JPH0480253A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPH0480253A
JPH0480253A JP19043490A JP19043490A JPH0480253A JP H0480253 A JPH0480253 A JP H0480253A JP 19043490 A JP19043490 A JP 19043490A JP 19043490 A JP19043490 A JP 19043490A JP H0480253 A JPH0480253 A JP H0480253A
Authority
JP
Japan
Prior art keywords
phenylene ether
resin
ether resin
hydroxyalkylated
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19043490A
Other languages
Japanese (ja)
Inventor
Yuusuke Araki
安良城 雄介
Michiharu Kihira
紀平 道治
Haruo Omura
大村 治夫
Fumiyoshi Yamada
書佳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP19043490A priority Critical patent/JPH0480253A/en
Priority to EP19910111759 priority patent/EP0467261A3/en
Priority to US07/732,004 priority patent/US5244983A/en
Publication of JPH0480253A publication Critical patent/JPH0480253A/en
Priority to US08/049,599 priority patent/US5360866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition improved in rigidity and organic solvent resistance by mixing a hydroxyalkylated phenylene ether resin with an epoxy olefin resin. CONSTITUTION:A phenylene ether resin (a) of an intrinsic viscosity (in chloroform at 30 deg.C) of 0.2-0.8dl/g is reacted with 1-50mol, per mol of the terminal phenolic hydroxyl groups of component (a), of a functionalizing agent (b) in the presence of a basic catalyst optionally in an organic solvent in which component (a) is soluble at 50-200 deg.C to obtain a hydroxyalkylated phenylene ether resin (A). Separately, an alpha-olefin is copolymerized with an epoxy unsaturated monomer to obtain an epoxy olefin resin (B). 10-90wt.% component A is mixed with 90-10wt.% component B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐有機溶剤性及び機械的強度が優れたフェニ
レンエーテル樹脂組成物に関する。詳しくは、ヒドロキ
シアルキル化フェニレンエーテル樹脂とエポキシ基含有
オレフィン樹脂を混合することにより、フェニレンエー
テル樹脂の特長である耐熱性及び機械的強度とオレフィ
ン樹脂の特長である成形加工性及び耐有機溶剤性を兼ね
備え、かつ〜般に非相溶性樹脂混合物において生し易い
耐衝撃強度の低下及び層状剥離(デラミネーション)の
発生を防止した熱可塑性樹脂組成物であって、自動車及
び電気製品の構造部材などの高度な要求性能を満足する
成形用材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a phenylene ether resin composition having excellent organic solvent resistance and mechanical strength. Specifically, by mixing a hydroxyalkylated phenylene ether resin and an epoxy group-containing olefin resin, it is possible to combine the heat resistance and mechanical strength that are the characteristics of phenylene ether resins, and the moldability and organic solvent resistance that are characteristics of olefin resins. It is a thermoplastic resin composition that has the following properties and prevents deterioration of impact strength and delamination that generally occurs in incompatible resin mixtures, and is suitable for use in structural members of automobiles and electrical products, etc. Concerning molding materials that meet high performance requirements.

(従来の技術) フェニレンエーテル樹脂は、優れた熱的性質、機械的性
質、電気的性質を有するため、成形材料用樹脂として有
用であるが、加工性、耐有機溶剤性、耐衝撃性に難点が
あるため、その利用範囲が限られている。これらの欠点
を改良する方法として他の樹脂、例えばスチレン系重合
体を混合して成形加工性を改良する方法が米国特許筒3
.383.435号明細書等に開示されているが、耐有
機溶剤性は全く改良されていない。
(Prior art) Phenylene ether resin has excellent thermal, mechanical, and electrical properties and is therefore useful as a resin for molding materials, but it has drawbacks in processability, organic solvent resistance, and impact resistance. Therefore, its scope of use is limited. As a method to improve these drawbacks, a method of improving molding processability by mixing other resins, such as styrene polymers, is disclosed in U.S. Patent No. 3.
.. 383.435, but the organic solvent resistance is not improved at all.

一方、耐有機溶剤性が優れているオレフィン樹脂とのブ
レンドも種々検討されており、特公昭42−7069号
公報に、オレフィン樹脂とフェニレンエーテル樹脂のブ
レンドが提案されているが、工業分野で要求される高度
な要求レベルを充分に満足する耐有機溶剤性及び機械的
強度は必ずしも満足されていない。更に特開昭53−7
1158号、同54−88960号、同59−1001
59参照公報には、フェニレンエーテル樹脂トオレフィ
ン樹脂の相溶性改善の目的で、例えばスチレンとブタジ
ェンのブロック共重合体又はこれらの水素添加物を配合
することが提案されているが、オレフィン樹脂の配合量
が少く、フェニレンエーテル樹脂が実質的に連続相であ
るため、オレフィン樹脂の持つ耐有機溶剤性が充分発揮
されていない。また、特開昭58−103557号及び
同60−76547参照公報には、20重量%以上のオ
レフィン樹脂を配合し、相溶化剤として、例えばアルケ
ニル芳香族化合物と共役ジエンよりなるジブロック共重
合体、それ等水素添加物を配合する組成物が開示されて
いる。それによると、引張特性、脆弱性は改善されるが
、剛性、耐熱性で要求レベルを充分に満足するものでは
ない。
On the other hand, various blends with olefin resins, which have excellent organic solvent resistance, have been studied, and a blend of olefin resins and phenylene ether resins has been proposed in Japanese Patent Publication No. 7069/1982, but this is not required in the industrial field. The organic solvent resistance and mechanical strength that fully satisfy the high level of demand are not necessarily met. Furthermore, JP-A-53-7
No. 1158, No. 54-88960, No. 59-1001
Reference No. 59 proposes blending, for example, a block copolymer of styrene and butadiene or a hydrogenated product thereof for the purpose of improving the compatibility of phenylene ether resin and olefin resin. Since the amount is small and the phenylene ether resin is substantially a continuous phase, the organic solvent resistance of the olefin resin is not fully exhibited. Furthermore, in JP-A-58-103557 and JP-A-60-76547, 20% by weight or more of an olefin resin is blended, and a diblock copolymer consisting of an alkenyl aromatic compound and a conjugated diene is used as a compatibilizer. , and other compositions incorporating hydrogenated substances are disclosed. According to this report, the tensile properties and brittleness are improved, but the required levels of rigidity and heat resistance are not fully satisfied.

