JPH04311576A - Production of grain-oriented silicon steel sheet in which property is not deteriorated by stress relieving annealing - Google Patents

Production of grain-oriented silicon steel sheet in which property is not deteriorated by stress relieving annealing

Info

Publication number
JPH04311576A
JPH04311576A JP10508991A JP10508991A JPH04311576A JP H04311576 A JPH04311576 A JP H04311576A JP 10508991 A JP10508991 A JP 10508991A JP 10508991 A JP10508991 A JP 10508991A JP H04311576 A JPH04311576 A JP H04311576A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
oriented silicon
silicon steel
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10508991A
Other languages
Japanese (ja)
Inventor
Ujihiro Nishiike
西池 氏裕
Shigeko Sujita
筋田 成子
Tsutomu Kami
上   力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10508991A priority Critical patent/JPH04311576A/en
Publication of JPH04311576A publication Critical patent/JPH04311576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To stably execute the fractionizing of a magnetic domain with a sufficiently high iron loss reducing effect without losing the above effect and without causing the remarkable deterioration in its magnetic flux density in a method for manufacturing a grain-oriented silicon steel sheet. CONSTITUTION:Oxide 2 on the surface of a grain-oriented silicon steel sheet 1 after secondary recrystallization annealing is locally removed. Next, the part at which the oxide 2 has been removed is subjected to alloy plating 3. After that, this steel sheet is subjected to heat treatment to change the stress of the alloy plating, and subsequently, this steel is coated with an insulating film 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、鉄損の低い方向性け
い素鋼板の製造方法、詳しくは磁区細分化によって鉄損
特性を向上させた方向性けい素鋼板の製造方法に関し、
特にその磁区細分化効果が巻トランス等において必要と
される歪取り焼鈍によって失われることのない製造方法
を提案しようとするものである。
[Field of Industrial Application] The present invention relates to a method for manufacturing grain-oriented silicon steel sheets with low iron loss, and more specifically, to a method for manufacturing grain-oriented silicon steel sheets with improved iron loss characteristics through magnetic domain refinement.
In particular, the purpose is to propose a manufacturing method in which the magnetic domain refining effect is not lost due to strain relief annealing required in winding transformers and the like.

【0002】方向性けい素鋼板は、主として変圧器その
他の電気機器の鉄心として利用される。かかる方向性け
い素鋼板の特性は、磁束密度及び鉄損によって規定され
ていて、磁束密度(800 A/m の磁化力での磁束
密度B8(T)で代表される)は高い方が望ましく、ま
た鉄損(1.7 T、50 Hz の鉄損W17/50
で代表される)は低い方が望ましい。
Grain-oriented silicon steel sheets are mainly used as cores for transformers and other electrical equipment. The properties of such grain-oriented silicon steel sheets are defined by magnetic flux density and iron loss, and the higher the magnetic flux density (represented by the magnetic flux density B8 (T) at a magnetizing force of 800 A/m), the more desirable. Also, iron loss (1.7 T, 50 Hz iron loss W17/50
) is preferably lower.

【0003】0003

【従来の技術】方向性けい素鋼板の鉄損を低くする手段
としては、(1) けい素含有量を増大させる、(2)
 製品板厚を薄くする、(3) 二次再結晶粒を小さく
する、(4) 不純物含有量を減少させる、(5) 二
時再結晶粒の結晶方位を磁化容易軸の方向に揃える、等
、主として冶金学的手段が取られていたが、近年このよ
うな冶金学的手段に加えて、渦電流損の原因となる18
0 度磁区幅を細かくする磁区細分化法が有効な手段と
して活用されるに至っている。ところでこの磁区細分化
法は、局所的な塑性歪を利用していたために、巻トラン
ス用の鉄心等として必要な歪取り焼鈍を施すと、その効
果が失われてしまうという問題を残していた。そのため
塑性歪を用いない磁区細分化技術が必要と考えられ、研
究開発が種々行われた。
[Prior Art] Means for lowering the iron loss of grain-oriented silicon steel sheets include (1) increasing the silicon content; (2)
(3) Reduce the secondary recrystallized grains, (4) Reduce the impurity content, (5) Align the crystal orientation of the secondary recrystallized grains to the direction of the easy axis of magnetization, etc. , mainly metallurgical means were taken, but in recent years, in addition to such metallurgical means, 18
The magnetic domain refining method, which reduces the width of the 0 degree magnetic domain, has come to be used as an effective method. However, since this magnetic domain refining method utilizes local plastic strain, there remains the problem that the effect is lost when strain relief annealing, which is necessary for iron cores for wound transformers, etc., is applied. Therefore, a magnetic domain refining technology that does not use plastic strain is thought to be necessary, and various research and development efforts have been conducted.

