JPH04310279A - Oxidizing apparatus of sulfite compound-containing ash - Google Patents

Oxidizing apparatus of sulfite compound-containing ash

Info

Publication number
JPH04310279A
JPH04310279A JP3075007A JP7500791A JPH04310279A JP H04310279 A JPH04310279 A JP H04310279A JP 3075007 A JP3075007 A JP 3075007A JP 7500791 A JP7500791 A JP 7500791A JP H04310279 A JPH04310279 A JP H04310279A
Authority
JP
Japan
Prior art keywords
gas
ash
exhaust gas
temperature
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3075007A
Other languages
Japanese (ja)
Inventor
Koichi Yokoyama
公一 横山
Hirobumi Yoshikawa
博文 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP3075007A priority Critical patent/JPH04310279A/en
Publication of JPH04310279A publication Critical patent/JPH04310279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To accelerate the reaction speed of an oxidation reaction of calcium sulfite compound-containing ashes with oxygen and carry out the oxidation treatment by a simple apparatus. CONSTITUTION:In a discharged smoke desulfurization apparatus wherein ashes are collected by a dust collecting apparatus 5 after desulfurization of combustion gas is carried out using a desulfurizing agent, the sulfite compound-containing ashes collected by the dust collecting apparatus 5 are put in a reactor 9, a gas mixture consisting of compressed air, oxygen-rich air and nitrogen monoxide-containing high temperature gas (waste gas) from a device 7 is led to the reactor to oxidize the sulfite compound-containing ashes. In the reaction; SO3+1/2H2O+1/2O2 CaSO4.1/2H2O, when high temperature flue gas is used for increasing the gas temperature, oxidizing efficiency is improved owing to NO in the reaction gas and denitrification reaction; CaSO3+1/2H2O+ NO CaSO4.1/2H2O+1/2N2 is also carried out.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は燃焼排ガスの脱硫装置か
ら発生する亜硫酸化合物を含んだ灰の処理に関し、特に
、水分圧が高められた加圧空気と酸素富化空気によって
亜硫酸化合物を含んだ灰を酸化する処理に関するもので
ある。
[Industrial Application Field] The present invention relates to the treatment of ash containing sulfite compounds generated from a flue gas desulfurization device, and in particular, the present invention relates to the treatment of ash containing sulfite compounds generated from a flue gas desulfurization equipment, and in particular, the ash containing sulfite compounds is treated by pressurized air with increased moisture pressure and oxygen-enriched air. It relates to the process of oxidizing ash.

【0002】0002

【従来の技術】火力発電所における重油焚、石炭焚ボイ
ラから排出される排ガス中には、硫黄化合物(SOx)
やHClなどの酸性有害物質が通常、100〜3000
ppmの割合で含まれており、酸性雨や光化学スモッグ
の原因物質とされるため、その効果的な処理手段が望ま
れている。従来から湿式法(例えば石灰石−石膏法)ま
たは乾式法(活性炭法)が実施されているが、湿式法は
有害物質の除去率が高い反面、廃水処理が困難で、排ガ
スを再加熱する必要があり、設備費や運転費が高く、乾
式法では高い除去率が得られないという問題があった。 このため、無排水の低コストプロセスで高い除去率が得
られる脱硫方法の開発が望まれているが、消石灰やその
スラリを排ガス中に噴霧する半乾式法や火炉内や煙道内
の高温ガス中に石灰石を直接分散させて酸性有害物質を
除去する乾式法が提案されており、設備費や運転費が安
いという特徴を有している。
[Prior Art] Sulfur compounds (SOx) are contained in the exhaust gas discharged from heavy oil-fired and coal-fired boilers in thermal power plants.
Acidic toxic substances such as
ppm, and is said to be a causative agent of acid rain and photochemical smog, so effective treatment means are desired. Conventionally, wet methods (e.g. limestone-gypsum method) or dry methods (activated carbon method) have been used, but while the wet method has a high removal rate of harmful substances, it is difficult to treat wastewater and requires reheating of exhaust gas. However, there were problems in that the equipment costs and operating costs were high, and a high removal rate could not be obtained with the dry method. For this reason, it is desired to develop a desulfurization method that can obtain a high removal rate in a low-cost process without waste water. A dry method has been proposed in which acidic harmful substances are removed by directly dispersing limestone in the water, and the dry method is characterized by low equipment and operating costs.