また本発明者の一人は、先にフェニレンエーテル樹脂と
プロピレン樹脂の親和性改良剤として、プロピレンを主
成分とし、ジアルケニルベンゼン化合物を少量部具重合
して得た結晶性のプロピレン−ジアルケニルベンゼン共
重合体と、スチレン系単量体をラジカル重合開始剤の存
在下に重合させて得られる、スチレン系単量体で変性さ
れたプロピレン−ジアルケニルベンゼン共重合体が、フ
ェニレンエーテル樹脂とプロピレン樹脂の親和性改良剤
として有効であることを見出し、特開平1−17064
7号に開示した。しかしながら、ラジカル重合条件下で
スチレン系単量体で変性されたプロピレン−ジアルケニ
ルベンゼン共重合体は、添加効果が満足しつるものでは
なく、親和性が改良されるまで充分な量を添加すると、
衝撃強度は改良されるが、剛性、特に高温剛性が低下す
るという問題があり、−層の改良が望まれてい乞 (発明が解決しようとする課題) 本発明は、上記の問題を解決し、剛性と耐有機溶剤性が
優れた熱可塑性樹脂組成物を提供することを目的とする
In addition, one of the present inventors previously developed a crystalline propylene-dialkenylbenzene obtained by polymerizing propylene as a main component and a small amount of a dialkenylbenzene compound as an affinity improver for phenylene ether resin and propylene resin. A propylene-dialkenylbenzene copolymer modified with a styrene monomer obtained by polymerizing a copolymer and a styrene monomer in the presence of a radical polymerization initiator is a phenylene ether resin and a propylene resin. It was discovered that it is effective as an affinity improver for
It was disclosed in issue 7. However, the propylene-dialkenylbenzene copolymer modified with a styrene monomer under radical polymerization conditions does not have a satisfactory addition effect, and if a sufficient amount is added until the affinity is improved,
Although the impact strength is improved, there is a problem that the stiffness, especially the high temperature stiffness, is reduced, and there is a desire for an improvement in the layer (Problem to be solved by the invention) The present invention solves the above problems, The purpose of the present invention is to provide a thermoplastic resin composition having excellent rigidity and organic solvent resistance.

(課題を解決するための手段) 本発明者らは、フェニレンエーテル樹脂に多量のオレフ
ィン樹脂を配合できるよう、相溶性向上の研究を鋭意行
った結果、化学的に活性の高い官能基であるヒドロキシ
アルキル基をフェニレンエーテル樹脂に導入し、特定の
官能基を含有するオレフィン樹脂と組み合わせることに
よって、本来非相溶であるフェニレンエーテル樹脂とオ
レフィン樹脂の広範囲の相溶化を可能とし、両樹脂が本
来有する優れた特性を兼ね備えた組成物が得られること
を見出し、本発明を完成した。
(Means for Solving the Problems) As a result of intensive research on improving compatibility so that a large amount of olefin resin can be blended into phenylene ether resin, the present inventors found that hydroxyl, a highly chemically active functional group, By introducing an alkyl group into a phenylene ether resin and combining it with an olefin resin containing a specific functional group, it is possible to make a wide range of phenylene ether resins and olefin resins, which are originally incompatible, compatible, which both resins originally have. The present invention was completed based on the discovery that a composition having excellent properties can be obtained.

すなわち本発明は、 下記の成分(a)及び(b)並に組成からなる熱可塑性
樹脂組成物である。
That is, the present invention is a thermoplastic resin composition comprising the following components (a) and (b) and the composition.

(a)ヒドロキシアルキル化フェニレンエーテル樹脂 
          10〜90重量%(b)エポキシ
基含有オレフィン樹脂 90〜10重量% 以下本発明の詳細な説明する。
(a) Hydroxyalkylated phenylene ether resin
10 to 90% by weight (b) Epoxy group-containing olefin resin 90 to 10% by weight The present invention will be described in detail below.

1床厘玉 (1)ヒドロキシアルキル化フェニレンエーテル樹脂(
a) 本発明で使用するヒドロキシアルキル化フェニレンエー
テル樹脂(a)は、末端フェノール性水酸基にアルコー
ル性水酸基を付加して、末端基を官能化したフェニレン
エーテル樹脂であって、例えば、本発明者等の一部によ
り発明され既に特許出願された方法等、具体的には、フ
ェニレンエテル樹脂と官能化剤とを、フェニレンエーテ
ル樹脂な濃醇できる有機溶媒の存在下又は非存在下で、
塩基性触媒を用いて50〜200°Cの温度で反応させ
ることにより得ることができる。
1 bed size ball (1) Hydroxyalkylated phenylene ether resin (
a) The hydroxyalkylated phenylene ether resin (a) used in the present invention is a phenylene ether resin in which the terminal group is functionalized by adding an alcoholic hydroxyl group to the terminal phenolic hydroxyl group. Specifically, a method invented by some of them and for which a patent application has been filed, specifically involves combining a phenylene ether resin and a functionalizing agent in the presence or absence of an organic solvent capable of thickening the phenylene ether resin.
It can be obtained by reacting at a temperature of 50 to 200°C using a basic catalyst.

(イ)フェニレンエーテル樹脂 本発明で使用するフェニレンエーテル樹脂は、数式 (式中、Q’は各々ハロゲン原子、第−級若しくは第二
級アルキル基、フェニル基、アミノアルキル基、炭化水
素オキシ基又はハロ炭化水素オキシ基を表し、Q2は各
々水素原子、ハロゲン原子、第−級若しくは第二級アル
キル基、フェニル基、ハロアルキル基、炭化水素オキシ
基又はハロ炭化水素オキシ基を表す。mは10以上の数
を表す) で示される構造を有する単独重合体又は共重合体である
。Ql及びQ2の第一級アルキル基の好適な例は、メチ
ル、エチル、n−プロピル、n−ブチル、n−アミル、
イソアミル、2−メチルブチル、n−ヘキシル、2.3
−ジメチルブチル、2−13−若しくは4−メチルペン
チル又はヘプチルである。第二級アルキル基の例は、イ
ソプロピル、5ec−ブチル又は1−エチルプロピルで
ある。多くの場合、Qlはアルキル基又はフェニル基、
特に炭素数1〜4のアルキル基であり、Q2は水素原子
である。
(a) Phenylene ether resin The phenylene ether resin used in the present invention has the following formula: represents a halohydrocarbonoxy group, and Q2 each represents a hydrogen atom, a halogen atom, a primary or secondary alkyl group, a phenyl group, a haloalkyl group, a hydrocarbonoxy group, or a halohydrocarbonoxy group. m is 10 or more It is a homopolymer or copolymer having the structure shown in (representing the number of ). Suitable examples of primary alkyl groups for Ql and Q2 include methyl, ethyl, n-propyl, n-butyl, n-amyl,
Isoamyl, 2-methylbutyl, n-hexyl, 2.3
-dimethylbutyl, 2-13- or 4-methylpentyl or heptyl. Examples of secondary alkyl groups are isopropyl, 5ec-butyl or 1-ethylpropyl. In many cases, Ql is an alkyl group or a phenyl group,
In particular, it is an alkyl group having 1 to 4 carbon atoms, and Q2 is a hydrogen atom.

