JPH0431026B2 - - Google Patents

Info

Publication number
JPH0431026B2
JPH0431026B2 JP8046488A JP8046488A JPH0431026B2 JP H0431026 B2 JPH0431026 B2 JP H0431026B2 JP 8046488 A JP8046488 A JP 8046488A JP 8046488 A JP8046488 A JP 8046488A JP H0431026 B2 JPH0431026 B2 JP H0431026B2
Authority
JP
Japan
Prior art keywords
copper wire
solution
rust
benzotriazole
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8046488A
Other languages
Japanese (ja)
Other versions
JPH01252789A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8046488A priority Critical patent/JPH01252789A/en
Publication of JPH01252789A publication Critical patent/JPH01252789A/en
Publication of JPH0431026B2 publication Critical patent/JPH0431026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ベンゾトリアゾールを用いて銅線表
面に耐食性にすぐれた防錆皮膜を形成させる製造
方法に関する。 〔従来技術〕 従来、銅線および銅線および銅撚線の保管中又
は絶縁電線の製造工程中および保管中において、
銅線や銅撚線の表面が変色することがある。その
ため種々の製造工程で銅線、銅撚線などにベンゾ
トリアゾール又は/およびその誘導体や他の銅用
防錆溶液を塗布し、防錆処理を施している。又、
屋外用配電線に使用される硬銅撚線が架線後、数
年にして銅線表面に黒色酸化皮膜が生成し、稀に
硬銅撚線がナイフカツト状に異状断線する、いわ
ゆる、応力腐食割れを起すことがある。そのため
一対策として、電線の端末から内部に侵入する腐
食性雨水(雨水中に含む腐食性物質)があつて
も、硬銅撚線の表面が酸化されないように、ベン
ゾトリアゾール又は/およびその誘導体を用いて
防錆皮膜を形成させることが提案されている。 一般に、銅線表面に防錆皮膜を形成させるに
は、ベンゾトリアゾール又は/およびその誘導体
を揮発性有機溶剤又は水に溶解した0.5〜3%防
錆溶液を走行する銅線上に液滴、流下、噴霧又は
銅線を防錆溶液中に浸漬させ、付着する過剰の溶
液を絞り取り、乾燥させて防錆皮膜を形成させて
いる。 〔発明が解決しようとする問題点〕 しかし、ベンゾトリアゾールなどを揮発性有機
溶剤、例えばメチルアルコールに溶解した防錆溶
液を銅線上に塗布して溶剤が揮発すると、添加し
たベンゾトリアゾールなどが固形として析出し、
銅とのキレート化合物の生成、つまり、防錆皮膜
が形成されない。又、形成される防錆皮膜は無色
透明であるため、外観から目視で、防錆皮膜が確
実に形成されたか否かの判断をすることができな
い。更に、銅線表面に油脂などの汚物が付着して
いると、前記防錆溶液を塗布しても確実な防錆皮
膜が形成されないなどの問題がある。従つて、防
錆溶液の塗布方法が適切でない場合、銅線に防錆
処理を施しても高温多湿の雰囲気に放置すると短
期間に変色を起こしたり、屋外用配電線に使用す
る硬銅撚線に防錆処理を施しても硬銅撚線に長期
の腐食環境に耐える防錆皮膜を形成させることが
できない。 本発明は、上記の問題に鑑みてなされたもの
で、銅素線表面にベンゾトリアゾールとの強固な
防錆皮膜を確実に形成させ、自然放置にも又、腐
食性水溶液に浸漬されても、長期にわたつて銅色
を維持する耐食性銅線の製造方法を提供すること
を目的とするものである。 〔問題点を解決するための手段〕 本発明者らは、かかる目的を解決するために鋭
意検討を重ねた結果、銅線の連続伸線又は連続軟
化後、余熱を有する銅線を加熱される防錆溶液中
と該溶液の蒸気雰囲気中に通過又は繰返し通過さ
せることにより、目的を達成できることを見出し
て本発明を完成させたものである。 本発明の製造方法は、容器内で少なくとも50℃
以上に加熱されたベンゾトリアゾール−水−塩素
系溶剤の3成分系の防錆溶液中に銅線を走行させ
るにおいて、前記防錆溶液と該溶液の蒸気雰囲気
中を通過又は繰返し保持させて、前記走行する銅
線表面にベンゾトリアゾールとの防錆皮膜を連続
的に形成させることを特徴とするものである。 以下、本発明の構成について更に説明する。 ベンゾトリアゾール−水−塩素系溶剤の防錆溶
液とは、ベンゾトリアゾールを溶解させる最小量
のメチルアルコールに溶解し、水と1,1,1ト
リクロロエタンとの混合溶液(水の混合割合は10
%〜80%の範囲が好ましい)中に攪拌混合して、
ベンゾトリアゾール濃度を0.5〜3.0重量%の範囲
とし、50〜70℃に加熱するのが好ましい。このよ
うな、水と1,1,1トリクロロエタンとの混合
溶液を使用すると、銅線表面の洗浄とその表面へ
の防錆皮膜の形成が1,1,1トリクロロエタン
を単独で用いるよりも効率的に行なうことができ
る。ここで、1,1,1トリクロロエタン以外の
1,1,2トリクロロエタン、トリクロロエチレ