【0003】消石灰や生石灰を排ガス中に噴霧して排ガ
ス中のSO2と反応させ、これを集塵装置で除去する方
法の代表的なフローシートを図8に示す。ボイラ1から
の排ガスはエアヒータ3で温度を下げられ、脱硫塔2に
導かれる。消石灰等の脱硫剤は煙道または脱硫塔2内に
噴霧にして供給され、この時水4も供給されることによ
り排ガスの温度を下げ、湿度を上げる。この際、水4は
脱硫剤と別に供給しても、脱硫剤をスラリとして同時に
供給しても良い。反応した脱硫剤は排ガス中の灰ととも
に集塵装置5で捕集され、廃棄される。
FIG. 8 shows a typical flow sheet of a method in which slaked lime or quicklime is sprayed into exhaust gas to react with SO2 in the exhaust gas, and then removed by a dust collector. The temperature of the exhaust gas from the boiler 1 is lowered by an air heater 3, and then guided to a desulfurization tower 2. A desulfurizing agent such as slaked lime is supplied as a spray into the flue or into the desulfurizing tower 2, and water 4 is also supplied at this time to lower the temperature of the exhaust gas and increase the humidity. At this time, the water 4 may be supplied separately from the desulfurizing agent, or the desulfurizing agent may be supplied simultaneously as a slurry. The reacted desulfurizing agent is collected together with the ash in the exhaust gas by the dust collector 5 and discarded.

【0004】このような方法において、酸性有害物質の
除去率は排ガス中の水分(相対湿度)が支配的であると
されている。すなわち、除去率を上げるためには、排ガ
スの温度を下げ、水分を上げることが必要である。水分
濃度を上げるためには、水や消石灰スラリを噴霧する方
法が提案されているが、このようなガス中の水分濃度を
上げる方法では除去率の向上は十分ではない。除去率が
低い場合は、集塵装置によって捕集された未反応の脱硫
剤を含む粒子に水や蒸気を添加し、表面に形成された反
応生成物の殻を破壊した後、この一部を再び排ガス中に
噴霧することによって除去率を向上する方法も提案され
ている(例えば、米国特許第3431289号明細書、
特開昭61−35827号)。このような半乾式法では
、脱硫反応が終了した際、廃棄物として亜硫酸カルシウ
ムが含まれた灰が発生する。この灰の処理法として、従
来はこの灰を酸素による酸化雰囲気中で熱処理すること
により、灰中の亜硫酸カルシウムを硫酸カルシウムに酸
化していた。
[0004] In such a method, the removal rate of acidic harmful substances is said to be dominated by the moisture (relative humidity) in the exhaust gas. That is, in order to increase the removal rate, it is necessary to lower the temperature of the exhaust gas and increase the moisture content. In order to increase the moisture concentration, methods of spraying water or slaked lime slurry have been proposed, but such methods of increasing the moisture concentration in the gas do not sufficiently improve the removal rate. If the removal rate is low, add water or steam to the particles containing unreacted desulfurization agent collected by the dust collector to destroy the shell of reaction products formed on the surface, and then remove some of the particles. A method of improving the removal rate by again spraying into the exhaust gas has also been proposed (for example, U.S. Pat. No. 3,431,289,
JP-A No. 61-35827). In such a semi-dry method, when the desulfurization reaction is completed, ash containing calcium sulfite is generated as waste. Conventionally, this ash has been treated by heat-treating the ash in an oxidizing atmosphere using oxygen to oxidize the calcium sulfite in the ash to calcium sulfate.

【0005】[0005]

【発明が解決しようとする課題】上記半乾式法における
脱硫反応の廃棄物としての亜硫酸カルシウム含有灰の酸
素による酸化処理方法は反応速度が遅く、処理時間が長
くなり、従って処理効率が悪いという問題点があった。 また、この処理方法は燃焼装置とは別系統の亜硫酸カル
シウムの酸化処理装置を設ける必要があり、装置が複雑
・高価になるという問題点があった。
[Problems to be Solved by the Invention] The method of oxidizing calcium sulfite-containing ash, which is a waste product of the desulfurization reaction, in the semi-dry method described above has a problem in that the reaction rate is slow, the treatment time is long, and the treatment efficiency is low. There was a point. Furthermore, this treatment method requires the installation of a calcium sulfite oxidation treatment device separate from the combustion device, which poses a problem in that the device becomes complicated and expensive.