好適なフェニレンエーテル樹脂の単独重合体としては、
例えば、2.6−シメチルー1.4−フェニレンエーテ
ル単位からなるものである。好適な共重合体としては、
上記単位と2.3.6−ドリメチルー1.4−フェニレ
ンエーテル単位との組合せからなるランダム共重合体で
ある。多くの好適な単独重合体又はランダム共重合体が
特許、文献に記載されている。例えば、分子量、浴融粘
度及び/又は衝撃強度等の特性を改良する分子構成部分
を含むフェニレンエーテル樹脂も、また好適である。
Suitable phenylene ether resin homopolymers include:
For example, it is composed of 2,6-dimethyl-1,4-phenylene ether units. Suitable copolymers include:
It is a random copolymer consisting of a combination of the above units and 2,3,6-drimethyl-1,4-phenylene ether units. Many suitable homopolymers or random copolymers are described in the patent literature. Phenylene ether resins containing molecular moieties that improve properties such as, for example, molecular weight, bath melt viscosity and/or impact strength are also suitable.

フェニレンエーテル樹脂の分子量は通常クロロホルム中
で、30℃の固有粘度が02〜08dl/g程度のもの
である。
The molecular weight of the phenylene ether resin is usually such that the intrinsic viscosity at 30° C. in chloroform is about 02 to 08 dl/g.

フェニレンエーテル樹脂は、通常前記のモノマーの酸化
カップリングにより製造される6フエニレンエーテル樹
脂の酸化カップリング重合に関しては、数多くの触媒系
が知られている。触媒の選択に関しては特に制限はなく
、公知の触媒のいずれも用いることができる。例えば、
銅、マンガン、コバルト等の重金属化合物の少なくとも
一種を通常は種々の他の物質との組合せで含むもの等で
ある。
Phenylene ether resins are usually prepared by oxidative coupling of the aforementioned monomers.6 A number of catalyst systems are known for the oxidative coupling polymerization of phenylene ether resins. There are no particular restrictions on the selection of the catalyst, and any known catalyst can be used. for example,
These include at least one heavy metal compound such as copper, manganese, cobalt, etc., usually in combination with various other substances.

(ロ)ヒドロキシアルキル化 官能化剤及びそれにより得られるヒドロキシアルキル化
フェニレンエーテル樹脂(a)は、例えば、以下の(A
)〜(E)に示す方法により製造することができる。
(b) The hydroxyalkylated functionalizing agent and the hydroxyalkylated phenylene ether resin (a) obtained thereby can be used, for example, in the following (A
) to (E).

(A)フェニレンエーテル樹脂(II)に、式で示され
るグリシドールを反応させ、−数式(式中、Ql、Q2
及びmは前記と同じ。nは1〜10の数を表す) で示されるヒドロキシアルキル化フェニレンエーテル樹
脂を製造する方法(特願平2−45653号)。
(A) Phenylene ether resin (II) is reacted with glycidol represented by the formula:
and m are the same as above. (n represents a number from 1 to 10) A method for producing a hydroxyalkylated phenylene ether resin (Japanese Patent Application No. 2-45653).

(B)フェニレンエーテル樹脂(II)に、一般CH2
−CH−CH,−X    (nrs)\ 1 (式中、Xはハロゲン原子を表す) で示されるエピハロヒドリン、例えばエピクロルヒドリ
ン、を反応させ、次に得られた末端グリシジル変性フェ
ニレンエーテル樹脂を加水分解し、−数式 (式中、Ql、Q2及びmは前記と同じ)で示されるヒ
ドロキシアルキル化フェニレンエーテル樹脂を製造する
方法(特願平2−45653号)。
(B) General CH2 in phenylene ether resin (II)
-CH-CH, -X (nrs)\1 (wherein, X represents a halogen atom) is reacted with an epihalohydrin such as epichlorohydrin, and then the obtained terminal glycidyl-modified phenylene ether resin is hydrolyzed. , - A method for producing a hydroxyalkylated phenylene ether resin represented by the formula (in which Ql, Q2 and m are the same as above) (Japanese Patent Application No. 45653/1999).

(C)フェニレンエーテル樹脂(II)に、−119式 %式%[1 (式中、R1は炭素数1〜10のアルキレン基を表す、
Xは前記と同じ) で示されるハロゲン化アルキルアルコール、例えば2−
クロルエタノール又は3−クロル−1−プロパツール等
を反応させ、−数式 (式中、Ql、Q2、m及びR’は前記と同じ)で示さ
れるヒドロキシアルキル化フェニレンエーテル樹脂を製
造する方法(特願平2−92998号)。
(C) Phenylene ether resin (II), -119 formula % formula % [1 (wherein, R1 represents an alkylene group having 1 to 10 carbon atoms,
X is the same as above) halogenated alkyl alcohol, for example 2-
A method for producing a hydroxyalkylated phenylene ether resin represented by the formula (wherein Ql, Q2, m and R' are the same as above) by reacting chloroethanol or 3-chloro-1-propanol, etc. Ganpei No. 2-92998).

(D)フェニレンエーテル樹脂(II)に、−数式(式
中、R2は水素原子又は炭素数1〜8のアルキル基を表
す) で示されるアルキレンカーボネート、例えばエチレンカ
ーボネート又はプロピレンカーボネート等を反応させ、
−数式 (式中、Q’、Q2、m及びR2は前記と同じ)で示さ
れるヒドロキシアルキル化フェニレンエーテル樹脂を製
造する方法(特願平2−45655号)。
(D) reacting the phenylene ether resin (II) with an alkylene carbonate represented by the formula (in the formula, R2 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms), such as ethylene carbonate or propylene carbonate,
- A method for producing a hydroxyalkylated phenylene ether resin represented by the formula (in which Q', Q2, m and R2 are the same as above) (Japanese Patent Application No. 2-45655).