【0004】歪取り焼鈍によって効果が失われない磁区
細分化技術としては数多くの技術が既に開示されている
。例えば弾性歪を利用する技術が開発されていて、最も
古くは特公平2−8027 号公報、特公平2−802
8 号公報にフォルステライトの張力効果を利用する技
術が開示されている。さらに特公平2−5821 号公
報にフォルステライト中へ局所的な異質部分を形成しそ
れにより発生する弾性歪を利用する技術が開示されてい
る。しかしこれらの技術はいずれも効果はあるものの、
塑性歪を利用する磁区細分化技術に比較して大幅にその
効果が小さい。また局所的に配した異物の反磁場を利用
する技術も開発されている。最も古く開示された技術と
して特開昭60−89545号公報には、表層の地鉄内
部に局所的に異物を配して異物の反磁場を利用すること
によって磁区を細分化する技術が、また特公昭63−3
1527号公報には同じく表層の地鉄内部に局所的に異
物を配して異物の反磁場を利用することによって磁区を
細分化する技術が開示されている。 この他特開昭60−255296 号公報には、表層の
地鉄内部に局部的に溝をつくりその中に金属を充てんす
ることが、特開昭59−28525号公報及び特公昭6
2−54873号公報には、表層の地鉄内部に酸洗で溝
をつくりその上層にりん酸塩系コートを施し必然的に溝
内部を充てんする技術がそれぞれ開示されている。これ
らの技術はそれぞれ効果があるものの、表層の地鉄内部
に溝を形成するために等しく磁束密度が低下するという
大きな欠点がある。さらに異物の局所的配置を、溝を形
成することなく行うものとして、特公昭62−4875
5号公報、特公昭62−33308号公報及び特公昭6
2−56926号公報には、それぞれコロイドを付着し
て熱拡散させる技術、置換めっきした物質を熱拡散させ
る技術、付着した物質にレーザ放電加工等のエネルギー
を利用して拡散させる技術、が開示されている。しかし
これらの技術は、何れも二次再結晶焼鈍前に異物の地鉄
内への進入を試みているためにその効果が不安定であり
、かつ拡散相自体の磁区細分化効果があまり大きくない
ことなどから、鉄損低減効果は期待されるほど大きくは
ない。また特開昭62−51202号公報では二次再結
晶焼鈍後の板に対して金属の熱拡散を局所的に行ってい
るが、やはり改善効果は他の方法に比してさほど大きく
はない。
[0004] Many techniques have already been disclosed as magnetic domain refining techniques in which the effects are not lost by strain relief annealing. For example, techniques that utilize elastic strain have been developed, and the oldest ones are Japanese Patent Publication No. 2-8027 and Japanese Patent Publication No. 2-802.
No. 8 discloses a technique that utilizes the tension effect of forsterite. Further, Japanese Patent Publication No. 2-5821 discloses a technique of forming localized foreign parts in forsterite and utilizing the elastic strain generated thereby. However, although all of these techniques are effective,
The effect is significantly smaller than that of magnetic domain refining technology that uses plastic strain. Also, a technique has been developed that utilizes the demagnetizing field of a locally placed foreign object. The oldest technology disclosed in Japanese Unexamined Patent Publication No. 60-89545 also describes a technique for subdividing magnetic domains by placing foreign matter locally inside the surface layer of the steel and utilizing the demagnetizing field of the foreign matter. Tokuko Showa 63-3
Publication No. 1527 also discloses a technique for subdividing magnetic domains by placing foreign matter locally inside the surface layer of the steel and utilizing the demagnetizing field of the foreign matter. In addition, Japanese Patent Application Laid-open No. 60-255296 discloses that a groove is locally formed inside the surface layer of the base metal and filled with metal.
Publication No. 2-54873 discloses a technique in which grooves are created in the surface layer of the base iron by pickling, and a phosphate coating is applied to the upper layer to inevitably fill the inside of the grooves. Although each of these techniques is effective, they have a major drawback in that the magnetic flux density equally decreases due to the formation of grooves inside the surface layer of the steel. Furthermore, Japanese Patent Publication No. 62-4875 proposed a method for localized placement of foreign matter without forming grooves.
Publication No. 5, Special Publication No. 62-33308 and Special Publication No. 6
Publication No. 2-56926 discloses a technique for thermally diffusing a colloid by attaching it, a technique for thermally diffusing a displacement-plated substance, and a technique for diffusing an attached substance using energy such as laser discharge machining. ing. However, all of these techniques have unstable effects because they attempt to infiltrate foreign matter into the steel base before secondary recrystallization annealing, and the effect of the magnetic domain refining of the diffused phase itself is not very large. For these reasons, the iron loss reduction effect is not as great as expected. Further, in Japanese Patent Application Laid-Open No. 62-51202, thermal diffusion of metal is performed locally on the plate after secondary recrystallization annealing, but the improvement effect is still not so great compared to other methods.