ンなども使用できるが、沸点の低い1,1,1ト
リクロロエタンがより好ましい。又、ベンゾトリ
アゾール以外のベンゾトリアゾール誘導体、例え
ば、ベンゾトリアゾールモノエタノールアミン
塩、ベンゾトリアゾールジエチルアミン塩、ベン
ゾトリアゾールシクロヘキシルアミン塩、ベンゾ
トリアゾールモルホリン塩、ベンゾトリアゾール
ジイソプロピルアミン塩、メチルベンゾトリアゾ
ールシクロヘキシルアミン塩なども使用すること
ができる。 走行する銅線を前記防錆溶液に浸漬し、次い
で、銅線を加熱された前記防錆溶液の蒸気雰囲気
中に通し、又はこれを繰返して、銅線表面にベン
ゾトリアゾールとの防錆皮膜を形成させるための
容器とは、例えば、容器内に上部と下部に滑車を
多段に取付け、銅線の入口部と出口部を設けて、
銅線を入口部から挿入し、上下部の滑車に銅線を
多段に周回させて出口部から引き出せるようにす
るのがよい。そして、下部の滑車の約1/3位が浸
漬するように、ベンゾトリアゾール−水−1,
1,1トリクロロエタン系防錆溶液を容器内に注
液し、50〜70℃に加熱すれば容器内の空間部は、
前記防錆溶液による蒸気雰囲気が形成される。容
器の上端部を冷却して蒸気成分が揮発しないよう
にして浸漬と蒸気雰囲気中を繰返し通過させて、
走行する銅線上に防錆皮膜を形成させる。 次に、走行する銅線を前記防錆溶液に浸漬させ
る長さ部分と、銅線を加熱された前記防錆溶液の
蒸気雰囲気中を通過させる長さ部分との比は、前
者を1とした場合、後者を1以上の範囲にするの
が好ましい。容器内の蒸気雰囲気中を通過させる
長さ部分を長くするのがよいが、必要以上に長く
することもない。長くすると容器も大きくなり、
銅線の周回作業がわずらわしくなる。 走行させる銅線は、銅線の連続伸線又は連続軟
化後、余熱を有する銅線を使用するのが好まし
く、又銅線の表面を例えば、蒸気洗浄によつて前
処理した銅線とするのが好ましい。 〔作用〕 50〜70℃に加熱したベンゾトリアゾール系防錆
溶液中に銅線を浸漬し、乾燥させても銅線上に耐
食性にすぐれた防錆皮膜は形成できない。 本発明では、容器内に上部と下部に滑車を多段
に取付け、銅線の入口部と出口部を設けて銅線を
入口部から挿入し、上下部の多段の滑車に銅線を
多数回周回させて出口部から銅線を引き出せるよ
うにし、下部の滑車の約1/3位まで、又は溶液に
浸漬させる銅線長さと蒸気雰囲気中を通過させる
銅線長さを等しくするように、ベンゾトリアゾー
ル−1,1,1トリクロロエタン系防錆溶液を溶
液内に注液し、該防錆溶液を50〜70℃に加熱し
て、走行する銅線を防錆溶液に浸漬し、次いで、
銅線を加熱された防錆溶液の蒸気雰囲気中に通
し、又はこれを繰返しながら出口部から銅線を引
き出すと、走行する銅線表面に耐食性にすぐれた
防錆皮膜を形成させることができる。 〔実施例〕 以下、本発明の実施例と比較例とを図面にもと
づいて説明する。 1は銅素線、2,3は滑車、4は前処理用蒸気
洗浄管、5はエアーワイパー、6は上部滑車7と
下部滑車8を多段に備えたものを収納する容器、
9は銅素線入口部、10は銅素線の出口部、11
は溢液部、12は防錆溶液用補助タンク、13は
送液用ポンプ、14,15,16は連結管、17
は加熱ヒータ、18,19は弁、20,21,2
2,23は容器6内の空間部、24は巻取機、2
5は冷却部、A,B,C,Dは容器6内の液面で
ある。 実施例 1 次に、第1図にもとづいて本発明の製造方法を
説明する。先ず、ベンゾトリアゾール1.97Kgをメ
チルアルコール5に溶解し、水80と1,1,
1トリクロロエタン15との混合溶液中に攪拌混
合し、ベンゾトリアゾール濃度を1.5重量%とし
た防錆溶液を調整して補助タンク12に移液す
る。送液用ポンプ13によつて防錆溶液を容器6
内の下部滑車8の約1/3の液面Aまで送液し、溢
液部11から補助タンク12に還流させながら、
防錆溶液の液温を70℃に保持するよう加熱ヒータ
17によつて加温する。そして、連続伸線機によ
つて約710m/分の線速で伸線された2.0mmφ硬銅
線1の表面に付着する水溶性潤滑油を除去させる
ため、前記硬銅線を滑車2,3間に設けられた蒸
気洗浄管4中を通してエアーワイパー5で付着す
る汚物と温水を除去する。このように前処理を施
した硬銅線1を入口部9から容器6〔容器の大き
さ:横40cm×縦25cm×高さ150cm、滑車の直径:
20cm、滑車軸間距離:120cm、滑車枚数:上下部
各3枚〕内に挿通して、容器6内の上下部の滑車
7,8間を多数回周回させて出口部10から引き
出し、該硬銅線1の表面に付着する防錆溶液をエ
アーワイパー5で除去し乾燥させて、巻取機24
で2.0mmφ硬銅線1を80Kg巻取つた。 実施例 2 防錆溶液の液温を55℃に保持する以外は、実施
例1と同様に行なつて、巻取機24で2.0mmφの
硬銅線1を80Kg巻取つた。 実施例 3 次に、第2図にもとづいて説明する。防錆溶液
の液温を55℃とし、防錆溶液に浸漬させる銅線長
さと蒸気雰囲気21中に通す銅線長さを等しくす
るように、補助タンク12から送液用ポンプ13
によつて容器6内の液面Bまで送液し、溢液部1
1′から補助タンク12に還流させる以外は、実
施例1と同様に行なつて、2.0mmφの硬銅線1を
巻取機24で80Kg巻取つた。 比較例 1 防錆溶液の液温を25℃とする以外は、実施例1
と同様に行なつて、2.0mmφの硬銅線1を巻取機
24で50Kg巻取つた。 比較例 2 防錆溶液の液温を40℃とする以外は、実施例1
と同様に行なつて、2mmφの硬銅線1を巻取機2