【0006】そこで、本発明の目的は亜硫酸カルシウム
含有灰の酸素による酸化反応の反応速度を速め、かつ簡
易な装置で酸化処理を行うことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to increase the reaction rate of oxidation reaction of calcium sulfite-containing ash with oxygen and to carry out the oxidation treatment using a simple device.

【0007】[0007]

【課題を解決するための手段】本発明の上記目的は次の
主構成によって達成される。すなわち、燃焼排ガスを脱
硫剤で脱硫処理した後、集塵器で灰を回収しする排煙脱
硫装置において、集塵器で回収された亜硫酸化合物含有
灰に加圧空気、酸素富化空気および一酸化窒素を含む高
温ガスからなる混合ガスを導入する亜硫酸化合物含有灰
の酸化装置、または、燃焼排ガスを脱硫剤で脱硫処理し
た後、集塵器で灰を回収しする排煙脱硫装置において、
集塵器で回収された亜硫酸化合物含有灰に加圧空気と酸
素富化空気からなる高温の混合ガスを導入する亜硫酸化
合物含有灰の酸化装置である。
[Means for Solving the Problems] The above objects of the present invention are achieved by the following main configuration. In other words, in a flue gas desulfurization device that desulfurizes combustion exhaust gas with a desulfurizing agent and then collects the ash in a dust collector, pressurized air, oxygen-enriched air, and In an oxidizing device for ash containing sulfite compounds that introduces a mixed gas consisting of high-temperature gas containing nitrogen oxide, or in a flue gas desulfurization device that collects ash in a dust collector after desulfurizing combustion exhaust gas with a desulfurizing agent,
This is an oxidation device for sulfite compound-containing ash that introduces a high-temperature mixed gas consisting of pressurized air and oxygen-enriched air into the sulfite compound-containing ash collected by a dust collector.

【0008】集塵装置で回収した灰を、圧縮空気により
十分加湿しつつ、PSA(PressureSwing
 Adsorption)法またはガス分離膜によって
酸素富化処理した空気と混合し、反応容器内の温度を1
00℃以上にすることが望ましい。このとき、好ましく
は水分濃度を100mmHg以上に調整しておく。一酸
化窒素含有混合ガスとして燃焼排ガス中の窒素酸化物お
よび硫黄酸化物濃度が排出ガス規制基準値を満たすよう
にモニタした上で、燃焼排ガスを用いてもよい。混合ガ
スとして一酸化窒素含有高温ガスを用いないときは、燃
焼排ガスの熱を利用して加熱して用いることができる。
[0008] The ash collected by the dust collector is sufficiently humidified with compressed air and then subjected to PSA (Pressure Swing).
The mixture is mixed with oxygen-enriched air using the adsorption method or gas separation membrane, and the temperature inside the reaction vessel is lowered to 1.
It is desirable that the temperature be 00°C or higher. At this time, the water concentration is preferably adjusted to 100 mmHg or higher. Combustion exhaust gas may be used as the nitrogen monoxide-containing mixed gas after being monitored so that the concentration of nitrogen oxides and sulfur oxides in the combustion exhaust gas satisfies the exhaust gas regulation standard values. When a high temperature gas containing nitrogen monoxide is not used as the mixed gas, it can be heated using the heat of combustion exhaust gas.

【0009】[0009]

【作用】上記灰を圧縮機によってつくられた圧縮空気お
よび酸素富空気を100℃以上にして亜硫酸カルシウム
を含む灰を反応容器内に導入すると、空気は圧縮してい
るため、水蒸気の圧力が高い状態となり、水蒸気を噴霧
した状態と似た状態となる。そこで、   CaSO3+1/2H20+1/2O2→CaSO
4・1/2H20という反応が生じているものと考えら
れる。この際、ガス温度を上げるために高温煙道ガスを
用いても、反応ガス中のNOによって酸化率が向上する
上、次式で表される脱硝反応も起こる。   CaSO3+1/2H20+NO→CaSO4・1
/2H20+1/2N2
[Action] When the above ash is heated to 100°C or above and the compressed air and oxygen-rich air produced by the compressor are introduced into the reaction vessel, the ash containing calcium sulfite is introduced into the reaction vessel.Since the air is compressed, the pressure of water vapor is high. This results in a state similar to that of spraying water vapor. Therefore, CaSO3+1/2H20+1/2O2→CaSO
It is thought that a reaction of 4.1/2H20 is occurring. At this time, even if high-temperature flue gas is used to raise the gas temperature, the oxidation rate is improved by NO in the reaction gas, and the denitrification reaction expressed by the following equation also occurs. CaSO3+1/2H20+NO→CaSO4・1
/2H20+1/2N2

【0010】0010

【実施例】本発明は、下記の実施例によって、さらに詳
細に説明されるが、下記の例で制限されるものではない
EXAMPLES The present invention will be explained in more detail by the following examples, but is not limited thereto.