【0005】[0005]

【発明が解決しようとする課題】鉄損低下効果が十分大
きい磁区の細分化を、歪取り焼鈍によっても効果が失わ
れることなくかつ磁束密度の大幅な低下をもたらさずに
、安定して行うことのできる新規な方向性けい素鋼板の
製造方法を提案することがこの発明の目的である。
[Problem to be Solved by the Invention] To stably subdivide a magnetic domain that has a sufficiently large iron loss reducing effect without losing the effect even by strain relief annealing and without causing a significant decrease in magnetic flux density. It is an object of the present invention to propose a novel method for producing grain-oriented silicon steel sheets.

【0006】[0006]

【課題を解決するための手段】この発明は、二次再結晶
焼鈍後の方向性けい素鋼板表面上の酸化物を局所的に除
去し、次いで酸化物の除去部に合金めっきを施し、その
後この鋼板に熱処理を施して合金めっきの応力を変化さ
せた後、この鋼板に絶縁被覆を施すことを特徴とする歪
取り焼鈍によって特性が劣化しない方向性けい素鋼板の
製造方法(第1発明)である。
[Means for Solving the Problems] This invention locally removes oxides on the surface of a grain-oriented silicon steel sheet after secondary recrystallization annealing, then performs alloy plating on the portion where the oxides are removed, and then A method for producing a grain-oriented silicon steel sheet whose properties do not deteriorate due to strain relief annealing, characterized in that the steel sheet is subjected to heat treatment to change the stress of the alloy plating, and then an insulating coating is applied to the steel sheet (first invention). It is.

【0007】またこの発明は、二次再結晶焼鈍後に絶縁
被覆を施した方向性けい素鋼表面上の酸化物及び絶縁被
膜を局所的に除去し、次いで酸化物及び絶縁被膜の除去
部に合金めっきを施し、その後この鋼板に熱処理を施し
て合金めっきの応力を変化させた後、この鋼板に絶縁被
覆を施すことを特徴とする歪取り焼鈍によって特性が劣
化しない方向性けい素鋼板の製造方法(第2発明)であ
る。
[0007] Furthermore, the present invention locally removes oxides and insulating coatings on the surface of grain-oriented silicon steel coated with an insulating coating after secondary recrystallization annealing, and then injects an alloy into the removed portions of the oxides and insulating coating. A method for producing a grain-oriented silicon steel sheet whose properties do not deteriorate due to strain relief annealing, characterized by applying plating, then heat-treating the steel sheet to change the stress of the alloy plating, and then applying an insulating coating to the steel sheet. (Second invention).

【0008】この発明の製造方法に従って得られた鋼板
の一例を断面で図1に示す。地鉄(方向性けい素鋼板)
1表面上の酸化物2が局所的に除去してあり、この除去
部にめっき合金3が被成され、この酸化物2及びめっき
合金3を覆って絶縁膜4が被成されている。
An example of a steel plate obtained according to the manufacturing method of the present invention is shown in cross section in FIG. Substrate (oriented silicon steel plate)
Oxide 2 on one surface is locally removed, a plating alloy 3 is deposited on the removed portion, and an insulating film 4 is deposited covering the oxide 2 and plating alloy 3.