(E)フェニレンエーテル樹脂(II)に、−数式(式
中、R3は水素原子又は炭素数1〜8のアルキル基を表
す) で示されるアルキレンオキシド、例えばエチレンオキシ
ド又はプロピレンオキシド等を反応させ、−数式 (式中、Ql、Q2、m及びR3は前記と同じ)で示さ
れるヒドロキシアルキル化フェニレンエーテル樹脂を製
造する方法(特開昭63−128021号公報)。
(E) Phenylene ether resin (II) is reacted with an alkylene oxide represented by the formula (wherein R3 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms), such as ethylene oxide or propylene oxide, A method for producing a hydroxyalkylated phenylene ether resin represented by the formula (in which Ql, Q2, m and R3 are the same as above) (Japanese Unexamined Patent Publication No. 128021/1983).

なお、ここで、使用する有機溶媒は、ベンゼン、トルエ
ン、キシレン等の芳香族炭化水素:クロロホルム、四塩
化炭素等のハロゲン化炭化水素:クロルベンゼン、ジク
ロルベンゼン等のハロゲン化芳香族炭化水素:N−メチ
ル−2−ピロリドン、1.3−ジメチル−2−イミダゾ
リジノン等の複素環式化合物等である。
Note that the organic solvents used here include aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as chloroform and carbon tetrachloride; halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene; These include heterocyclic compounds such as N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone.

また、塩基性触媒としては、ナトリウムメトキシド、ナ
トリウムエトキシド等のアルコラード;水酸化ナトリウ
ム、水酸化カリウム等のアルカリ金属水酸化物:炭酸ナ
トリウム、炭酸カリウム等のアルカリ金属炭酸塩等が挙
げられる。
Examples of the basic catalyst include alcoholades such as sodium methoxide and sodium ethoxide; alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; and alkali metal carbonates such as sodium carbonate and potassium carbonate.

これらの反応に用いるフェニレンエーテル樹脂と官能化
剤の反応量比は、フェニレンエーテル樹脂の末端フェノ
ール性水酸基1モルに対して、官能化剤1〜50モルで
あり、塩基性触媒の使用量は、フェニレンエーテル樹脂
100重量部に対し、05〜50重量部である。
The reaction amount ratio of the phenylene ether resin and the functionalizing agent used in these reactions is 1 to 50 mol of the functionalizing agent per 1 mol of the terminal phenolic hydroxyl group of the phenylene ether resin, and the amount of the basic catalyst used is: The amount is 05 to 50 parts by weight based on 100 parts by weight of the phenylene ether resin.

以上の(A)〜(E)に示す方法により得られるヒドロ
キシアルキル化フェニレンエーテル樹脂(IA)〜(I
 E)のなかで、本発明においては、反応活性及び反応
性の異なるアルコール性水酸基を2個以上有するCIA
+又は(I、)が好ましく、(IAlが特に好ましい。
Hydroxyalkylated phenylene ether resins (IA) to (I) obtained by the methods shown in (A) to (E) above.
Among E), in the present invention, CIA having two or more alcoholic hydroxyl groups having different reaction activities and reactivities
+ or (I,) is preferred, (IA1 is particularly preferred).

(ハ)混合使用 本発明において用いるヒドロキシアルキル化フェニレン
エーテル樹脂は、単独又は未変性フェニレンエーテル樹
脂との混合物である。未変性フェニレンエーテル樹脂の
混合割合は、エポキシ基含有オレフィン樹脂との混合比
により任意に設定可能である0通常、ヒドロキシアルキ
ル化フェニレンエーテル樹脂と未変性フェニレンエーテ
ル樹脂との混合゛割合は100対Oか610対O0重量
%の範囲が好ましい。変性樹脂の割合が10重量%より
少ないと相溶性の改良効果が低くなり好ましくない。
(c) Mixed use The hydroxyalkylated phenylene ether resin used in the present invention may be used alone or as a mixture with an unmodified phenylene ether resin. The mixing ratio of the unmodified phenylene ether resin can be arbitrarily set depending on the mixing ratio with the epoxy group-containing olefin resin.Normally, the mixing ratio of the hydroxyalkylated phenylene ether resin and the unmodified phenylene ether resin is 100:0. A range of 610 to 00% by weight is preferred. If the proportion of the modified resin is less than 10% by weight, the effect of improving compatibility will be reduced, which is not preferable.

(2)エポキシ基含有オレフィン樹脂(b)本発明で使
用するエポキシ基含有オレフィン樹脂(b)は、エチレ
ン、プロピレン、ブテン−1、ペンテン−1、ヘキセン
−1,3−メチルブテン−1,4−メチルペンテン−1
、ヘプテン−1又はオクテン−1等のα−オレフィンと
エポキシ基を有する不飽和モノマーとの共重合、あるい
は前記α−オレフィンの単独又は共重合体とエポキシ基
を含有する不飽和モノマーとのグラフト重合によりエポ
キシ基が導入されたα−オレフィン重合体を用いること
ができる。
(2) Epoxy group-containing olefin resin (b) The epoxy group-containing olefin resin (b) used in the present invention is ethylene, propylene, butene-1, pentene-1, hexene-1,3-methylbutene-1,4- Methylpentene-1
, copolymerization of an α-olefin such as heptene-1 or octene-1 with an unsaturated monomer having an epoxy group, or graft polymerization of a single or copolymer of the α-olefin and an unsaturated monomer containing an epoxy group. An α-olefin polymer into which an epoxy group has been introduced can be used.

エポキシ基を有する不飽和モノマーとしては、例えばグ
リシジルメタクリレート、ブチルグリシシルアレート、
ブチルグリシジルフマレート、プロピルグリシジルマレ
ート又はグリシジルアクリレート等が挙げられる。
Examples of unsaturated monomers having an epoxy group include glycidyl methacrylate, butyl glycylate,
Examples include butyl glycidyl fumarate, propyl glycidyl maleate, and glycidyl acrylate.