【0011】実施例1 脱硫剤として消石灰を用い、石炭焚ボイラの排ガスを脱
硫処理する場合について、本発明を適用した例を用いて
説明する。
Example 1 The case of desulfurizing exhaust gas from a coal-fired boiler using slaked lime as a desulfurizing agent will be explained using an example to which the present invention is applied.

【0012】図1において、ボイラ1からの排ガス6は
該脱硫剤を加えられた後、エアヒータ3で温度を下げら
れ、脱硫塔2に導かれる。反応した脱硫剤は排ガス中の
灰とともに集塵装置5で捕集され、廃棄される。
[0012] In FIG. 1, exhaust gas 6 from a boiler 1 is added with the desulfurizing agent, then its temperature is lowered by an air heater 3, and then led to a desulfurization tower 2. The reacted desulfurizing agent is collected together with the ash in the exhaust gas by the dust collector 5 and discarded.

【0013】この装置を用いて、A炭(石炭中の硫黄分
1%)を燃焼したときの脱硫性能を測定した。ただし、
脱硫剤は消石灰を用い、消石灰を排ガス中に含まれるS
O2に対し、モル比で2倍(以下、Ca/S=2と略す
)添加した。また、脱硫塔2内では消石灰に対し重量比
で5%の水を添加した。水導入時の塔内温度は70℃で
あった。なお、脱硫塔2に供給される直前の脱硫剤をサ
ンプリングし、110℃の雰囲気下で脱硫剤の重量が恒
量になるまで乾燥し、その時の重量減少から水分量を測
定したところ0.5%であった。
Using this apparatus, the desulfurization performance was measured when coal A (sulfur content in coal was 1%) was burned. however,
Slaked lime is used as the desulfurization agent, and slaked lime is used to remove S contained in exhaust gas.
It was added in a molar ratio twice that of O2 (hereinafter abbreviated as Ca/S=2). Furthermore, in the desulfurization tower 2, 5% water by weight was added to the slaked lime. The temperature inside the tower at the time of water introduction was 70°C. In addition, the desulfurization agent was sampled just before being supplied to the desulfurization tower 2, and dried in an atmosphere of 110°C until the weight of the desulfurization agent became constant.The water content was measured from the weight loss at that time, and it was 0.5%. Met.

【0014】ボイラ1出口および集塵装置5出口におい
て、ガス中の水分を除去した後、SO2濃度を測定した
ところそれぞれ820ppmおよび80ppmであった
。すなわち、排ガス中のSO2の内90%が除去された
ことになる。
After removing moisture from the gas at the boiler 1 outlet and the dust collector 5 outlet, the SO2 concentration was measured and found to be 820 ppm and 80 ppm, respectively. In other words, 90% of SO2 in the exhaust gas was removed.

【0015】以上の反応が終了したのち集塵装置5から
回収された灰には、CaSO3/(CaSO3+CaS
O4)=0.5のCaSO3が含まれていた。これを反
応容器9内へスクリューフィーダ10で搬送する。圧縮
機8で加圧した圧縮空気およびPSA(Pressur
e Swing Adsorption)法による酸素
富化装置7による酸素濃度を50%まで高められた空気
(以下、酸素富化空気)との混合圧縮空気(以下、圧縮
空気)は、ガス導管11から導入される約100℃のN
O含有高温ガスにより加熱される。このNO含有高温ガ
スはエアヒータ3入口の高温煙道ガス(300℃)から
供給される。このとき、図示はしていないが、ボイラ1
の燃焼排ガス中のNOガスおよびSO2ガス濃度が排出
ガス基準を満たすようにモニタした上で、高温のNO含
有ガスとして煙道ガスを酸素富化装置7に導入する。
After the above reaction is completed, the ash collected from the dust collector 5 contains CaSO3/(CaSO3+CaS
O4)=0.5 of CaSO3 was included. This is transported into the reaction container 9 by a screw feeder 10. Compressed air pressurized by compressor 8 and PSA (Pressur
Compressed air (hereinafter referred to as compressed air) mixed with air (hereinafter referred to as oxygen-enriched air) whose oxygen concentration has been increased to 50% by an oxygen enrichment device 7 using the Swing Adsorption method is introduced from a gas conduit 11. N at about 100℃
Heated by O-containing high temperature gas. This NO-containing high-temperature gas is supplied from the high-temperature flue gas (300° C.) at the inlet of the air heater 3. At this time, although not shown, boiler 1
After monitoring NO gas and SO2 gas concentrations in the combustion exhaust gas to meet exhaust gas standards, the flue gas is introduced into the oxygen enrichment device 7 as a high-temperature NO-containing gas.

