JPH0431042B2 - - Google Patents

Info

Publication number
JPH0431042B2
JPH0431042B2 JP23448684A JP23448684A JPH0431042B2 JP H0431042 B2 JPH0431042 B2 JP H0431042B2 JP 23448684 A JP23448684 A JP 23448684A JP 23448684 A JP23448684 A JP 23448684A JP H0431042 B2 JPH0431042 B2 JP H0431042B2
Authority
JP
Japan
Prior art keywords
wire
outer diameter
measuring device
radial direction
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23448684A
Other languages
Japanese (ja)
Other versions
JPS61112903A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23448684A priority Critical patent/JPS61112903A/en
Publication of JPS61112903A publication Critical patent/JPS61112903A/en
Publication of JPH0431042B2 publication Critical patent/JPH0431042B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means

Description

【発明の詳細な説明】 イ 発明の目的 産業上の利用分野 本発明は、径方向から見た外径が周期的に変わ
り、かつ、長手方向に走行する線材の径方向から
見た各最大外径を全長に渡つて測定する装置に関
するものである。
Detailed Description of the Invention A. Purpose of the Invention Industrial Field of Application The present invention provides a method for changing the outer diameter of a wire rod in the radial direction and for each maximum outer diameter of the wire rod running in the longitudinal direction. This relates to a device that measures the diameter over its entire length.

従来の技術 通常、鋼索等の線材の外径の測定はノギス等で
外周を挟む測定法が一般的である。
BACKGROUND TECHNOLOGY Generally, the outer diameter of a wire rod such as a steel cable is generally measured by pinching the outer circumference with a caliper or the like.

又、上記測定法の他、第9図に示す光学式線径
測定器を用いた測定法(特願昭58−190292号)も
従来知られている。この測定法は第9図に示すよ
うに投光器2より一次元ラインセンサ(以下イメ
ージセンサと称す)3に向けて平行光を照射し、
投光器2とメージセンサ3間に置かれた物体4の
影をメージセンサ3に投影させ、影の長さをイメ
ージセンサ3のビツト出力によりカウントして物
体4の外径寸法は測定するものである。従つて、
この測定法は物体4を一方向から見た見かけ上の
外形寸法を測定するものである。
In addition to the above-mentioned measuring method, a measuring method using an optical wire diameter measuring device shown in FIG. 9 (Japanese Patent Application No. 190292/1982) is also known. This measurement method irradiates parallel light from a floodlight 2 toward a one-dimensional line sensor (hereinafter referred to as an image sensor) 3, as shown in FIG.
The shadow of an object 4 placed between the light projector 2 and the image sensor 3 is projected onto the image sensor 3, and the length of the shadow is counted by the bit output of the image sensor 3 to measure the outer diameter of the object 4. Therefore,
This measurement method measures the apparent external dimensions of the object 4 viewed from one direction.