4で50Kg巻取つた。 比較例 3 防錆溶液の液温を65℃とし、容器6内の液面を
第2図に示す上部滑車7の下端の液面Cまで防錆
溶液を送液し、実施例1と同様に行つて、2mmφ
の硬銅線1を巻取機24で巻取つた。 比較例 4 防錆溶液の液温を25℃とする以外は、比較例3
と同様に行つて、2mmφの硬銅線1を巻取機24
で巻取つた。 比較例 5 防錆溶液の液温を65℃とし、容器6内の液面を
第3図に示す液面Dまで防錆溶液を送液し、実施
例1と同様に行つて、2mmφの硬銅線1を巻取機
24で巻取つた。 得られた種々の2mmφ硬銅線から試料を採取
し、濃度100ppmの硫化ナトリウム水溶液に室温
で30秒間浸漬した後取り出して硬銅線表面の変色
状態を目視する耐食性試験を行なつた。 結果を第1表に示す。耐食性良否の判定基準
は、◎印をオリジナルな銅色を示すもの、○印は
銅色を示し変色のないもの、△印は所々変色し、
実用性に欠けるもの、×印を全体に変色を示すも
の、として評価した。 結果からわかるように、実施例1〜3はいずれ
も耐食性にすぐれた良好な結果を示すが、比較例
3のように防錆溶液の液温を60℃としても、第2
図からわかるように、上部滑車7下端の液面Cま
で防錆溶液を送液して、滑車7,8間を高速(約
710m/分)で硬銅線1を多数回周回させると、
容器6内の蒸気空間22が存在していても、滑車
7の下端と液面Cとの距離が非常に近づくため、
硬銅線の表面は常に走行する銅線によつて引き上
げられる防錆溶液で包被され、浸漬状態と同一に
なり、硬銅線は防錆溶液の蒸気雰囲気中にさらさ
れることがない。従つて単に浸漬させる従来の防
錆処理方法と同様になり良好な防錆皮膜を形成し
ない。 比較例5では、防錆溶液の蒸気雰囲気中のみを
通過するので良好な防錆皮膜を形成しない。
[Industrial Application Field] The present invention relates to a manufacturing method for forming a rust preventive film with excellent corrosion resistance on the surface of a copper wire using benzotriazole. [Prior Art] Conventionally, during the storage of copper wires, copper wires and stranded copper wires, or during the manufacturing process and storage of insulated wires,
The surface of copper wires and copper strands may become discolored. For this reason, copper wires, stranded copper wires, etc. are coated with benzotriazole or/and its derivatives or other anti-rust solutions for copper during various manufacturing processes to perform anti-rust treatment. or,
A black oxide film forms on the surface of the hard copper stranded wire used for outdoor distribution lines several years after the wire is installed, and in rare cases, the hard copper stranded wire breaks in an abnormal knife cut shape, which is called stress corrosion cracking. may occur. Therefore, as a countermeasure, benzotriazole or/and its derivatives are used to prevent the surface of the hard copper stranded wire from being oxidized even if corrosive rainwater (corrosive substances contained in rainwater) enters the wire from the terminal end. It has been proposed to form a rust-preventing film by using Generally, in order to form a rust preventive film on the surface of a copper wire, a 0.5 to 3% rust preventive solution prepared by dissolving benzotriazole or/and its derivatives in a volatile organic solvent or water is poured onto a running copper wire by dripping, flowing, A rust preventive film is formed by spraying or immersing a copper wire in a rust