで、減圧乾燥して、グラフト変性プ
ロピレン樹脂を得た。このグラフト変性プロピレン樹脂
のグリシジルメタクリレート含量は、赤外線分光分析に
より0.75重量%であり、MFRは14g /10分
であった。これにより得られた樹脂を変性オレフィン系
樹脂(1)とする。
Production Example 2: Production of modified olefin resin (1) Propylene resin homopolymer powder (ASTM D1
250 g of melt flow rate (MFR) at 230°C measured in accordance with 238 (1 g/10 min) and 100 g of glycidyl methacrylate were placed in a 10 liter glass flask equipped with a stirrer that had been sufficiently purged with nitrogen in advance. Add 5 liters of chlorobenzene to 110
The mixture was heated and stirred at ℃ to dissolve. Add 5 chlorobenzene to this solution.
25 g of benzoyl peroxide dissolved in 0.00 ml was added dropwise over 2 hours.
Allowed time to react. The obtained reaction product was poured into 15 liters of acetone, and the product was precipitated and filtered and washed for 3 times.
After carrying out this process twice, the mixture was then dried under reduced pressure to obtain a graft-modified propylene resin. The glycidyl methacrylate content of this graft-modified propylene resin was found to be 0.75% by weight by infrared spectroscopic analysis, and the MFR was 14 g/10 min. The resin obtained thereby is referred to as modified olefin resin (1).

【0044】製造例3:変性オレフィン系樹脂(2)の
製造 プロピレンと7−メチル−1,6−オクタジエンとの共
重合体(7−メチル−1,6−オクタジエン含量2.7
モル%、X線回折法による結晶化度45%、MFR:1
.7g /10分)を250g とグリシジルメタクリ
レート75g を、あらかじめ、窒素置換した10リッ
トルの撹拌機付きのガラス製フラスコに投入し、キシレ
ン5リットルを加え110℃に加熱撹拌して、溶解した
。この溶液にキシレン500mlに溶解したベンゾイル
パーオキサイド25g を2時間かけて滴下し、滴下終
了後、更に110℃で3時間反応を行った。得られた反
応物を15リットルのアセトン中に注ぎ、生成物を析出
させて、ろ別洗浄する操作を3回実施した後、次いで、
これを減圧乾燥して、グラフト変性オレフィン共重合体
を得た。 このもののグリシジルメタクリレート含量は、赤外線分
光分析により、1.2重量%であった。またMFRは、
2g /10分であった。これにより得られた共重合体
を変性オレフィン系樹脂(2)とする。
Production Example 3: Production of modified olefin resin (2) Copolymer of propylene and 7-methyl-1,6-octadiene (7-methyl-1,6-octadiene content: 2.7
Mol%, crystallinity 45% by X-ray diffraction method, MFR: 1
.. 7 g/10 minutes) and 75 g of glycidyl methacrylate were placed in a 10 liter glass flask equipped with a stirrer and the atmosphere was replaced with nitrogen, and 5 liters of xylene was added thereto and heated to 110° C. with stirring to dissolve. To this solution, 25 g of benzoyl peroxide dissolved in 500 ml of xylene was added dropwise over 2 hours, and after the dropwise addition was completed, the reaction was further carried out at 110°C for 3 hours. The obtained reaction product was poured into 15 liters of acetone, and the product was precipitated and filtered and washed three times, and then,
This was dried under reduced pressure to obtain a graft-modified olefin copolymer. The glycidyl methacrylate content of this product was found to be 1.2% by weight by infrared spectroscopic analysis. Also, MFR is
It was 2g/10 minutes. The copolymer thus obtained is referred to as a modified olefin resin (2).