発明が解決しようとする問題点 近年、第8図に示すワイヤロープ1のような線
材が長手方向に高速で走行する場合について、そ
の外径を全長に渡つて測定することが要求されて
いる。ところで、ワイヤロープ1は第8図に示す
ように数本の鋼鉄線をより合せて作られたもので
あり、その断面は真円ではなく、通常、断面の最
大径をワイヤロープ1の外径として表わしてい
る。従つて、ノギス等でワイヤロープ1の断面の
最大径を全長に渡つて測定していけばよいが、ワ
イヤロープ1は高速で走行しているため、ワイヤ
ロープ1にノギス等を接触させて測定することは
できず、光学式線径測定器を用いて非接触式に測
定することが考えられる。而して、光学式線径測
定器は物体を一方向から見た見かけ上の外形寸法
を測定するものであり、ワイヤロープ1の外径を
測定する場合、径方向から見た見かけ上の外径が
測定されることになる。ところが、ワイヤロープ
1を径方向から見た外径は、第10図に示すよう
に山点P1と谷点P2が周期的に現われて変化して
おり、山点P1における見かけ上に最大外径Lが
ワイヤロープ1の断面の最大径に等しい。即ち、
光学式線径測定器を用いてワイヤロープ1のよう
な上記形状を有する線材の見かけ上の外径を細か
いピツチで測定していくと、最大となる測定値が
周期的に得られ、これがワイヤロープ1の断面の
最大径となる。ところが、光学式線径測定器の応
答には一定の時間を要するため、ワイヤロープ1
が高速で走行する時、ワイヤロープ1を細かいピ
ツチで測定できずピツチが粗くなつてワイヤロー
プ1の見かけ上の最大外径を測定できなくなる。
Problems to be Solved by the Invention In recent years, when a wire such as the wire rope 1 shown in FIG. 8 is running at high speed in the longitudinal direction, it has been required to measure the outer diameter of the wire over its entire length. By the way, the wire rope 1 is made by twisting several steel wires together as shown in FIG. It is expressed as Therefore, it is sufficient to measure the maximum diameter of the cross section of the wire rope 1 over its entire length using a caliper, etc. However, since the wire rope 1 is running at high speed, it is better to contact the wire rope 1 with a caliper, etc. Since it is not possible to do so, a non-contact method of measurement using an optical wire diameter measuring device is considered. Therefore, the optical wire diameter measuring device measures the apparent external dimensions of an object when viewed from one direction, and when measuring the external diameter of the wire rope 1, it measures the apparent external dimensions when viewed from the radial direction. The diameter will be measured. However, as shown in FIG. 10, the outer diameter of the wire rope 1 when viewed from the radial direction changes with peak points P 1 and valley points P 2 appearing periodically, and the apparent diameter at peak point P 1 changes. The maximum outer diameter L is equal to the maximum diameter of the cross section of the wire rope 1. That is,
When the apparent outer diameter of a wire having the above-mentioned shape, such as the wire rope 1, is measured using an optical wire diameter measuring device at fine pitches, the maximum measured value is obtained periodically, and this is the value of the wire. This is the maximum diameter of the cross section of the rope 1. However, since the response of the optical wire diameter measuring device requires a certain amount of time, wire rope 1
When the wire rope 1 runs at high speed, the wire rope 1 cannot be measured at a fine pitch, and the pitch becomes coarse, making it impossible to measure the apparent maximum outer diameter of the wire rope 1.

ロ 発明の構成 問題点を解決するための手段 本発明は、径方向から見た外径が周期的に変わ
り、かつ、長手方向に走行する線材の径方向から
見た各最大外径を全長に渡つて測定する装置であ
つて、線材に径方向から投光し、その一次元像を
イメージセンサで受光して記憶させ、記憶された
線材の像を演算処理して線材の外径を測定する線
径測定器と、長手方向に走行する上記線材を挟む
投受光部を含み、該投光部から径方向に線材を経
て受光部に入射した透過光量を算出して線材の上
記外径を連続的変化を検出すると共に上記投受光
部を線径測定器から所定距離に配することにより
線材の最大外径部が線径測定器を通る時点を検出
し、この時点で線径測定器に動作信号を出力する
最大点検出センサとを具備したものである。
B Means for solving the structural problems of the invention The present invention is characterized in that the outer diameter as seen in the radial direction changes periodically, and that each maximum outer diameter as seen in the radial direction of a wire running in the longitudinal direction is divided into the entire length. It is a device that measures the wire rod from the radial direction, receives and stores the one-dimensional image with an image sensor, and processes the stored image of the wire rod to measure the outer diameter of the wire rod. It includes a wire diameter measuring device and a light emitting/receiving part that sandwiches the wire running in the longitudinal direction, and calculates the amount of transmitted light that enters the light receiving part from the light projecting part in the radial direction through the wire, and continuously measures the outer diameter of the wire. By arranging the light emitting/receiving section at a predetermined distance from the wire diameter measuring device, the point at which the maximum outer diameter of the wire passes through the wire diameter measuring device is detected, and at this point the wire diameter measuring device operates. The sensor is equipped with a maximum point detection sensor that outputs a signal.