preventive solution, squeezing out the excess solution that adheres to it, and drying it. [Problems to be solved by the invention] However, when a rust preventive solution containing benzotriazole or the like dissolved in a volatile organic solvent such as methyl alcohol is applied to the copper wire and the solvent evaporates, the added benzotriazole or the like becomes solid. precipitation,
A chelate compound with copper is not formed, that is, a rust preventive film is not formed. In addition, since the rust preventive film formed is colorless and transparent, it is not possible to visually determine whether the rust preventive film has been formed reliably from its appearance. Furthermore, if dirt such as oil or fat is attached to the surface of the copper wire, there is a problem that a reliable rust-preventing film cannot be formed even if the above-mentioned rust-preventing solution is applied. Therefore, if the method of applying the anti-corrosion solution is not appropriate, even if the copper wire is subjected to anti-rust treatment, it may discolor in a short period of time if left in a hot and humid atmosphere, or the hard copper stranded wire used for outdoor distribution lines may become discolored in a short period of time. Even if anti-rust treatment is applied to the hard copper strands, it is not possible to form a rust-preventive film on the hard copper strands that can withstand a long-term corrosive environment. The present invention was made in view of the above-mentioned problems, and it is possible to reliably form a strong rust-preventing film with benzotriazole on the surface of copper wire, and to prevent the copper wire from being exposed to nature or immersed in a corrosive aqueous solution. The object of the present invention is to provide a method for manufacturing a corrosion-resistant copper wire that maintains its copper color over a long period of time. [Means for Solving the Problems] As a result of intensive studies to solve the above object, the present inventors have found that after continuous drawing or continuous softening of the copper wire, the copper wire with residual heat is heated. The present invention was completed by discovering that the object can be achieved by passing or repeatedly passing through a rust preventive solution and the vapor atmosphere of the solution. The manufacturing method of the present invention comprises at least 50°C in a container.