【0009】[0009]

【作用】この発明においては、二次再結晶焼鈍後の地鉄
表面に存在する酸化物をなるべく地鉄を損なわないよう
に除去し、さらに除去した酸化物の欠損部に合金めっき
を施す。合金めっきはさらに適当な熱処理を加えること
により変質すなわちアモルファスの状態から原子の再配
列が生じる等に起因すると思われる効果により、周囲に
与える応力を大幅に変化させる。このことから強力な歪
を局所的に与えたことと同じ効果を得ることができ、か
つそれが塑性歪でないためにその後の焼鈍によってその
効果が失われることもない。
[Operation] In this invention, the oxide present on the surface of the base steel after secondary recrystallization annealing is removed so as not to damage the base steel as much as possible, and further, the defective portions of the removed oxide are subjected to alloy plating. When alloy plating is further subjected to appropriate heat treatment, the stress applied to the surrounding area changes significantly due to an effect that is thought to be caused by alteration, that is, rearrangement of atoms from an amorphous state. Therefore, the same effect as applying strong strain locally can be obtained, and since the strain is not plastic strain, the effect will not be lost by subsequent annealing.

【0010】さらにプロセスの順序をおってこの発明を
具体的に説明する。この発明においては二次再結晶焼鈍
後の方向性けい素鋼板を用いる。方向性けい素鋼板は、
二次再結晶焼鈍に先立ってその表面に通常MgO を主
成分とする焼鈍分離剤が、その後の高温における二次再
結晶焼鈍とそれに引き続く純化焼鈍を行うために塗布さ
れ、したがって二次再結晶焼鈍後の鋼板表面はフォルス
テライトを主成分とする酸化膜被膜によって覆われてい
る。 この発明においてはこの酸化物被膜を局所的に除去する
。除去部の形態は線条あるいは列状に並んだ点であり、
その線あるいは列が鋼板の圧延方向すなわち磁化容易軸
の方向に対して45度以上、できれば直角の角度を成し
て繰り返し並んでいることが望ましい。図2に平行線状
に配置した場合の除去部の形態を平面図で示す。また除
去幅(図2におけるW)は、50μm 以上であれば効
果があることが確認されているが、0.5 mmを超え
ると見栄えが悪くなるし、さらに磁束密度の低下が著し
くなる。 除去部と除去部との繰り返し間隔(図2におけるL)に
関しては、平行線状に配置した場合には2mm以上の間
隔があることが望ましく、また10mmを超える間隔で
は効果は小さくなる。除去部は板面に対し片面に施すだ
けでも十分に効果があるし、両面に施してもよい。
Further, the present invention will be specifically explained based on the order of the process. In this invention, a grain-oriented silicon steel plate after secondary recrystallization annealing is used. Grain-oriented silicon steel plate is
Prior to the secondary recrystallization annealing, an annealing separator, usually based on MgO, is applied to the surface in order to carry out the subsequent secondary recrystallization annealing at high temperature and the subsequent purification annealing, thus the secondary recrystallization annealing The surface of the subsequent steel plate is covered with an oxide film whose main component is forsterite. In this invention, this oxide film is locally removed. The shape of the removed portion is in the form of lines or rows of points,
It is desirable that the lines or rows are repeatedly arranged at an angle of 45 degrees or more, preferably at right angles, to the rolling direction of the steel plate, that is, the direction of the axis of easy magnetization. FIG. 2 shows a plan view of the form of the removed portions when they are arranged in parallel lines. Furthermore, it has been confirmed that it is effective if the removal width (W in FIG. 2) is 50 μm or more, but if it exceeds 0.5 mm, the appearance becomes poor and the magnetic flux density decreases significantly. Regarding the repetition interval (L in FIG. 2) between the removed parts, it is desirable that the interval be 2 mm or more when they are arranged in parallel lines, and the effect will be small if the interval exceeds 10 mm. It is sufficient to apply the removal portion to one side of the board surface, or it may be applied to both sides.