【0016】本実施例では酸素富化装置7に専用の圧縮
機8を設けたが、反応容器9用の圧縮機8と酸素富化装
置7の圧縮機8とを兼用にしてもかまわない。なお、ボ
イラ1は石炭を燃料としているので、灰の発生量が多い
ので、反応容器9内のガスと灰との接触をよくするため
に反応容器9内は流動層を形成して処理しているが、灰
の発生量が少ない場合は、それを固定層にして反応時間
をやや長くすれば同等の効果が得られる。反応容器9の
流動層の流動化状態はバイパス13にあるバルブ12の
開度により差圧で制御している。
In this embodiment, the oxygen enrichment device 7 is provided with a dedicated compressor 8, but the compressor 8 for the reaction vessel 9 and the compressor 8 of the oxygen enrichment device 7 may also be used. Since the boiler 1 uses coal as fuel, a large amount of ash is generated, so a fluidized bed is formed inside the reaction vessel 9 to improve the contact between the gas in the reaction vessel 9 and the ash. However, if the amount of ash generated is small, the same effect can be obtained by using it as a fixed layer and increasing the reaction time slightly. The fluidized state of the fluidized bed in the reaction vessel 9 is controlled by the differential pressure by the opening degree of the valve 12 in the bypass 13.

【0017】混合ガスは圧縮空気を用いているので、水
蒸気の圧力が高い状態となり、水蒸気を噴霧した状態と
似た状態が得られるが、混合ガスに水分を補給する必要
がある場合は、図示していないが、反応容器9内で亜硫
酸化合物含有灰をNO含有排気ガス中に分散させた後、
水および/または水蒸気を供給しても良い。
Since compressed air is used for the mixed gas, the pressure of the water vapor is high and a state similar to that obtained by spraying water vapor can be obtained. However, if it is necessary to replenish the mixed gas with water, Although not shown, after dispersing the sulfite compound-containing ash into the NO-containing exhaust gas in the reaction vessel 9,
Water and/or steam may also be supplied.

【0018】本実施例において、温度100℃および酸
素濃度30%で一定とした条件下での、水分圧と酸化速
度比の関係を求めると、図2に示すように水分圧が10
0mmHg以上であれば酸化速度が増加することを示し
ている。また、温度100℃、水分圧100mmHgお
よび酸素濃度30%という一定条件の下では、10kg
/cm2以下での圧力の変化による酸化速度の増加は図
3に示すように顕著ではない。一方、温度100℃およ
び水分圧100mmHgで一定ならば、酸素濃度が高い
方が酸化速度は向上する(図4)。また、水分圧100
mmHgおよび酸素濃度30%の条件下では、温度が1
00℃を越えると700℃までは酸化速度が向上してい
る(図5)。また、温度100℃および水分圧100m
mHgという一定条件下で高温ガスのNO濃度を変化さ
せたところ、NO濃度が高いほど酸化速度も上昇するこ
とがわかった(図6)。
In this example, when the relationship between water pressure and oxidation rate ratio was determined under conditions where the temperature was kept constant at 100° C. and the oxygen concentration was 30%, as shown in FIG.
This indicates that the oxidation rate increases if the temperature is 0 mmHg or higher. Also, under certain conditions of temperature 100℃, water pressure 100mmHg, and oxygen concentration 30%, 10kg
The increase in oxidation rate due to pressure changes below /cm2 is not significant as shown in FIG. On the other hand, if the temperature is constant at 100° C. and water pressure is 100 mmHg, the oxidation rate increases as the oxygen concentration increases (FIG. 4). Also, water pressure 100
Under conditions of mmHg and 30% oxygen concentration, the temperature is 1
When the temperature exceeds 00°C, the oxidation rate increases up to 700°C (Figure 5). In addition, the temperature is 100℃ and the water pressure is 100m
When the NO concentration of the high-temperature gas was varied under a constant mHg condition, it was found that the higher the NO concentration, the higher the oxidation rate (Figure 6).