In running a copper wire through a three-component rust preventive solution of benzotriazole-water-chlorine solvent heated as described above, the copper wire is passed through or repeatedly held in the vapor atmosphere of the above-mentioned rust preventive solution and the solution. It is characterized by continuously forming a rust-preventing film with benzotriazole on the surface of the running copper wire. The configuration of the present invention will be further explained below. A benzotriazole-water-chlorinated solvent antirust solution is a solution of benzotriazole dissolved in the minimum amount of methyl alcohol that dissolves it, and a mixed solution of water and 1,1,1 trichloroethane (the mixing ratio of water is 10
(preferably in the range of % to 80%).
Preferably, the benzotriazole concentration is in the range of 0.5-3.0% by weight and heating is performed at 50-70°C. By using such a mixed solution of water and 1,1,1 trichloroethane, cleaning the copper wire surface and forming a rust-preventive film on the surface is more efficient than using 1,1,1 trichloroethane alone. can be done. Here, other than 1,1,1 trichloroethane, 1,1,2 trichloroethane, trichloroethylene, etc. can also be used, but 1,1,1 trichloroethane, which has a low boiling point, is more preferable. In addition, benzotriazole derivatives other than benzotriazole, such as benzotriazole monoethanolamine salt, benzotriazole diethylamine salt, benzotriazole cyclohexylamine salt, benzotriazole morpholine salt, benzotriazole diisopropylamine salt, methylbenzotriazole cyclohexylamine salt, etc. are also used. can do. A running copper wire is immersed in the rust preventive solution, and then the copper wire is passed through the heated vapor atmosphere of the rust preventive solution, or this process is repeated to form a rust preventive film with benzotriazole on the surface of the copper wire. For example, the container for forming the wire is formed by installing pulleys in multiple stages at the upper and lower parts of the container, and providing an inlet and an outlet for copper wire.
It is preferable that the copper wire be inserted through the inlet, and be drawn out from the outlet by making the copper wire go around the upper and lower pulleys in multiple stages. Then, add benzotriazole-water-1, so that about 1/3 of the lower pulley is immersed.
By pouring 1,1 trichloroethane-based anti-corrosion solution into the container and heating it to 50-70℃, the space inside the container will be
A vapor atmosphere is formed by the anti-rust solution. The upper end of the container is cooled to prevent the vapor components from volatilizing, and the container is repeatedly immersed and passed through the vapor atmosphere.