【0045】実施例1〜5及び比較例1〜2製造例1で
得たアミノ化フェニレンエーテル系樹脂、製造例2及び
3で得た変性オレフィン系樹脂(1)及び(2)、未変
性ポリフェニレンエーテル(日本ポリエーテル社製、ク
ロロホルム30℃での固有粘度0.3dl/g )並び
にエチレン−プロピレンゴム(EPR)を使用して、内
容積60mlの東洋精機社製のプラストミルにて、表1
に示す組成で230℃、回転数180rpm の条件に
て、10分間溶融混練した。得られた熱可塑性樹脂組成
物について、下記の物性評価を行った。
Examples 1 to 5 and Comparative Examples 1 to 2 Aminated phenylene ether resin obtained in Production Example 1, modified olefin resins (1) and (2) obtained in Production Examples 2 and 3, unmodified polyphenylene Using ether (manufactured by Nippon Polyether Co., Ltd., chloroform, intrinsic viscosity 0.3 dl/g at 30°C) and ethylene-propylene rubber (EPR), in a plastomill manufactured by Toyo Seiki Co., Ltd. with an internal volume of 60 ml, Table 1 was prepared.
The following composition was melt-kneaded for 10 minutes at 230° C. and 180 rpm. The following physical properties were evaluated for the obtained thermoplastic resin composition.

【0046】(1)分散形態 日立製作所製S−2400型走査型電子顕微鏡により、
樹脂組成物の断面を観察した。
(1) Dispersion form Using a scanning electron microscope model S-2400 manufactured by Hitachi, Ltd.
A cross section of the resin composition was observed.

【0047】(2)アイゾット衝撃強度樹脂組成物を2
60℃の条件でプレス成形し、厚み2mmのシートを作
成し、JIS  K7110に準じて厚さ2mmの試験
片を3枚重ねにして、23℃のノッチ無しアイゾット衝
撃強度を測定した。
(2) Izod impact strength resin composition
A sheet with a thickness of 2 mm was prepared by press molding at 60° C., and the unnotched Izod impact strength at 23° C. was measured by stacking three test pieces with a thickness of 2 mm according to JIS K7110.

【0048】(3)耐有機溶剤性 ベルゲンの1/4 楕円法[SPEジャーナル667(
1962)]に準じ測定した。すなわち、板厚2mmの
試験片を、長軸24cm、短軸8cmの四分の一楕円治
具に固定し、市販のガソリンに5分間浸漬したときの、
亀裂の発生する最小歪値を限界歪値として求めた。
(3) Organic solvent resistance Bergen's 1/4 ellipse method [SPE Journal 667 (
1962)]. That is, when a test piece with a thickness of 2 mm was fixed in a quarter oval jig with a major axis of 24 cm and a minor axis of 8 cm, and immersed in commercially available gasoline for 5 minutes,
The minimum strain value at which cracks occur was determined as the critical strain value.

【0049】この際、クラックが発生しないものを◎(
極めて良好)、限界歪値が1.5%以上のものを■(良
好)、同1.0〜1.5%を△(普通)、同1%未満を
×(不良)と評価した。
[0049] At this time, make sure that no cracks occur.
Those with a critical strain value of 1.5% or more were evaluated as ■ (good), those with a critical strain value of 1.0 to 1.5% were evaluated as Δ (fair), and those with a critical strain value of less than 1% were evaluated as × (poor).

【0050】以上の試験結果を表1に示す。本結果から
も明らかなように、アミノ化フェニレンエーテル系樹脂
と変性オレフィン系樹脂とを配合した場合は、細かい球
状に近いフェニレンエーテル系樹脂の均質な分散が認め
らると共に、著しく耐衝撃強度が向上し、かつ、耐溶剤
性が優れた熱可塑性樹脂組成物が得られた。
The above test results are shown in Table 1. As is clear from these results, when aminated phenylene ether resin and modified olefin resin are blended, homogeneous dispersion of fine, almost spherical phenylene ether resin is observed, and the impact resistance strength is significantly increased. A thermoplastic resin composition with improved solvent resistance was obtained.