【0011】さて酸化物の除去方法としては、板面に大
きな加工歪を残す方法は適さない。かえって磁気特性を
劣化させるからである。また地鉄部分をも除去してしま
うことは極力避けなければならない。それは地鉄部分を
局所的にでも除去すると磁束密度の減少を生起するから
である。しかしこのことは実際上非常に困難な問題を含
んでいる。というのは現実の方向性けい素鋼板において
酸化物と地鉄との界面は平らではなく、かつ複雑に入り
組んでいるからである。このような界面状態において酸
化物を除去する具体的な方法としては、超音波を付加し
た針状の振動子を加工端として酸化物を破砕除去する方
法が最も適している。それ以外にもエネルギーをコント
ロールしたレーザ光や電子ビームの照射によって酸化物
を除去することができる。
[0011] As a method for removing oxides, methods that leave large processing strains on the plate surface are not suitable. This is because, on the contrary, the magnetic properties are deteriorated. Also, it is necessary to avoid removing the base metal part as much as possible. This is because even locally removing the base metal portion causes a decrease in magnetic flux density. However, this involves very difficult problems in practice. This is because, in actual grain-oriented silicon steel sheets, the interface between the oxide and the base metal is not flat and is complicated. As a specific method for removing oxides in such an interface state, the most suitable method is to crush and remove oxides using a needle-shaped vibrator to which ultrasonic waves are applied as a processing end. In addition, oxides can be removed by irradiation with energy-controlled laser light or electron beam.

【0012】次に除去部に対して合金にめっきを施す。 この合金のめっきとそれに引き続く熱処理がこの発明の
最も苦労したところであり、またこの発明の特徴をなす
ところである。めっき合金は、被成後の熱処理によって
その内部応力が大幅に変化し、かつ鉄心に成形後に施さ
れる約800 ℃の歪取り焼鈍によってもはく離などの
劣化の生じないものを選ぶことが肝要である。かかる合
金としては、例えばNi−P、Ni−Co、Fe−Ni
、Cu−Ni、Sn−Ni等が適していて、とりわけN
i−Pの合金めっきはこの発明に有利に適合する。
Next, the removed portion is plated with an alloy. The plating of this alloy and the subsequent heat treatment were the most difficult part of this invention, and are also the characteristics of this invention. It is important to select a plating alloy whose internal stress will change significantly through post-forming heat treatment, and which will not cause deterioration such as peeling even when subjected to strain relief annealing at approximately 800°C after forming the iron core. be. Such alloys include, for example, Ni-P, Ni-Co, Fe-Ni.
, Cu-Ni, Sn-Ni, etc. are suitable, especially N
i-P alloy plating is advantageously compatible with this invention.

【0013】この発明に従う方法で合金めっきを施した
後における熱処理温度が鉄損特性に及ぼす影響を調べる
ために、二次再結晶焼鈍後の素材に繰り返し間隔5mm
、除去幅0.2 mmの酸化物除去を、超音波を付与し
たダイヤモンドの針を用いて行った後、Ni−Pの合金
めっきを施した。合金におけるPの含有量は12wt%
、目付け量は15g/m2であった。その後200 〜
1000℃の種々の温度で熱処理を3分間施し、さらに
熱処理後に、りん酸塩の絶縁コートを施した。かくして
得られた結果を図3にグラフで示す。同図から、熱処理
温度が500 ℃に満たないと鉄損低減効果があまりな
いことがわかる。一方熱処理温度が1000℃を超える
と連続的に熱処理を施すのに実際的ではなくなるので、
熱処理温度は500 〜1000℃の範囲が好ましい。 より好ましくは500 〜800 ℃の範囲とする。
[0013] In order to investigate the effect of heat treatment temperature on iron loss characteristics after alloy plating is applied by the method according to the present invention, the material after secondary recrystallization annealing was subjected to repeated intervals of 5 mm.
After oxide removal with a removal width of 0.2 mm was performed using a diamond needle to which ultrasonic waves were applied, Ni-P alloy plating was applied. The content of P in the alloy is 12wt%
The basis weight was 15 g/m2. After that 200 ~
Heat treatment was performed at various temperatures of 1000° C. for 3 minutes, and after further heat treatment, an insulating coat of phosphate was applied. The results thus obtained are shown graphically in FIG. From the same figure, it can be seen that if the heat treatment temperature is less than 500°C, the effect of reducing iron loss is not so great. On the other hand, if the heat treatment temperature exceeds 1000℃, it becomes impractical to carry out continuous heat treatment.
The heat treatment temperature is preferably in the range of 500 to 1000°C. More preferably, the temperature is in the range of 500 to 800°C.