Forms a rust-preventing film on running copper wires. Next, the ratio of the length of the running copper wire immersed in the anti-rust solution to the length of the copper wire passing through the heated vapor atmosphere of the anti-rust solution is set to 1. In this case, it is preferable to set the latter to a range of 1 or more. It is preferable to lengthen the length of the tube through which it passes through the steam atmosphere inside the container, but it should not be made longer than necessary. The longer it is, the larger the container will be,
Circulating the copper wire becomes a hassle. The copper wire to be run is preferably a copper wire that has residual heat after continuous drawing or continuous softening, and it is preferable to use a copper wire whose surface has been pretreated, for example, by steam cleaning. is preferred. [Function] Even if a copper wire is immersed in a benzotriazole rust preventive solution heated to 50 to 70°C and dried, a rust preventive film with excellent corrosion resistance cannot be formed on the copper wire. In the present invention, pulleys are installed in multiple stages at the upper and lower parts of the container, an inlet and an outlet are provided for the copper wire, the copper wire is inserted from the inlet, and the copper wire is passed around the multiple pulleys at the upper and lower parts many times. so that the copper wire can be pulled out from the outlet part, and add benzotriazole to about 1/3 of the lower pulley, or so that the length of the copper wire that is immersed in the solution is equal to the length of the copper wire that is passed through the steam atmosphere. - A 1,1,1 trichloroethane-based rust preventive solution is poured into the solution, the rust preventive solution is heated to 50 to 70°C, a running copper wire is immersed in the rust preventive solution, and then,
When a copper wire is passed through a vapor atmosphere of a heated rust preventive solution, or when the copper wire is pulled out from the outlet while repeating this process, a rust preventive film with excellent corrosion resistance can be formed on the surface of the running copper wire. [Example] Examples and comparative examples of the present invention will be described below based on the drawings. 1 is a copper wire, 2 and 3 are pulleys, 4 is a steam cleaning pipe for pretreatment, 5 is an air wiper, 6 is a container for storing a multi-tiered upper pulley 7 and lower pulley 8;
9 is the inlet of the copper wire; 10 is the outlet of the copper wire; 11
12 is an auxiliary tank for antirust solution, 13 is a pump for liquid feeding, 14, 15, 16 are connecting pipes, 17
is a heater, 18, 19 are valves, 20, 21, 2
2 and 23 are spaces inside the container 6, 24 is a winding machine, and 2
5 is a cooling section, and A, B, C, and D are liquid levels in the container 6. Example 1 Next, the manufacturing method of the present invention will be explained based on FIG. First, dissolve 1.97 kg of benzotriazole in 5 ml of methyl alcohol, add 80 kg of water and 1,1,
1 and trichloroethane 15 to prepare a rust preventive solution with a benzotriazole concentration of 1.5% by weight, and transfer the solution to the auxiliary tank 12. The anti-corrosion solution is transferred to the container 6 by the liquid feeding pump 13.
The liquid is sent to about 1/3 of the liquid level A of the lower pulley 8 inside, and while flowing back from the overflow part 11 to the auxiliary tank 12,
The rust preventive solution is heated by the heater 17 so as to maintain the temperature of the solution at 70°C. Then, in order to remove the water-soluble lubricating oil adhering to the surface of the 2.0 mmφ hard copper wire 1 drawn at a drawing speed of about 710 m/min by a continuous wire drawing machine, the hard copper wire was passed through the pulleys 2 and 3. Adhering dirt and hot water are removed by an air wiper 5 through a steam cleaning pipe 4 provided in between. The pretreated hard copper wire 1 is passed through the inlet 9 to the container 6 [Container size: width 40 cm x length 25 cm x height 150 cm, pulley diameter:
20cm, distance between pulley axes: 120cm, number of pulleys: 3 on each of the upper and lower parts], make a number of turns between the upper and lower pulleys 7 and 8 in the container 6, and pull it out from the outlet 10. The antirust solution adhering to the surface of the copper wire 1 is removed by the air wiper 5 and dried, and then the winding machine 24
I wound up 80kg of 2.0mmφ hard copper wire 1. Example 2 80 kg of hard copper wire 1 with a diameter of 2.0 mm was wound up using the winder 24 in the same manner as in Example 1, except that the temperature of the anticorrosive solution was maintained at 55°C. Embodiment 3 Next, a description will be given based on FIG. 2. The liquid temperature of the anti-rust solution is set to 55°C, and the pump 13 for sending liquid from the auxiliary tank 12 is set so that the length of the copper wire immersed in the anti-rust solution is equal to the length of the copper wire passed through the steam atmosphere 21.
The liquid is fed to the liquid level B in the container 6 by
The same procedure as in Example 1 was carried out except that the flow was returned to the auxiliary tank 12 from 1', and 80 kg of hard copper wire 1 with a diameter of 2.0 mm was wound up with the winding machine 24. Comparative Example 1 Example 1 except that the temperature of the antirust solution was 25°C.
In the same manner as above, 50 kg of hard copper wire 1 with a diameter of 2.0 mm was wound up with the winding machine 24. Comparative Example 2 Example 1 except that the temperature of the antirust solution was 40°C.