また、この共重合の際、上述のエポキシ基を有する不飽
和モノマー以外の他の千ツマ−1例えば、アクリル酸メ
チル、メタクリル酸メチル又は酢酸ビニル等を過半量を
越えない範囲で共重合させることも可能である6 更に、α−オレフィンの単独重合体又は異種のα−オレ
フィンとの共重合体あるいはその複合物中に存在する不
飽和結合を酸化することによってエポキシ基を導入した
ものも、本発明組成物のエポキシ基含有オレフィン樹脂
として使用できる。例えばα−オレフィン中に存在する
炭素−炭素不飽和基を周知の方法、例えば、過酸化水素
や有機過M(過安息香酸、過ギ酸、過酢酸等)による酸
化反応でエポキシ基を導入したものがこれに相当する。
In addition, during this copolymerization, other than the above-mentioned unsaturated monomer having an epoxy group, such as methyl acrylate, methyl methacrylate, or vinyl acetate, may be copolymerized in an amount not exceeding a majority amount. Furthermore, homopolymers of α-olefins, copolymers with different types of α-olefins, or composites thereof in which epoxy groups are introduced by oxidizing unsaturated bonds may also be used. It can be used as an epoxy group-containing olefin resin in the composition of the invention. For example, an epoxy group is introduced into a carbon-carbon unsaturated group present in an α-olefin by a well-known method, such as an oxidation reaction using hydrogen peroxide or organic perM (perbenzoic acid, performic acid, peracetic acid, etc.). corresponds to this.

これらの中で、α−オレフィンに共重合させるエポキシ
基を有する不飽和モノマーとして、グリシジルメタクリ
レートが最も好ましく、また、不飽和モノマーの含量は
、不飽和子ツマー成分をO1〜20重量%の範囲で、オ
レフィン樹脂にグラフト共重合したもの又は0.1−1
5重量%の範囲で、オレフィン系モノマーと共重合した
ものである。この範囲未満では化学的な活性に乏しく、
相溶化能が不足であり、これを超える範囲では、最終組
成物の成形加工性や外観に難点が生しる場合があり好ま
しくない。
Among these, glycidyl methacrylate is most preferable as an unsaturated monomer having an epoxy group to be copolymerized with α-olefin, and the content of the unsaturated monomer is such that the unsaturated child component is in the range of 1 to 20% by weight. , graft copolymerized with olefin resin or 0.1-1
It is copolymerized with an olefin monomer in a range of 5% by weight. Below this range, chemical activity is poor;
The compatibilizing ability is insufficient, and if it exceeds this range, problems may arise in the moldability and appearance of the final composition, which is not preferable.

本発明で使用するエポキシ基含有オレフィン樹脂は、単
独又は未変性オレフィン樹脂との混合物である。未変性
オレフィン樹脂の混合割合は、エポキシ基含有オレフィ
ン樹脂のエポキシ基の含有量によって決定される。すな
わち、混合物中に占めるエポキシ基含有モノマー単位の
含有量が0.1重量%以上となるような混合割合であれ
ば任意に設定可能である。
The epoxy group-containing olefin resin used in the present invention may be used alone or in a mixture with an unmodified olefin resin. The mixing ratio of the unmodified olefin resin is determined by the epoxy group content of the epoxy group-containing olefin resin. That is, the mixing ratio can be set arbitrarily as long as the content of the epoxy group-containing monomer units in the mixture is 0.1% by weight or more.

住皿剪瓜± 本発明による樹脂組成物には、他の付加的成分を添加す
ることができる。例えば、オレフィン樹脂に周知の酸化
防止剤、耐候性改良剤、造核剤、難燃剤等の添加剤を、
フェニレンエーテル樹脂に周知の酸化防止剤、耐候性改
良剤、可塑剤、流動性改良剤等を付加的成分として使用
できる。また有機・無機充填剤、補強剤、特にガラス繊
維、マイカ、タルク、ワラストナイト、チタン酸カリウ
ム、炭酸カルシウム、シリカ等の添加は剛性、耐熱性、
寸法精度等の向上に有効である。実用のために各種着色
剤又はそれらの分散剤なども周知のものが使用できる。
Other additional components can be added to the resin composition according to the present invention. For example, adding well-known additives such as antioxidants, weather resistance improvers, nucleating agents, and flame retardants to olefin resins,
Known antioxidants, weatherability modifiers, plasticizers, fluidity modifiers, and the like can be used as additional components in the phenylene ether resin. In addition, the addition of organic/inorganic fillers and reinforcing agents, especially glass fiber, mica, talc, wollastonite, potassium titanate, calcium carbonate, and silica, improves rigidity, heat resistance,
This is effective in improving dimensional accuracy, etc. For practical purposes, various known colorants or dispersants thereof can be used.

更に耐衝撃強度向上剤、特にスチレン−ブタジェン共重
合体ゴム又はそれの水素化物、エチレン−プロピレン−
(ジエン)共重合体ゴム等の添加は組成物の衝撃強度向
上に有効である。上記の耐衝撃強度向上剤は単独で用い
ても良いし、2種又はそれ以上併用しても良い、耐衝撃
強度向上剤の配合量は、目標とする物性値により異なる
が、例えば組成物の剛性と衝撃強度のバランスの改良の
場合は、組成物の樹脂成分100重量部当り5〜30重
量部である。
Furthermore, impact strength improvers, especially styrene-butadiene copolymer rubber or its hydride, ethylene-propylene-
Addition of (diene) copolymer rubber, etc. is effective in improving the impact strength of the composition. The above-mentioned impact strength improvers may be used alone or in combination of two or more types.The blending amount of the impact strength improver varies depending on the target physical properties, but for example, In order to improve the balance between rigidity and impact strength, the amount is 5 to 30 parts by weight per 100 parts by weight of the resin component of the composition.

1丘仄立二■底且 本発明の熱可塑性樹脂組成物における成分(a)の変性
フェニレンニーテール樹脂と成分(b)のエポキシ基含
有オレフィン樹脂の組成比はいかなる値であっても良好
な相溶性が得られるが、機械的強度と耐有機溶剤性のバ
ランスから、成分(a)と成分(b)の組成比は重量比
で10対90から90対10の範囲、好ましくは20対
80から80対20、より好ましくは30対70から7
0対30である。
1 hill, 2, 2 bottoms, and the thermoplastic resin composition of the present invention has good compatibility regardless of the composition ratio of component (a), the modified phenylene niter resin, and component (b), the epoxy group-containing olefin resin. However, in view of the balance between mechanical strength and organic solvent resistance, the composition ratio of component (a) and component (b) is in the range of 10:90 to 90:10 by weight, preferably 20:80 to 80. 70 to 20, more preferably 30 to 70
It's 0-30.