【0014】また熱処理時間は、3分間に満たないと安
定して効果が得られないので、3分以上行うのが好まし
い。なお上限については特に限定するものではないが、
工業的に連続して熱処理するためには1000℃程度と
するのが望ましい。
[0014] Furthermore, if the heat treatment time is less than 3 minutes, a stable effect cannot be obtained, so it is preferable to carry out the heat treatment for 3 minutes or more. The upper limit is not particularly limited, but
For continuous industrial heat treatment, it is desirable to set the temperature to about 1000°C.

【0015】第2発明では、二次再結晶焼鈍後に絶縁被
覆を施した方向性けい素鋼板表面上の酸化物及び絶縁被
膜を局所的に除去するものとする。このように二次再結
晶焼鈍後の鋼板表面にあらかじめ絶縁コーティングを施
しておいた後に絶縁物及び酸化物を局所的に除去した後
合金めっきを施し、さらに熱処理を施しても同様の効果
が得られる。
[0015] In the second invention, the oxide and the insulation coating on the surface of the grain-oriented silicon steel sheet provided with the insulation coating after the secondary recrystallization annealing are locally removed. In this way, the same effect can be obtained by applying an insulating coating to the surface of the steel sheet after secondary recrystallization annealing, then locally removing insulators and oxides, then applying alloy plating, and then applying heat treatment. It will be done.

【0016】[0016]

【実施例】実施例1 C:0.06wt%(以下単に%で示す)、Si:3.
2 %、Mn:0.07%、Se:0.020 %、及
びSb:0.018 %を含有し、残部は実質的にFe
の組成になるけい素鋼スラブを、1350℃で  時間
加熱後、熱間圧延を施して熱延板とした。その後100
0℃で2分間の均一化焼鈍後、1000℃で2分間の中
間焼鈍を挟む2回の冷間圧延を施して厚さ0.20mm
の最終冷延板とした。その後、820 ℃の湿水素中で
脱炭・1次再結晶焼鈍を施した後、鋼板表面上にMgO
 を主成分とする焼鈍分離剤を塗布し、1200℃で5
時間の二次再結晶焼鈍との純化焼鈍を施した。かかる鋼
板の表面の酸化物を超音波を付加したダイヤモンド針で
線状に除去した。このときの除去幅は0.3 mmであ
り、線は板圧延方向と直角に繰り返し平行線の配置をと
った。繰り返し間隔は4mmである。除去後の線に各種
の合金めっきを10g/m2の割合で施した。この合金
めっき後、鋼板に300 〜900℃、3分間の熱処理
を施した。さらに該鋼板表面上にりん酸塩とコロイダル
シリカを主成分とする絶縁被膜を被成した。その後80
0 ℃のN2雰囲気で3時間のひずみ取り焼鈍を施し最
終製品とした。かくして得られた製品のめっき処理後及
び最終製品の鉄損特性を測定した結果を表1に示す。
[Example] Example 1 C: 0.06wt% (hereinafter simply expressed as %), Si: 3.
2%, Mn: 0.07%, Se: 0.020%, and Sb: 0.018%, and the remainder is substantially Fe.
A silicon steel slab having the composition was heated at 1350° C. for a period of time and then hot-rolled to obtain a hot-rolled plate. then 100
After uniform annealing at 0°C for 2 minutes, cold rolling was performed twice with intermediate annealing at 1000°C for 2 minutes to a thickness of 0.20 mm.
The final cold-rolled sheet was obtained. Then, after decarburization and primary recrystallization annealing in wet hydrogen at 820°C, MgO
Apply an annealing separator mainly composed of
A purification annealing with a secondary recrystallization annealing was performed for an hour. The oxides on the surface of the steel plate were removed in a linear manner using a diamond needle to which ultrasonic waves were applied. The removal width at this time was 0.3 mm, and the lines were arranged as parallel lines repeatedly perpendicular to the plate rolling direction. The repeat interval is 4 mm. Various alloy platings were applied to the removed wire at a rate of 10 g/m2. After this alloy plating, the steel plate was heat treated at 300 to 900°C for 3 minutes. Furthermore, an insulating film containing phosphate and colloidal silica as main components was formed on the surface of the steel plate. After that 80
The final product was subjected to strain relief annealing for 3 hours in a N2 atmosphere at 0°C. Table 1 shows the results of measuring the iron loss characteristics of the thus obtained product after plating treatment and of the final product.