In the same manner as above, the hard copper wire 1 of 2 mmφ is passed through the winding machine 2.
I wound up 50kg with 4. Comparative Example 3 The liquid temperature of the anti-corrosion solution was set to 65°C, the liquid level in the container 6 was brought up to the liquid level C at the lower end of the upper pulley 7 shown in FIG. Go, 2mmφ
The hard copper wire 1 was wound up by the winding machine 24. Comparative Example 4 Comparative Example 3 except that the temperature of the anti-rust solution was 25°C.
In the same manner as above, the hard copper wire 1 of 2 mmφ is passed through the winding machine 24.
I rolled it up. Comparative Example 5 The liquid temperature of the anti-rust solution was set to 65°C, the liquid level in the container 6 was pumped to the liquid level D shown in FIG. The copper wire 1 was wound up by a winding machine 24. Samples were taken from the various 2 mmφ hard copper wires obtained, immersed in an aqueous sodium sulfide solution with a concentration of 100 ppm for 30 seconds at room temperature, taken out, and subjected to a corrosion resistance test in which the state of discoloration on the surface of the hard copper wires was visually observed. The results are shown in Table 1. The criteria for determining corrosion resistance are: ◎ indicates original copper color, ○ indicates copper color with no discoloration, △ indicates discoloration in some places,
It was evaluated as lacking in practicality, and marked with an "X" as showing discoloration throughout. As can be seen from the results, Examples 1 to 3 all show good results with excellent corrosion resistance.
As can be seen from the figure, the anti-rust solution is fed to the liquid level C at the lower end of the upper pulley 7, and the solution is passed between the pulleys 7 and 8 at high speed (approximately
When the hard copper wire 1 is rotated many times at a speed of 710 m/min,
Even if the vapor space 22 exists in the container 6, the distance between the lower end of the pulley 7 and the liquid level C becomes very close.
The surface of the hard copper wire is always covered with the rust preventive solution pulled up by the running copper wire, and the state is the same as that of immersion, and the hard copper wire is not exposed to the vapor atmosphere of the rust preventive solution. Therefore, it is similar to the conventional rust prevention treatment method of simply dipping, and does not form a good rust prevention film. In Comparative Example 5, a good rust preventive film was not formed because the solution passed only through the vapor atmosphere of the rust preventive solution.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明に係る製造方法によ
れば、銅線表面に耐食性にすぐれた防錆皮膜を形
成することができるので、従来、銅線の保管中又
は絶縁電線の製造工程中および保管中に銅線表面
が変色する問題も十分防止できると共に、腐食性
雨水の侵入ある屋外用絶縁電線の銅撚線用に適用
させることができるので、その効果が大である。
As explained above, according to the manufacturing method of the present invention, it is possible to form a rust-preventing film with excellent corrosion resistance on the surface of a copper wire. It is highly effective because it can sufficiently prevent the problem of discoloration of the copper wire surface and can be applied to stranded copper wires for outdoor insulated wires where corrosive rainwater can enter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る耐食性銅線の製造説明
図、第2図、第3図は容器内に防錆溶液を充液す
る液面位置の説明図であつて、図中の符号は次の
通りである。 1……銅素線、2,3……滑車、4……前処理
用蒸気洗浄管、5……エアーワイパー、6……容
器、7……上部滑車、8……下部滑車、9……銅
線入口部、10……銅線出口部、11……溢液
部、12……防錆溶液用補助タンク、13……送
液用ポンプ、17……加熱ヒータ、20,21,
22,23……容器6内の液面A,B,C,Dに
対応する容器内の空間部。
Fig. 1 is an explanatory diagram of manufacturing the corrosion-resistant copper wire according to the present invention, and Figs. 2 and 3 are explanatory diagrams of the liquid level position in which the container is filled with the anticorrosive solution. It is as follows. 1... Copper wire, 2, 3... Pulley, 4... Steam cleaning pipe for pretreatment, 5... Air wiper, 6... Container, 7... Upper pulley, 8... Lower pulley, 9... Copper wire inlet part, 10... Copper wire outlet part, 11... Liquid overflow part, 12... Auxiliary tank for antirust solution, 13... Liquid feeding pump, 17... Heater, 20, 21,
22, 23... Spaces within the container corresponding to liquid levels A, B, C, and D within the container 6.