実施例 本発明の一実施例を第1図に示す概略構成から
以下説明する。第1図において、5は径方向から
見た外径が周期的に変わる線材、6は径方向から
見た線材5の外径を測定する線径測定器で、線材
5に触れることなく線径を測定できるよう光学式
線径測定器が用いられており、1組の投受光部の
間を線材5が通過する。7は径方向から見た線材
5の外径の連続的変化を検出して線径測定器6に
測定動作信号を出力する最大点検出センサで、線
材5に触れることなく検出できるように後述する
光学差動方式が用いられており、2組の投受光部
の間を線材5が通過する。
Embodiment An embodiment of the present invention will be described below, starting from the schematic configuration shown in FIG. In Fig. 1, 5 is a wire whose outer diameter as seen from the radial direction changes periodically, and 6 is a wire diameter measuring device that measures the outer diameter of the wire 5 when seen from the radial direction, without touching the wire 5. An optical wire diameter measuring device is used to measure the wire diameter, and the wire 5 passes between a pair of light emitting and receiving parts. Reference numeral 7 denotes a maximum point detection sensor that detects continuous changes in the outer diameter of the wire rod 5 viewed from the radial direction and outputs a measurement operation signal to the wire diameter measuring device 6, which will be described later so that detection can be performed without touching the wire rod 5. An optical differential system is used, and the wire 5 passes between two sets of light emitting and receiving parts.

8は線径測定器6と最大点検出センサ7の制御
部で、それぞれの投受光部を接続する。
Reference numeral 8 denotes a control section for the wire diameter measuring device 6 and the maximum point detection sensor 7, which connects the respective light emitting and receiving sections.

上記概略構成を更に詳しく述べる。まず、線材
5の径方向から見た最大外径部は一定周期で現わ
れるので、最大点検出センサ7から線径測定器6
に出力される測定動作信号は線材が等速で走行し
ている場合一定周期を持ち、該信号出力時に線径
測定器6の投受光部を通る線材5の位相は、常に
同一である。しかも、この位相は、最大点検出セ
ンサ7の投受光部と線径測定器6の投受光部の間
の間隔によつて決まるため、上記信号出力時に線
径測定器6の投受光部を線材5の最大外径部が通
るように上記間隔を設定しておく。
The above schematic configuration will be described in more detail. First, since the maximum outer diameter portion of the wire 5 as viewed from the radial direction appears at regular intervals, the wire diameter measuring device 6
The measurement operation signal outputted from the wire has a constant period when the wire runs at a constant speed, and the phase of the wire 5 passing through the light emitting/receiving section of the wire diameter measuring device 6 is always the same when the signal is output. Moreover, since this phase is determined by the distance between the light emitting and receiving part of the maximum point detection sensor 7 and the light emitting and receiving part of the wire diameter measuring device 6, when the above signal is output, the light emitting and receiving part of the wire diameter measuring device 6 is The above-mentioned interval is set so that the maximum outer diameter part of No. 5 passes through.

線径測定器6は最大点検出センサ7からの出力
信号に同期して光源を発光させ、線材5の径方向
から見た最大外径部を測定する光学式線径測定器
である。例えば、第9図の光学式線径測定器によ
る測定動作原理を示すと、まず最大点検出センサ
7からの出力信号に同期して投光部である光源2
をパルス発光させる。そして、受光部であるイメ
ージセンサ3に物体4、即ち線材5の最大外径部
が影になつた光が入射した直後にイメージセンサ
3にクロツクパルスを与えると、イメージセンサ
3内の各フオトセル3aからそれに対応したパル
ス列が出力される。このパルス列の影に対応する
期間を演算処理して線材5の最大外径を測定す
る。上記測定動作は制御部8によつて制御され
る。
The wire diameter measuring device 6 is an optical wire diameter measuring device that causes a light source to emit light in synchronization with the output signal from the maximum point detection sensor 7 and measures the maximum outer diameter portion of the wire 5 as viewed from the radial direction. For example, to show the principle of measurement operation by the optical wire diameter measuring device shown in FIG. 9, first, the light source 2 which is the light projecting section
emits pulse light. When a clock pulse is applied to the image sensor 3 immediately after the object 4, that is, the light in which the maximum outer diameter of the wire 5 is in the shadow, enters the image sensor 3, which is the light receiving part, each photocell 3a in the image sensor 3 A pulse train corresponding to this is output. The maximum outer diameter of the wire 5 is measured by calculating the period corresponding to the shadow of this pulse train. The above measurement operation is controlled by the control section 8.