変性フェニレンエーテル樹脂が10重量%未満では剛性
が十分でなく、90重量%超過では耐有機溶剤性が劣り
好ましくない。
If the modified phenylene ether resin is less than 10% by weight, the rigidity will not be sufficient, and if it exceeds 90% by weight, the organic solvent resistance will be poor, which is not preferable.

A  物の°ゞ び 刑法 本発明の熱可塑性樹脂組成物を得るための溶融混線の方
法としては、熱可塑性樹脂について一般に実用されてい
る混線方法が適用できる。例えば、粉状又は粒状の各成
分を必要であれば付加的成分の項に記載の添加物等と共
にヘンシェルミキサー、リボンブレンダー、■型ブレン
ダー等により均一に混合した後、〜軸又は多軸混練押出
機、ロール、バンバリーミキサ−等で混練することがで
きる。
As the method of melt cross-mixing to obtain the thermoplastic resin composition of the present invention, any cross-crossing method generally used for thermoplastic resins can be applied. For example, after uniformly mixing the powdered or granular components together with the additives described in the additional ingredients section if necessary using a Henschel mixer, ribbon blender, type blender, etc., the mixture is subjected to axial or multi-axial kneading extrusion. It can be kneaded using a machine, roll, Banbury mixer, etc.

本発明の熱可塑性樹脂組成物の成形加工法は特に限定さ
れるものでなく、熱可塑性樹脂について穀に用いられて
いる成形法、すなわち射出成形、中空成形、押出成形、
シート成形、熱成形、回転成形、積層成形、プレス成形
等の成形法が適用できる。
The molding method for the thermoplastic resin composition of the present invention is not particularly limited, and may include molding methods used for thermoplastic resins, such as injection molding, blow molding, extrusion molding,
Molding methods such as sheet molding, thermoforming, rotational molding, lamination molding, and press molding can be applied.

(実施例) 使用した各成分は次のとおりである。(Example) The components used are as follows.

フェニレンエーテル樹脂 日本ポリエーテル■にて試作したポリ (2,6−シメ
チルー1.4−フェニレンエーテル)で30°Cにおけ
るクロロホルム中で測定した固有粘度0.31dI/g
及び0.51d!!/gの2種類を用いた(表中、それ
ぞれPPE [71] =0.31、PPE [ηコ=
Q、51と略記した)、。
Phenylene ether resin Poly (2,6-dimethyl-1,4-phenylene ether) prototyped by Nippon Polyether ■ has an intrinsic viscosity of 0.31 dI/g measured in chloroform at 30°C.
and 0.51d! ! /g (in the table, PPE [71] = 0.31, PPE [η co =
Q, abbreviated as 51).

更に、以下の方法により変性した。Furthermore, it was modified by the following method.

変性PPE−1 固有粘度0.31dl/gのフェニレンエーテル樹脂5
00gに、トルエン5℃を加え、窒素雰囲気下、100
″Cて撹拌して完全溶解させた。この(6液に触媒のナ
トリウムエトキシド75g及びメタノール500−を加
えた後、グリシドール250gを30分間かけて滴下し
た。更に、100’Cで7時間撹拌を続けた。反応混合
物をメタノール25℃中に注ぎ、生成物のヒドロキシア
ルキル化フェニレンエーテル樹脂を沈澱させた。生成物
を炉別して、メタノールで2回洗浄後、80℃で減圧加
熱乾燥した。
Modified PPE-1 Phenylene ether resin 5 with intrinsic viscosity 0.31 dl/g
Add toluene at 5°C to 00g and heat to 100g under nitrogen atmosphere.
The solution was completely dissolved by stirring at 100'C. After adding 75 g of sodium ethoxide as a catalyst and 500 g of methanol to this liquid (6), 250 g of glycidol was added dropwise over 30 minutes. Furthermore, the mixture was stirred at 100'C for 7 hours. The reaction mixture was poured into methanol at 25°C to precipitate the hydroxyalkylated phenylene ether resin product.The product was separated in a furnace, washed twice with methanol, and then dried under reduced pressure at 80°C.

このヒドロキシアルキル化フェニレンエーテル樹脂はそ
の赤外線吸収スペクトルの3.380cm−’付近に、
水酸基に由来する吸収を示した。また、末端基のフェノ
ール性水酸基の定量を実施したところ、90%が反応し
ていることが判明した。
This hydroxyalkylated phenylene ether resin has an infrared absorption spectrum near 3.380 cm-'.
It showed absorption derived from hydroxyl groups. Furthermore, when the phenolic hydroxyl group of the terminal group was quantified, it was found that 90% had reacted.

ナオ、フェニレンエーテル樹脂の末端フェノール性水酸
基の反応率は、ジャーナル・才プ・アプライド・ポリマ
ー・サイエンス・アプライド・ポリマー・シンポジウム
(Journal of AppliedPolyme
r 5cience:Applied Polymer
 Symposiuml、34巻、(1978年>、1
03〜117頁に記載の方法に準じて、反応前後の末端
フェノール性水酸基を定量して計算した。
The reaction rate of the terminal phenolic hydroxyl group of phenylene ether resin was reported in the Journal of Applied Polymer Science Applied Polymer Symposium.
r 5science: Applied Polymer
Symposium, vol. 34, (1978>, 1
The terminal phenolic hydroxyl groups before and after the reaction were quantitatively determined and calculated according to the method described on pages 03 to 117.

変性PPE−2 固有粘度0.51dI/gのフェニレンエーテル樹脂を
用いた以外は、変性PPE−1の製造と同様の方法で、
ヒドロキシアルキル化フェニレンエーテル樹脂を得た。
Modified PPE-2 In the same manner as in the production of modified PPE-1 except that a phenylene ether resin with an intrinsic viscosity of 0.51 dI/g was used,
A hydroxyalkylated phenylene ether resin was obtained.

末端基のフェノール性水酸基の定量を実施したところ、
反応率は82%であった。
When the phenolic hydroxyl group of the terminal group was quantified,
The reaction rate was 82%.

変性PPE−3 固有粘度0.31dI/gのフェニレンエーテル樹脂4
00gをクロルベンゼン4j2に溶解し、続いてエチレ
ンカーボネート44g及び炭酸カリウム4gを加え、1
20℃で8時間撹拌を続けた。
Modified PPE-3 Phenylene ether resin 4 with intrinsic viscosity 0.31 dI/g
00g was dissolved in chlorobenzene 4j2, then 44g of ethylene carbonate and 4g of potassium carbonate were added, and 1
Stirring was continued for 8 hours at 20°C.