【0051】[0051]

【表1】[Table 1]

【0052】[0052]

【発明の効果】以上のように、アミノ化フェニレンエー
テル系樹脂と変性オレフィン系樹脂を配合した本発明の
熱可塑性樹脂組成物は、両樹脂間の相溶性が著しく改良
され、表1に示したように両成分が優れた分散形態を示
し、優れた機械的強度及び耐有機溶剤性を有している。
[Effects of the Invention] As described above, the thermoplastic resin composition of the present invention containing an aminated phenylene ether resin and a modified olefin resin has significantly improved compatibility between the two resins, as shown in Table 1. Both components exhibit excellent dispersion morphology and have excellent mechanical strength and organic solvent resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  下記の成分(A)及び(B)からなる
ことを特徴とする熱可塑性樹脂組成物。 (A)  アミノ化フェニレンエーテル系樹脂    
          10〜90重量%(B)  エポ
キシ基を導入して変性したオレフィン系樹脂  90〜
10重量%
1. A thermoplastic resin composition comprising the following components (A) and (B). (A) Aminated phenylene ether resin
10-90% by weight (B) Olefin resin modified by introducing epoxy groups 90-90% by weight
10% by weight
JP10351891A 1990-09-19 1991-04-10 Thermoplastic resin composition Pending JPH04311750A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10351891A JPH04311750A (en) 1991-04-10 1991-04-10 Thermoplastic resin composition
EP19910115849 EP0476619A3 (en) 1990-09-19 1991-09-18 Process for producing amino group terminated polyphenylene ether
US07/762,112 US5191030A (en) 1990-09-19 1991-09-19 Process for producing amino group terminated polyphenylene ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10351891A JPH04311750A (en) 1991-04-10 1991-04-10 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH04311750A true JPH04311750A (en) 1992-11-04

Family

ID=14356167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10351891A Pending JPH04311750A (en) 1990-09-19 1991-04-10 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH04311750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094621A1 (en) * 2015-12-04 2017-06-08 住友化学株式会社 Resin composition and method for producing same, thermoplastic resin composition, and molded article and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094621A1 (en) * 2015-12-04 2017-06-08 住友化学株式会社 Resin composition and method for producing same, thermoplastic resin composition, and molded article and method for producing same
JPWO2017094621A1 (en) * 2015-12-04 2018-09-20 住友化学株式会社 Resin composition and method for producing the same, thermoplastic resin composition, and molded article and method for producing the same

Similar Documents

Publication Publication Date Title
US5177156A (en) Process for producing silane-modified polyphenylene ether and thermoplastic resin composition containing the same
EP0549977A1 (en) Carboxyl-containing polyphenylene sulfide, process for producing the same, and resin composition containing the same
EP0472960B1 (en) Thermoplastic resin composition
JPH04311750A (en) Thermoplastic resin composition
JPH04311751A (en) Thermoplastic resin composition
US5191030A (en) Process for producing amino group terminated polyphenylene ether
JPH05320446A (en) Polyphenylene ether resin composition and molded article prepared therefrom
JPH04353545A (en) Thermoplastic resin composition
JP3366018B2 (en) Polyphenylene ether copolymer and resin composition containing the same
JPH06200015A (en) Production of alkoxysilylated polyphenylene ether
JPH04126742A (en) Thermoplastic resin composition
JP3236687B2 (en) Thermoplastic resin composition
JPH04266951A (en) Thermoplastic resin composition
JPH06306177A (en) Production of thermoplastic resin composition
JPH0625527A (en) Thermoplastic resin composition
JPH05117387A (en) Production of hydroxylated polyphenylene ether
JPH0280458A (en) Novel heat-resistant resin composition
JPH0480254A (en) Thermoplastic resin composition
JPH04120146A (en) Thermoplastic resin composition
JPH0476051A (en) Thermoplastic resin composition
JPH04153237A (en) Thermoplastic resin composition
JPH05279568A (en) Thermoplastic resin composition
JPH0477553A (en) Thermoplastic resin composition
JPH06306225A (en) Thermoplastic resin composition
JPH0480253A (en) Thermoplastic resin composition