最大点検出センサ7は、第2図に示す検出セン
サ7′を2台7′a,7′b用いた光学差動方式に
より線材5の径方向から見た外径の連続的変化を
検出し線径測定器6は測定動作信号を出力するも
のである。検出センサ7′の測定動作原理は第2
図に示すように投光部である光源9から出てレン
ズ10により平行となつた光線を線材5に径方向
から照射し透過光線をレンズ11で集めその全光
量を積算することにより線材5の外径を算出する
ものである。光学差動方式によれば、第3図に示
すように一方の検出センサ7′aが線材5の最大
外径を見ている時、片方の検出センサ7′bが線
材5の最小外径を見るようにそれぞれ配置され
る。各検出センサ7′a,7′bは線材5の最大外
径を検出している時、出力は最低となり、最小外
径を検出している時、出力は最高となる。従つて
線材5が長手方向に走行し検出センサ7′a,
7′bの各投受光部の間を通つていくと、検出セ
ンサ7′aの出力は第4図のようになり、検出セ
ンサ7′bの出力は第5図のようになつて、互い
に逆位相となる。そして、両出力の差を取れば、
直流分Lがカツトされ、第6図のように安定した
出力が得られる。ここで、第6図に示す出力曲線
を第7図に示すように同一周期のパルス曲線に変
換すれば、線材5の最大外径はこのパルス曲線の
立上がり点又は立下がり点と同一周期で現われ
る。従つて、この点で線径測定器6に測定動作信
号を出力する。上記測定動作は制御部8で制御さ
れる。
The maximum point detection sensor 7 detects continuous changes in the outer diameter of the wire 5 as viewed from the radial direction by an optical differential method using two detection sensors 7'a and 7'b shown in FIG. The wire diameter measuring device 6 outputs a measurement operation signal. The measurement operation principle of the detection sensor 7' is the second
As shown in the figure, the wire 5 is irradiated with light rays emitted from a light source 9, which is a light projecting part, and made parallel by a lens 10 from the radial direction, and the transmitted light rays are collected by a lens 11 and the total amount of light is integrated. This is to calculate the outer diameter. According to the optical differential system, as shown in FIG. 3, when one detection sensor 7'a is looking at the maximum outer diameter of the wire 5, the other detection sensor 7'b is looking at the minimum outer diameter of the wire 5. They are arranged as you can see. When each detection sensor 7'a, 7'b detects the maximum outer diameter of the wire 5, the output is the lowest, and when the minimum outer diameter is detected, the output is the highest. Therefore, the wire 5 runs in the longitudinal direction and the detection sensors 7'a,
7'b, the output of the detection sensor 7'a becomes as shown in Fig. 4, and the output of the detection sensor 7'b becomes as shown in Fig. 5. The phase is opposite. Then, if we take the difference between the two outputs,
The DC component L is cut off, and a stable output is obtained as shown in FIG. Here, if the output curve shown in Fig. 6 is converted into a pulse curve with the same period as shown in Fig. 7, the maximum outer diameter of the wire 5 will appear at the same period as the rising point or falling point of this pulse curve. . Therefore, a measurement operation signal is output to the wire diameter measuring device 6 at this point. The above measurement operation is controlled by the control section 8.