反応溶液を冷却後、メタノール20I2中にゆっくりと
注ぎ、生成したヒドロキシアルキル化フェニレンエーテ
ル樹脂を沈澱させた。沈澱したポリマーを?戸別後、純
水2Clで洗浄し、続いてメタノールI54で2回洗浄
し、80℃で減圧加熱乾燥した。
After cooling the reaction solution, it was slowly poured into methanol 20I2 to precipitate the produced hydroxyalkylated phenylene ether resin. Precipitated polymer? After being separated, it was washed with 2 Cl of pure water, then washed twice with methanol I54, and dried under reduced pressure at 80°C.

このヒドロキシアルキル化フェニレンエーテル樹脂は赤
外線吸収スペクトルの3.600cm−’付近に、水酸
基に由来すると考えられる吸収を示した。また、末端基
のフェノール性水酸基の反応前後の定量により、末端基
の54%が反応していることが判明した。
This hydroxyalkylated phenylene ether resin exhibited an absorption considered to originate from hydroxyl groups near 3.600 cm-' in the infrared absorption spectrum. In addition, quantification of the phenolic hydroxyl groups in the terminal groups before and after the reaction revealed that 54% of the terminal groups had reacted.

変性PPE−4 固有粘度0゜31#/gのフェニレンエーテル樹脂40
0gにトルエン4!を加え、窒素雰囲気下、95℃で撹
拌して完全に溶解させ、引続いて3−クロルプロパツー
ル800g及びナトリウムエトキシド30gを加えた後
、7時間加熱撹拌を続けた。反応混合物を大量のメタノ
ール中に注ぎ、生成したヒドロキシアルキル化フェニレ
ンエーテル樹脂を沈澱させた。続いて決別したポリマー
を水洗し、更にメタノールで2回洗浄し、85°Cで減
圧加熱乾燥した。
Modified PPE-4 Phenylene ether resin 40 with intrinsic viscosity 0°31#/g
0g toluene 4! was added and stirred at 95° C. under a nitrogen atmosphere to completely dissolve the mixture. Subsequently, 800 g of 3-chloropropanol and 30 g of sodium ethoxide were added, followed by continued heating and stirring for 7 hours. The reaction mixture was poured into a large amount of methanol to precipitate the resulting hydroxyalkylated phenylene ether resin. Subsequently, the separated polymer was washed with water, further washed twice with methanol, and dried under reduced pressure at 85°C.

このヒドロキシアルキル化フェニレンエーテル樹脂はそ
の赤外線吸収スペクトルの3.600cm−’付近に、
水酸基に由来すると考えられる吸収を示した。また、末
端基のフェノール性水酸基の反応前後の定量により末端
基の64%が反応していることが判明した。
This hydroxyalkylated phenylene ether resin has an infrared absorption spectrum near 3.600 cm-'.
It showed absorption thought to be derived from hydroxyl groups. Furthermore, quantitative determination of the phenolic hydroxyl groups in the terminal groups before and after the reaction revealed that 64% of the terminal groups had reacted.

エポキシ基含有オレフィン樹脂 三菱油化■試作品、すなわち、キシレンを溶媒とし、ベ
ンゾイルパーオキサイドを開始剤として、プロピレン樹
脂にグリシジルメタクリレート(以下、GMAと略記す
る)を130°Cて、3時間グラフト共重合し、その後
、GMAホモポリマーをアセトンで溶解 除去して得ら
れたポリプロピレン−GMAグラフト共重合体(GMA
含有量2.3wt%、重量平均分子量236000)を
使用した(表中、GMA−PPと略記した)。
Epoxy group-containing olefin resin Mitsubishi Yuka's prototype: Glycidyl methacrylate (hereinafter abbreviated as GMA) was grafted onto propylene resin at 130°C for 3 hours using xylene as a solvent and benzoyl peroxide as an initiator. Polypropylene-GMA graft copolymer (GMA) obtained by polymerization and then dissolving and removing the GMA homopolymer with acetone
(abbreviated as GMA-PP in the table).

プロピレン樹脂 三菱油化■製、プロピレン樹脂(商品名・三菱ポリプロ
MA3)を用いた(表中、PPと略記した)。
Propylene Resin A propylene resin (trade name: Mitsubishi Polypro MA3) manufactured by Mitsubishi Yuka ■ was used (abbreviated as PP in the table).

実施例1〜8及び比較例1〜6 表1に示した配合組成に従って、各成分の所定量を、東
洋精機製作所製ラボブラストミル混練機を用い280°
Cにて溶融混練し、組成物としたのち粉砕機にて粉末状
とした。この粉末状試料を東洋精機製作所製油圧式圧縮
成形機を用い、280°Cにて加圧成形してシートとし
、これを物性評価用試片とした。
Examples 1 to 8 and Comparative Examples 1 to 6 According to the formulation shown in Table 1, predetermined amounts of each component were mixed at 280° using a Lab Blast Mill kneader manufactured by Toyo Seiki Seisakusho.
The mixture was melted and kneaded at C to form a composition, which was then pulverized using a pulverizer. This powder sample was pressure-molded at 280°C using a hydraulic compression molding machine manufactured by Toyo Seiki Seisakusho to form a sheet, which was used as a specimen for physical property evaluation.

各物性値と諸性質は、下記により測定・評価して、結果
を表1に示した。
Each physical property value and various properties were measured and evaluated as follows, and the results are shown in Table 1.

(1)分散形態 試験片から一部を切り出し、イオンエツチングをしたの
ち、走査型電子顕微鏡(日立製作新製S−2400)に
て分散粒径を観察した。
(1) Dispersion form A portion was cut out from the test piece, subjected to ion etching, and then the dispersed particle size was observed using a scanning electron microscope (S-2400, newly manufactured by Hitachi).

(2)曲げ弾性率 I SOR178−1974Procedure 12
(JIS  K7203)に準じてインストロンJ式験
機を用い測定した。
(2) Flexural modulus I SOR178-1974 Procedure 12
It was measured using an Instron J type tester according to (JIS K7203).