【0019】以上の検討から、反応温度100℃以上で
水分圧100mmHg以上の条件下で酸素濃度またはN
O濃度をできるだけ向上させれば亜硫酸化合物の酸化速
度は上昇するが、本装置において酸素濃度15%以上、
NO濃度は約50ppm以上であれば十分な酸化速度を
達成できることが判明した。
From the above studies, it was found that under the conditions of a reaction temperature of 100° C. or higher and a water pressure of 100 mmHg or higher, the oxygen concentration or N
The oxidation rate of sulfite compounds will increase if the O concentration is increased as much as possible, but in this device, if the oxygen concentration is 15% or more,
It has been found that a sufficient oxidation rate can be achieved when the NO concentration is about 50 ppm or more.

【0020】実施例2 本実施例では実施例1のPSA法による酸素富化装置7
の代わりに多孔質酸素富化膜法により酸素富化装置7を
用いること以外は、実施例1と同じ装置を用いた。酸素
富化膜は、空気の湿度が高い地域において、本実施例の
ように求める酸素濃度が低い場合は、水分の除去を考え
る必要がないので、PSA法よりもコスト的に有利であ
る。反応条件は、反応温度100℃、水分圧100mm
Hgおよび酸素濃度30%とし、実施例1の結果と比較
したところ、ほとんど一致した。
Example 2 In this example, the oxygen enrichment device 7 using the PSA method of Example 1 was used.
The same device as in Example 1 was used, except that oxygen enrichment device 7 was used instead using the porous oxygen enrichment membrane method. The oxygen enrichment membrane is more cost-effective than the PSA method because there is no need to consider moisture removal when the required oxygen concentration is low as in this example in an area with high air humidity. The reaction conditions were a reaction temperature of 100°C and a water pressure of 100mm.
When the Hg and oxygen concentrations were set to 30% and the results were compared with those of Example 1, they almost matched.

【0021】実施例3 本実施例では図7に示すように、実施例1の燃焼排ガス
を用いないで、代わりに加圧空気と酸素富化空気を混合
・加熱して反応容器9に導入するものである。すなわち
、空気圧縮機8からの加圧空気と酸素富化装置7からの
酸化富化空気との混合物をエアヒータ3で加熱して亜硫
酸カルシウム含有灰が供給されている反応容器9に導入
する。この方法は酸化処理後のNOガス濃度モニタなど
のシステムは不要でコスト的には有利であったが、実施
例1の場合よりも酸化速度がやや低く(0.95倍)な
った。酸素濃度、水分圧および温度の酸化速度に与える
影響としては、実施例1の場合と同じであった。
Example 3 In this example, as shown in FIG. 7, the combustion exhaust gas of Example 1 was not used, but instead pressurized air and oxygen-enriched air were mixed and heated and introduced into the reaction vessel 9. It is something. That is, a mixture of pressurized air from the air compressor 8 and oxidation-enriched air from the oxygen enrichment device 7 is heated by the air heater 3 and introduced into the reaction vessel 9 to which calcium sulfite-containing ash is supplied. Although this method did not require a system such as a NO gas concentration monitor after oxidation treatment and was advantageous in terms of cost, the oxidation rate was slightly lower (0.95 times) than in Example 1. The effects of oxygen concentration, water pressure, and temperature on the oxidation rate were the same as in Example 1.

【0022】[0022]

【発明の効果】本発明によれば、従来、亜硫酸化合物の
酸化には、ロータリキルンのような装置で長時間処理が
必要であったが、酸素濃度および水分圧を上げることに
よって、短時間かつ低コストで亜硫酸化合物の酸化が実
現できる。このように、本発明は燃焼排ガスの脱硫装置
から発生する亜硫酸化合物を含んだ灰を迅速に、簡易な
装置で酸化処理することができる。
Effects of the Invention According to the present invention, oxidation of sulfite compounds conventionally required long-term treatment using equipment such as a rotary kiln, but by increasing oxygen concentration and water pressure, oxidation of sulfite compounds can be done in a short time and by increasing the water pressure. Oxidation of sulfite compounds can be achieved at low cost. In this manner, the present invention can rapidly oxidize ash containing sulfite compounds generated from a combustion exhaust gas desulfurization device using a simple device.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1の脱硫装置のフローシートお
よび酸化処理装置の概略図である。
FIG. 1 is a flow sheet of a desulfurization apparatus and a schematic diagram of an oxidation treatment apparatus according to Example 1 of the present invention.