上記測定は測定法原理上、線材5は測定装置に
対し相対的に移動する必要があり、静止する測定
装置に対し静止する線材5を測定できず、線材5
の相対的最低移動速度がある。即ち、イメージセ
ンサ3の最低繰り返し速度は約10回/secである
ため、例えば30mmピツチで前記最大外径の現われ
る線材5では30mm×10回=300mm/sec(18m/
min)となる。これ以下の測定は従来の測定によ
る。又、線材5の相対的最高移動速度は測定装置
の最大検出速度と線材5の前記最大外径の1ピツ
チによつて決まり、例えば上記最大検出速度が
400回/secで10mmピツチ毎に前記最大外径の現わ
れる線材5では10mm×400回/sec=4000mm/sec
(240m/min)となる。相対的移動速度がこれ以
上の線材5では線材5の前記最大外径の1ピツチ
おきに測定する。
Due to the principle of the measurement method, the above measurement requires that the wire 5 move relative to the measuring device, and the stationary measuring device cannot measure the stationary wire 5.
There is a relative minimum movement speed of That is, since the minimum repetition rate of the image sensor 3 is about 10 times/sec, for example, for the wire 5 that has the maximum outer diameter at a pitch of 30 mm, 30 mm x 10 times = 300 mm/sec (18 m/sec).
min). Measurements below this are based on conventional measurements. Further, the relative maximum moving speed of the wire 5 is determined by the maximum detection speed of the measuring device and the pitch of the maximum outer diameter of the wire 5. For example, if the maximum detection speed is
For wire rod 5 where the maximum outer diameter appears every 10 mm pitch at 400 times/sec, 10 mm x 400 times/sec = 4000 mm/sec
(240m/min). For wire rods 5 whose relative moving speed is higher than this, measurements are made at every other pitch of the maximum outer diameter of the wire rod 5.

ハ 発明の目的 本発明によれば、数本の鋼鉄線をより合せて作
られた鋼索のように径方向から見て外径が周期的
に変わり、かつ、長手方向に高速で動く線材の外
径を全長に渡つて測定する場合において、線材の
見かけの各最大外径部が光学式線径測定器を通る
時点を検出し、この時点で光学式線径測定器によ
り線材の見かけの最大外径を測定するようにした
から、光学式線径測定器を用いて線材の外径を長
手方向に細かいピツチで測定しその見かけの最大
外径部を検出する必要がなくなり、線材がある程
度高速で動いてもその全長に渡る外径の測定が可
能となる。
C. Purpose of the Invention According to the present invention, the outer diameter of a wire rod that changes periodically when viewed from the radial direction and that moves at high speed in the longitudinal direction, such as a steel cable made by twisting several steel wires, When measuring the diameter over the entire length, the point at which each apparent maximum outer diameter portion of the wire passes through an optical wire diameter measuring device is detected, and at this point the optical wire diameter measuring device measures the apparent maximum outer diameter of the wire. Since the diameter is measured, there is no need to use an optical wire diameter measuring device to measure the outer diameter of the wire at fine pitches in the longitudinal direction and detect the apparent maximum outer diameter. Even if it moves, it is possible to measure the outer diameter over its entire length.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る外径測定装置の一実施例
の概略構成図、第2図は本発明に含まれる最大点
検出センサを構成する検出センサの概略構成図、
第3図は最大点検出センサとして構成される2個
の検出センサの配置図で、第4図と第5図は2個
の検出センサの各出力の波形図で、第6図はその
合成波形図、第7図は第6図の波形を変換したパ
ルス波形図、第8図はワイヤロープの斜視図、第
9図は光学式線径測定器の概略図、第10図は径
方向から見たワイヤロープ1の概略図である。 3……イメージセンサ、5……線材、6……線
径測定器、7……最大点検出センサ。
FIG. 1 is a schematic diagram of an embodiment of an outer diameter measuring device according to the present invention, and FIG. 2 is a schematic diagram of a detection sensor constituting a maximum point detection sensor included in the present invention.
Figure 3 is a layout diagram of two detection sensors configured as maximum point detection sensors, Figures 4 and 5 are waveform diagrams of each output of the two detection sensors, and Figure 6 is their combined waveform. Figure 7 is a pulse waveform diagram obtained by converting the waveform in Figure 6, Figure 8 is a perspective view of a wire rope, Figure 9 is a schematic diagram of an optical wire diameter measuring device, and Figure 10 is a view from the radial direction. FIG. 2 is a schematic diagram of a wire rope 1. 3... Image sensor, 5... Wire rod, 6... Wire diameter measuring device, 7... Maximum point detection sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 径方向から見た外径が周期的に変わり、か
つ、長手方向に走行する線材の径方向から見た各
最大外径を全長に渡つて測定する装置であつて、
線材に径方向から投光し、その一次元像をイメー
ジセンサで受光して記憶させ、記憶された線材の
像を演算処理して線材の外径を測定する線径測定
器と、長手方向に走行する上記線材を挟む投受光
部を含み、該投光部から径方向に線材を経て受光
部に入射した透過光量を算出して線材の上記外径
の連続的変化を検出すると共に上記投受光部を線
径測定器から所定距離に配することにより線材の
最大外径部が線径測定器を通る時点を検出し、こ
の時点で線径測定器に動作信号を出力する最大点
検出センサとを具備したことを特徴とする外径測
定装置。
1. A device whose outer diameter as seen in the radial direction changes periodically and that measures each maximum outer diameter as seen in the radial direction of a wire running in the longitudinal direction over the entire length,
A wire diameter measuring device that projects light onto the wire from the radial direction, receives and stores the one-dimensional image with an image sensor, and measures the outer diameter of the wire by processing the stored image of the wire. It includes a light emitting/receiving section that sandwiches the traveling wire, and calculates the amount of transmitted light that has entered the light receiving section through the wire in the radial direction from the light emitting section, detecting continuous changes in the outer diameter of the wire, and detecting the continuous change in the outer diameter of the wire. The maximum point detection sensor detects the point in time when the maximum outer diameter part of the wire passes through the wire diameter measuring device by placing the part at a predetermined distance from the wire diameter measuring device, and outputs an operation signal to the wire diameter measuring device at this point. An outer diameter measuring device characterized by comprising:
JP23448684A 1984-11-07 1984-11-07 Outside-diameter measuring device Granted JPS61112903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23448684A JPS61112903A (en) 1984-11-07 1984-11-07 Outside-diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23448684A JPS61112903A (en) 1984-11-07 1984-11-07 Outside-diameter measuring device