(3)アイゾツト衝撃強度 ISOR18O−1969(JIS   K7110)
ノツチ無しアイゾツト衝撃強度に準し東洋精機製作所製
アイゾツト衝撃試験機を用い、2mm厚試片を3枚重ね
にしてセロテープで固定して測定した。
(3) Izot impact strength ISOR18O-1969 (JIS K7110)
Using an Izot impact tester manufactured by Toyo Seiki Seisakusho in accordance with the unnotched Izot impact strength, three 2 mm thick specimens were stacked and fixed with cellophane tape for measurement.

(4)耐有機瀉剤性 ベルゲンの属楕円法[SPEジャーナル667(196
2)]に準し測定した。具体的には、板厚2闘の試験片
を、長軸24cm、短軸8cmの四分の一楕円治具に固
定し、市販のガソリンに5分間浸漬したときの、き裂の
発生する最小歪みを限界歪みとして求めた。
(4) Organic diathermist resistance Bergen's genus ellipse method [SPE Journal 667 (196
2)]. Specifically, a test piece with a thickness of 2 mm was fixed in a quarter-ellipse jig with a major axis of 24 cm and a minor axis of 8 cm, and was immersed in commercially available gasoline for 5 minutes. The strain was determined as the critical strain.

この際、クラックが発生しないものを0(極めて良好)
、限界歪値が1.5%以上のものをO(良好)、同1.
0〜1.5%△(普通)、同1.0%未満×(不良)と
判定した。
At this time, if no cracks occur, 0 (extremely good)
, those with a critical strain value of 1.5% or more are rated O (good), and 1.
It was judged as 0 to 1.5% Δ (fair) and less than 1.0% × (poor).

また、前記粉末状試料から、カスタムサイエンティフィ
ック社製射出成形機(C5−183MMX  MINI
  MAX)を用いて、280℃で、幅6.2mm、長
さ32mm、厚さ3.2闘の試験片を射出成形し、その
試験片の外観を層状剥離(デラミネーション)の有無を
中心に評価した。
In addition, from the powdered sample, an injection molding machine manufactured by Custom Scientific (C5-183MMX MINI) was used.
MAX) at 280°C to injection mold a test piece with a width of 6.2 mm, a length of 32 mm, and a thickness of 3.2 mm, and examine the appearance of the test piece, focusing on the presence or absence of delamination. evaluated.

この際、実用上問題ないと判断されるものを○(良好) 問題あるものを× (不良) と判定し た。In this case, select ○ (good) if there is no problem in practical use. Something that is problematic (Bad) It was determined that Ta.

(発明の効果) 実施例及び比較例に示したように、ヒドロキシアルキル
化フェニレンエーテル樹脂(a)とエポキシ基含有オレ
フィン樹脂(b)の両者を組合わせて配合することによ
って、これら両者を同時に配合しない場合の比較例に比
べて、組成物は大幅に分散粒径が微細化し、本来非相溶
な成分の和名性が向上し、層状剥II (デラミネーシ
ョン)が発生しないと共に、成分(a)と成分(b)の
各々が本来有する特性を兼ね備えた高剛性、かつ耐有機
溶剤性と機械的強度が優れた熱可塑性樹脂組成物が得ら
れたことが明らかである。
(Effect of the invention) As shown in the Examples and Comparative Examples, by blending both the hydroxyalkylated phenylene ether resin (a) and the epoxy group-containing olefin resin (b), it is possible to blend both of them at the same time. Compared to the comparative example in which no component (a It is clear that a thermoplastic resin composition having high rigidity, excellent organic solvent resistance, and mechanical strength was obtained, which combines the characteristics originally possessed by component (b) and component (b).

Claims (1)

【特許請求の範囲】 下記の成分(a)及び(b)並に組成からなる熱可塑性
樹脂組成物。 (a)ヒドロキシアルキル化フェニレンエーテル樹脂1
0〜90重量% (b)エポキシ基含有オレフィン樹脂 90〜10重量%
[Scope of Claims] A thermoplastic resin composition comprising the following components (a) and (b) and the composition. (a) Hydroxyalkylated phenylene ether resin 1
0 to 90% by weight (b) Epoxy group-containing olefin resin 90 to 10% by weight
JP19043490A 1990-07-20 1990-07-20 Thermoplastic resin composition Pending JPH0480253A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19043490A JPH0480253A (en) 1990-07-20 1990-07-20 Thermoplastic resin composition
EP19910111759 EP0467261A3 (en) 1990-07-20 1991-07-15 Thermoplastic polyphenylene ether resin composition
US07/732,004 US5244983A (en) 1990-07-20 1991-07-18 Thermoplastic polyphenylene ether resin composition
US08/049,599 US5360866A (en) 1990-07-20 1993-04-20 Thermoplastic polyphenylene ether resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19043490A JPH0480253A (en) 1990-07-20 1990-07-20 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPH0480253A true JPH0480253A (en) 1992-03-13

Family

ID=16258070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19043490A Pending JPH0480253A (en) 1990-07-20 1990-07-20 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPH0480253A (en)

Similar Documents

Publication Publication Date Title
JPH0135860B2 (en)
EP0472960B1 (en) Thermoplastic resin composition
US5134194A (en) Thermoplastic resin composition
US5360866A (en) Thermoplastic polyphenylene ether resin composition
US5286793A (en) In situ compatibilization of PPE/polyethylene copolymer blends
JP2011057720A (en) Polyphenylene sulfide-based resin composition and method for producing the same
JPH0480253A (en) Thermoplastic resin composition
US5356992A (en) Compatibilized blends of PPE/polyethylene copolymer
JPH0480254A (en) Thermoplastic resin composition
JPH0480252A (en) Thermoplastic resin composition
US5191030A (en) Process for producing amino group terminated polyphenylene ether
JP3099433B2 (en) Thermoplastic resin composition
JPS63122757A (en) Polyphenylene ether resin composition
JPS63122756A (en) Polyphenylene ether resin composition
JPH04266951A (en) Thermoplastic resin composition
JPH05194833A (en) Thermoplastic resin composition
JPH0117504B2 (en)
JPH04311751A (en) Thermoplastic resin composition
JPH04311750A (en) Thermoplastic resin composition
JPH0496967A (en) Thermoplastic resin composition
JPH05279568A (en) Thermoplastic resin composition
JPH04178460A (en) Thermoplastic resin composition
JPH04126742A (en) Thermoplastic resin composition
JPH04353545A (en) Thermoplastic resin composition
JPH04126741A (en) Thermoplastic resin composition