【0017】[0017]

【0018】実施例2 C:0.07%、Si:3.2 %、Mn:0.07%
、Se:0.020 %、Al:0.024 %、N:
0.008 %を含有するけい素鋼スラブを、1380
℃で1時間加熱後、熱間圧延を施して熱延板とした。そ
の後、1100℃で2時間の均一加焼鈍後、300 ℃
の時効処理を間に挟む冷間圧延を施して、厚さ0.2 
mmの最終冷延板とした。
Example 2 C: 0.07%, Si: 3.2%, Mn: 0.07%
, Se: 0.020%, Al: 0.024%, N:
A silicon steel slab containing 0.008%
After heating at ℃ for 1 hour, hot rolling was performed to obtain a hot rolled sheet. After that, after uniform annealing at 1100℃ for 2 hours, 300℃
The thickness is 0.2 by cold rolling with aging treatment in between.
A final cold-rolled sheet of mm was obtained.

【0019】その後820 ℃の湿水素中で脱炭、1次
再結晶焼鈍を施した後、鋼板表面上にMgO を主成分
とする焼鈍分離剤を塗布し、1200℃で5時間の2次
再結晶焼鈍を純化焼鈍をかねた焼鈍を行った。さらに該
鋼板表面上にりん酸塩とコロイダルシリカを主成分とす
る絶縁被服を被成した。
After decarburization and primary recrystallization annealing in wet hydrogen at 820°C, an annealing separator containing MgO as a main component was applied to the surface of the steel sheet, and secondary recrystallization was performed at 1200°C for 5 hours. Crystal annealing was performed as purification annealing. Further, an insulating coating containing phosphate and colloidal silica as main components was formed on the surface of the steel plate.

【0020】続けて上該鋼板の表面の酸化物と絶縁被膜
を超音波を負荷したダイヤモンド針状に除去した。この
時の除去幅は0.3mm であり、線は板圧延方向と直
角に繰り返し平行線の配置をとった。繰り返し間隔は5
mmである。除去後の線に各種の合金めっきを10g/
m2の割合で施した。この合金めっき後、鋼板に300
 〜900 ℃、3分間の熱処理を施した。その後80
0 ℃のN2雰囲気で3時間のひずみとり焼鈍を施し最
終製品とした。かくして得られた、最終製品の鉄損特性
を測定した結果を表2に示す。
Subsequently, the oxide and insulating coating on the surface of the steel plate were removed using a diamond needle applied with ultrasonic waves. The removal width at this time was 0.3 mm, and the lines were arranged as parallel lines repeatedly perpendicular to the plate rolling direction. Repeat interval is 5
It is mm. 10g of various alloy platings are applied to the wire after removal.
It was applied at a rate of m2. After this alloy plating, 300
Heat treatment was performed at ~900°C for 3 minutes. After that 80
The final product was subjected to strain relief annealing for 3 hours in a N2 atmosphere at 0°C. Table 2 shows the results of measuring the iron loss characteristics of the final product thus obtained.

【0021】[0021]

【0022】[0022]

【発明の効果】この発明によれば歪取り焼鈍をしても磁
気特性の劣化のない方向性けい素鋼板が得られる。
According to the present invention, a grain-oriented silicon steel sheet whose magnetic properties do not deteriorate even after strain relief annealing can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の製造方法に従って得られた方向性け
い素鋼板の一例の断面図である。
FIG. 1 is a cross-sectional view of an example of a grain-oriented silicon steel sheet obtained according to the manufacturing method of the present invention.

【図2】鋼板表面の酸化物の除去形態を示す平面図であ
る。
FIG. 2 is a plan view showing the manner in which oxides are removed from the surface of a steel plate.

【図3】合金めっきを施した後における熱処理温度が鉄
損特性に及ぼす効果を示すグラフである。
FIG. 3 is a graph showing the effect of heat treatment temperature on core loss characteristics after alloy plating.