Claims (1)

【特許請求の範囲】[Claims] 1 容器内で少なくとも50℃以上に加熱されたベ
ンゾトリアゾール−水−塩素系溶剤の3成分系の
防錆溶液中に銅線を走行させるにおいて、前記防
錆溶液と該溶液の蒸気雰囲気中を通過させ又はこ
れを繰返して、前記走行する銅線表面にベンゾト
リアゾールとの防錆皮膜を形成させることを特徴
とする耐食性銅線の製造方法。
1. When running a copper wire through a three-component rust preventive solution of benzotriazole, water, and chlorine solvent heated to at least 50°C or higher in a container, the copper wire passes through the rust preventive solution and the vapor atmosphere of the solution. A method for manufacturing a corrosion-resistant copper wire, characterized in that a rust-preventing film with benzotriazole is formed on the surface of the running copper wire by repeating this process.
JP8046488A 1988-03-31 1988-03-31 Production of corrosion resistant copper wire Granted JPH01252789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8046488A JPH01252789A (en) 1988-03-31 1988-03-31 Production of corrosion resistant copper wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8046488A JPH01252789A (en) 1988-03-31 1988-03-31 Production of corrosion resistant copper wire

Publications (2)

Publication Number Publication Date
JPH01252789A JPH01252789A (en) 1989-10-09
JPH0431026B2 true JPH0431026B2 (en) 1992-05-25

Family

ID=13718981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8046488A Granted JPH01252789A (en) 1988-03-31 1988-03-31 Production of corrosion resistant copper wire

Country Status (1)

Country Link
JP (1) JPH01252789A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999023168A1 (en) * 1997-11-04 1999-05-14 Shishiai-Kabushikigaisha High specific heat composition

Also Published As

Publication number Publication date
JPH01252789A (en) 1989-10-09

Similar Documents

Publication Publication Date Title
DE7417527U (en) DEVICE FOR CONTINUOUS TREATMENT OF WORK PIECES, IN PARTICULAR SEMICONDUCTOR DEVICES, WITH LIQUIDS
DE2054067A1 (en) Dilutable concentrates for the treatment of metal surfaces
US2989418A (en) Corrosion protection for zinc-surfaced and aluminum-surfaced articles
JPH0431026B2 (en)
US5391396A (en) Method for protecting metal products against corrosion and metal products obtained from said method
US4610798A (en) Method and composition of matter for conditioning and passivating certain metals
US4070193A (en) Corrosion resistant metal sealing formulation
JP3933851B2 (en) Wire rod anti-rust oil coating method and apparatus
US2145827A (en) Materials for and methods of treating metallic articles
JPH01211815A (en) Production of anticorrosion copper wire
EP0578936A1 (en) Anti-corrosive agent for metal objects
KR100358219B1 (en) Inhibitor of the corrosion of a metal material
US2209291A (en) Rust removing composition
JPH08178585A (en) Manufacture of heat exchanger
Britton et al. Improvement of the corrosion resistance of tinplate by a chemical treatment
BE740608A (en) Metal cleaning and protection process
DE2805279A1 (en) DEEP-DRAWN COMPONENTS FROM ALUMINUM OR TINNED IRON SHEET AND THE PROCESS FOR ITS PRODUCTION
US20040053801A1 (en) Stripper for special steel
US2916402A (en) Metallic part and corrosion resistant coating therefor
JP4457345B2 (en) Cleaning solution for dyeing aluminum
JPS5920000B2 (en) Rust prevention and drying method after plating steel battery cases
AT326447B (en) PROCESS FOR HOT-DIP GALVANIZING ARTICLES MADE OF IRON OR STEEL
CN1133901A (en) Anticorrosion technique for cold exchanger
JPS62116697A (en) Neutral detergent
KR100344937B1 (en) Passivated coating steel cable for bicycle brake and its production method