【図2】実施例1の装置における水分圧の酸化速度比に
及ぼす影響を示す実験結果のグラフである。
FIG. 2 is a graph of experimental results showing the influence of water pressure on the oxidation rate ratio in the apparatus of Example 1.

【図3】実施例1の装置における全圧力の酸化速度比に
及ぼす影響を示す実験結果のグラフである。
FIG. 3 is a graph of experimental results showing the effect of total pressure on the oxidation rate ratio in the apparatus of Example 1.

【図4】実施例1の装置におけるO2濃度の酸化速度比
に及ぼす影響を示す実験結果のグラフである。
FIG. 4 is a graph of experimental results showing the influence of O2 concentration on the oxidation rate ratio in the apparatus of Example 1.

【図5】実施例1の装置における反応温度の酸化速度比
に及ぼす影響を示す実験結果のグラフである。
FIG. 5 is a graph of experimental results showing the influence of reaction temperature on the oxidation rate ratio in the apparatus of Example 1.

【図6】実施例1の装置におけるNO濃度の酸化速度比
に及ぼす影響を示す実験結果のグラフである。
FIG. 6 is a graph of experimental results showing the influence of NO concentration on the oxidation rate ratio in the apparatus of Example 1.

【図7】本発明の他の実施例の脱硫装置のフローシート
および酸化処理装置の概略図である。
FIG. 7 is a flow sheet of a desulfurization apparatus and a schematic diagram of an oxidation treatment apparatus according to another embodiment of the present invention.

【図8】一般的な脱硫装置のフローシートである。FIG. 8 is a flow sheet of a general desulfurization equipment.

【符号の説明】[Explanation of symbols]

1    ボイラ 2    脱硫塔 3    エアヒータ 4    水 5    集塵機 6    排ガス 7    酸素富化装置 8    空気圧縮機 9    反応容器 10  スクリューフィーダ 11  ガス導管 1 Boiler 2 Desulfurization tower 3 Air heater 4 Water 5 Dust collector 6 Exhaust gas 7 Oxygen enrichment device 8 Air compressor 9 Reaction container 10 Screw feeder 11 Gas pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  燃焼排ガスを脱硫剤で脱硫処理した後
、集塵器で灰を回収する排煙脱硫装置において、集塵器
で回収された亜硫酸化合物含有灰と加圧空気、酸素富化
空気および窒素酸化物含有ガスからなる高温の混合ガス
とを反応させることを特徴とする亜硫酸化合物含有灰の
酸化装置。
[Claim 1] In a flue gas desulfurization device that desulfurizes combustion exhaust gas with a desulfurization agent and then collects ash in a dust collector, the sulfite compound-containing ash collected in the dust collector, pressurized air, and oxygen-enriched air are used. An oxidizing device for ash containing a sulfite compound, characterized in that the ash is reacted with a high-temperature mixed gas consisting of a nitrogen oxide-containing gas and a nitrogen oxide-containing gas.
【請求項2】  燃焼排ガス中の窒素酸化物および硫黄
酸化物濃度が排出ガス規制基準値を満たすようにモニタ
した上で、高温の一酸化窒素含有ガスとして燃焼排ガス
を用いることを特徴とする請求項1記載の亜硫酸化合物
含有灰の酸化装置。
[Claim 2] A claim characterized in that the combustion exhaust gas is used as the high-temperature nitrogen monoxide-containing gas after monitoring the concentrations of nitrogen oxides and sulfur oxides in the combustion exhaust gas so that they meet exhaust gas regulation standard values. Item 1. The sulfite compound-containing ash oxidizing device according to item 1.
【請求項3】  燃焼排ガスを脱硫剤で脱硫処理した後
、集塵器で灰を回収しする排煙脱硫装置において、集塵
器で回収された亜硫酸化合物含有灰に加圧空気と酸素富
化空気からなる高温の混合ガスを導入することを特徴と
する亜硫酸化合物含有灰の酸化装置。
[Claim 3] In a flue gas desulfurization device that desulfurizes combustion exhaust gas with a desulfurization agent and then collects ash in a dust collector, the sulfite compound-containing ash collected in the dust collector is enriched with pressurized air and oxygen. An oxidizing device for ash containing sulfite compounds, characterized by introducing a high-temperature mixed gas consisting of air.
【請求項4】  高温ガス中の加熱手段として、燃焼排
ガス路に設けられた燃焼用空気予熱器を用いることを特
徴とする請求項3記載の亜硫酸化合物含有灰の酸化方法
4. The method for oxidizing ash containing sulfite compounds according to claim 3, wherein a combustion air preheater provided in a combustion exhaust gas path is used as the heating means for the high temperature gas.
【請求項5】  混合ガスの温度を100℃以上とする
ことを特徴とする請求項1または3記載の亜硫酸化合物
含有灰の酸化装置。
5. The oxidizing device for ash containing sulfite compounds according to claim 1 or 3, wherein the temperature of the mixed gas is set to 100° C. or higher.
【請求項6】  混合ガス中の水分濃度を100mmH
g以上とすることを特徴とする請求項1または3記載の
亜硫酸化合物含有灰の酸化装置。
[Claim 6] The moisture concentration in the mixed gas is 100 mmH.
The sulfite compound-containing ash oxidizing device according to claim 1 or 3, characterized in that the ash oxidation device has an oxidation capacity of at least 100 g.
JP3075007A 1991-04-08 1991-04-08 Oxidizing apparatus of sulfite compound-containing ash Pending JPH04310279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3075007A JPH04310279A (en) 1991-04-08 1991-04-08 Oxidizing apparatus of sulfite compound-containing ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3075007A JPH04310279A (en) 1991-04-08 1991-04-08 Oxidizing apparatus of sulfite compound-containing ash