【符号の説明】[Explanation of symbols]

1  地鉄 2  酸化物 3  めっき合金 4  絶縁膜 W  除去幅 L  繰り返し間隔 1 Subway 2 Oxide 3 Plating alloy 4 Insulating film W Removal width L Repetition interval

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  二次再結晶焼鈍後の方向性けい素鋼板
表面上の酸化物を局所的に除去し、次いで酸化物の除去
部に合金めっきを施し、その後この鋼板に熱処理を施し
て合金めっきの応力を変化させた後、この鋼板に絶縁被
覆を施すことを特徴とする歪取り焼鈍によって特性が劣
化しない方向性けい素鋼板の製造方法。
Claim 1: After secondary recrystallization annealing, oxides on the surface of a grain-oriented silicon steel sheet are locally removed, then alloy plating is applied to the areas where the oxides are removed, and then this steel sheet is heat-treated to form an alloy. A method for producing a grain-oriented silicon steel sheet whose properties do not deteriorate due to strain relief annealing, the method comprising applying an insulating coating to the steel sheet after changing the plating stress.
【請求項2】  二次再結晶焼鈍後に絶縁被覆を施した
方向性けい素鋼表面上の酸化物及び絶縁被膜を局所的に
除去し、次いで酸化物及び絶縁被膜の除去部に合金めっ
きを施し、その後この鋼板に熱処理を施して合金めっき
の応力を変化させた後、この鋼板に絶縁被覆を施すこと
を特徴とする歪取り焼鈍によって特性が劣化しない方向
性けい素鋼板の製造方法。
Claim 2: After secondary recrystallization annealing, the oxide and insulation coating on the surface of the grain-oriented silicon steel coated with insulation are locally removed, and then alloy plating is applied to the areas where the oxide and insulation coating have been removed. A method for producing a grain-oriented silicon steel sheet whose properties do not deteriorate due to strain relief annealing, the method comprising: heat-treating the steel sheet to change the stress of the alloy plating, and then applying an insulating coating to the steel sheet.
JP10508991A 1991-04-11 1991-04-11 Production of grain-oriented silicon steel sheet in which property is not deteriorated by stress relieving annealing Pending JPH04311576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10508991A JPH04311576A (en) 1991-04-11 1991-04-11 Production of grain-oriented silicon steel sheet in which property is not deteriorated by stress relieving annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10508991A JPH04311576A (en) 1991-04-11 1991-04-11 Production of grain-oriented silicon steel sheet in which property is not deteriorated by stress relieving annealing

Publications (1)

Publication Number Publication Date
JPH04311576A true JPH04311576A (en) 1992-11-04

Family

ID=14398194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10508991A Pending JPH04311576A (en) 1991-04-11 1991-04-11 Production of grain-oriented silicon steel sheet in which property is not deteriorated by stress relieving annealing

Country Status (1)

Country Link
JP (1) JPH04311576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173641A (en) * 1993-12-20 1995-07-11 Sumitomo Metal Ind Ltd Directional electromagnetic steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07173641A (en) * 1993-12-20 1995-07-11 Sumitomo Metal Ind Ltd Directional electromagnetic steel sheet

Similar Documents

Publication Publication Date Title
EP0033878B1 (en) Method for treating an electromagnetic steel sheet by laser-beam irradiation
JPS6254873B2 (en)
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
JPH01281709A (en) Method of obtaining heat-resistant fractionalized magnetic domains in electrical steel to reduce core loss
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH0347975A (en) Low-iron loss grain-oriented silicon steel sheet
JPS60255926A (en) Manufacture of grain oriented electrical steel sheet low in iron loss
JPH03260020A (en) Method for radiating eb
JPH04311576A (en) Production of grain-oriented silicon steel sheet in which property is not deteriorated by stress relieving annealing
JPH0347974A (en) Heat-stable extremely low-iron loss grain-oriented silicon steel sheet and its production
JP2003301272A (en) Method for manufacturing grain-oriented electromagnetic steel sheet with low core loss
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JPH11241120A (en) Production of grain-oriented silicon steel sheet having uniform forsterite film
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS60103124A (en) Grain oriented silicon steel sheet which obviates deterioration of characteristic by stress relief annealing and production thereof
WO2024111642A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JPS6263616A (en) Manufacture of grain oriented electrical sheet having low iron loss
JPH07316655A (en) Production of low-iron loss grain oriented electrical steel sheet
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
JP4807064B2 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
KR100515461B1 (en) Ultra-low iron loss unidirectional silicon steel sheet
JP5200363B2 (en) Oriented electrical steel sheet and manufacturing method thereof