Publications (2)

Publication Number Publication Date
JPS61112903A JPS61112903A (en) 1986-05-30
JPH0431042B2 true JPH0431042B2 (en) 1992-05-25

Family

ID=16971776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23448684A Granted JPS61112903A (en) 1984-11-07 1984-11-07 Outside-diameter measuring device

Country Status (1)

Country Link
JP (1) JPS61112903A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975555B (en) * 2010-09-25 2012-05-23 西北工业大学 Strain measurement method based on light transmission measuring technology and device thereof
US11524136B2 (en) * 2018-12-24 2022-12-13 Biosense Webster (Israel) Ltd. Non-invasive measurement of the pitch of a braid

Also Published As

Publication number Publication date
JPS61112903A (en) 1986-05-30

Similar Documents

Publication Publication Date Title
KR890005522A (en) Space filter type speed measuring device
DE60119741D1 (en) MEASURING CYLINDRICAL OBJECTS USING LASER TELEMETRY
DE50015209D1 (en) Optical position measuring device
JPS56117107A (en) Measuring method of profile
JPH0431042B2 (en)
JPS57187604A (en) Measurement device of profile
EP0368687A3 (en) Position sensing device
JP2979262B2 (en) Tire inner and outer diameter measuring method
JPS5828615A (en) Measuring device for extent of shift
EP0295720A3 (en) Laser speckel velocity-measuring apparatus
JPH04371393A (en) Detection of packing ratio of flux in welding wire including flux
JPH08146020A (en) Apparatus for measuring moving speed/moving amount of moving body
JPS61286709A (en) Apparatus for measuring outer diameter
JPS6232403B2 (en)
JPH0545128A (en) Method for measuring length of moving object
SU737778A1 (en) Method of measuring the length of filament-like moving article
JPS6139286Y2 (en)
SU1571508A1 (en) Apparatus for measuring the speed of movement of an object
RU2005998C1 (en) Device for measurement of volume
JPS5885107A (en) Method of measuring length of movable object in noncontact manner
JPH05240873A (en) Motion detector
JPS6333603A (en) Optical position detector
RU1805293C (en) Method of and device for measuring geometric dimensions of object
SU718786A2 (en) Correlation meter of surface image motion speed
JPH0560575A (en) Position detection unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term