Publications (1)

Publication Number Publication Date
JPH04310279A true JPH04310279A (en) 1992-11-02

Family

ID=13563712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3075007A Pending JPH04310279A (en) 1991-04-08 1991-04-08 Oxidizing apparatus of sulfite compound-containing ash

Country Status (1)

Country Link
JP (1) JPH04310279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319714A (en) * 2011-05-16 2012-01-18 中冶建筑研究总院有限公司 Treatment process of dry method or semi-dry method smoke gas desulfurized slag
CN108386858A (en) * 2018-03-03 2018-08-10 浙江安吉天子湖热电有限公司 A kind of smoke processing system of denitration desulfurization and dedusting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319714A (en) * 2011-05-16 2012-01-18 中冶建筑研究总院有限公司 Treatment process of dry method or semi-dry method smoke gas desulfurized slag
CN108386858A (en) * 2018-03-03 2018-08-10 浙江安吉天子湖热电有限公司 A kind of smoke processing system of denitration desulfurization and dedusting

Similar Documents

Publication Publication Date Title
CA2622064C (en) Method of removing sulfur trioxide from a flue gas stream
KR890000512B1 (en) Process for removal of nitrogen oxides and sulfur oxides from waste gases
CA2193638C (en) Exhaust gas treating systems
CN109331649A (en) Coke oven flue gas semi-dry desulphurization, dedusting and low-temperature denitration device and its process
EP0244346A2 (en) Method for Treating Exhaust Gas
US5817283A (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JP2005028216A (en) Gas cleaning apparatus and flue gas desulfurization system
KR19990050193A (en) Continuous processing method of air pollutant in combustion flue gas and apparatus used therein
CN209155537U (en) Coke oven flue gas semi-dry desulphurization, dedusting and low-temperature denitration device
KR102059191B1 (en) Wet flue gas desulfurization apparatus and flue gas treatment system including the same
JP3924157B2 (en) Flue gas desulfurization system and method
JPH04310279A (en) Oxidizing apparatus of sulfite compound-containing ash
CN110237681A (en) The coal-fired flue-gas of collaboration deep purifying takes off white system
JP2003236334A (en) Purifying system for flue gas treating liquid
JPS6251645B2 (en)
KR100225474B1 (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JPH0557141A (en) Flue gas desulfurization apparatus
JP2000093736A (en) Apparatus for desulfurization, denitration, and removal of salt, dxn, and dust in dry manner
JP3823203B2 (en) Semi-dry exhaust gas desulfurization / desalination method
FI83733B (en) FOERFARANDE FOER RENING AV UPPHETTADE ROEKGASER.
JPH04313321A (en) Desulfurization method by calcined lime
JPH04145925A (en) Waste gas treating device
JPH04110020A (en) Exhaust gas purifying method
CN1187382A (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JPH04300626A (en) Device for desulfurizing flue gas and its operating method