JPH04308607A - Manufacture of pzt ferroelectric thin film - Google Patents

Manufacture of pzt ferroelectric thin film

Info

Publication number
JPH04308607A
JPH04308607A JP3102034A JP10203491A JPH04308607A JP H04308607 A JPH04308607 A JP H04308607A JP 3102034 A JP3102034 A JP 3102034A JP 10203491 A JP10203491 A JP 10203491A JP H04308607 A JPH04308607 A JP H04308607A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
pzt ferroelectric
pzt
compound solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3102034A
Other languages
Japanese (ja)
Inventor
Takehiro Niitsu
岳洋 新津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP3102034A priority Critical patent/JPH04308607A/en
Publication of JPH04308607A publication Critical patent/JPH04308607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To enable the easy production of a PZT ferroelectric thin film containing a controlled concentration and an excellent ferroelectric property, by using a simple facility. CONSTITUTION:A manufacture of a PZT ferroelectric thin film comprising the step: mixing a lead compound solution, a zirconium compound solution, and a titanium compound solution, adding a viscosity controlled PZT ferroelectric thin film forming material layer on a heat resistive substrate, and firing the substrate at 500 deg.C or above.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、強誘電体薄膜に係わり
、さらに詳しくは、耐熱基板上に密着して形成された0
.1〜10μmの膜厚を有するPZT強誘電体薄膜およ
びその製造方法に関する。本発明のPZT強誘電体薄膜
は、優れた誘電特性を有するため、圧電素子の強誘電体
層、積層コンデンサの誘電体層などとして利用できる。
[Field of Industrial Application] The present invention relates to a ferroelectric thin film, and more specifically, a ferroelectric thin film formed in close contact with a heat-resistant substrate.
.. The present invention relates to a PZT ferroelectric thin film having a thickness of 1 to 10 μm and a method for manufacturing the same. Since the PZT ferroelectric thin film of the present invention has excellent dielectric properties, it can be used as a ferroelectric layer of a piezoelectric element, a dielectric layer of a multilayer capacitor, and the like.

【0002】0002

【従来の技術】PZT強誘電体は、通常、酸化鉛粉末と
酸化ジルコニウム粉末とチタン粉末との化学量論比の混
合物の圧縮成型体を焼成して製造される。近年、基板上
への金属酸化物薄膜、金属薄膜等の形成に使用されてい
る真空蒸着法、スパッタリング法、CVD法等の気相法
を応用して強誘電体薄膜を基板上に形成する試みが種々
検討されている。
BACKGROUND OF THE INVENTION PZT ferroelectric materials are usually manufactured by firing a compression molded body of a mixture of lead oxide powder, zirconium oxide powder, and titanium powder in a stoichiometric ratio. Attempts have been made to form ferroelectric thin films on substrates by applying vapor phase methods such as vacuum evaporation, sputtering, and CVD, which have been used in recent years to form metal oxide thin films and metal thin films on substrates. Various methods are being considered.

【0003】0003

【発明が解決しようとする課題】チタン酸ジルコン酸鉛
(PZT)は、代表的な強誘電性セラミックスであり、
種々の圧電性デバイスに広く応用されている。近年、電
子デバイスの高機能化のため、これらの強誘電体を薄膜
化する研究が盛んである。粉末焼結法で製造される(P
ZT)は、組成のコントロールが比較的に容易であるこ
とから優れた誘電特性を有するが、均一な組成を有する
導通のないミクロン・オーダーの薄膜の製造は極めて困
難であり、注意して製造しても薄膜中の結晶粒径が不揃
いとなる。
[Problem to be solved by the invention] Lead zirconate titanate (PZT) is a typical ferroelectric ceramic.
It is widely applied to various piezoelectric devices. In recent years, in order to improve the functionality of electronic devices, research has been actively conducted to reduce the thickness of these ferroelectric materials. Manufactured by powder sintering method (P
ZT) has excellent dielectric properties because its composition is relatively easy to control, but it is extremely difficult to manufacture a micron-order thin film with a uniform composition and no conduction, so it must be manufactured with care. However, the crystal grain size in the thin film becomes uneven.

【0004】一方、気相法を採用することにより、結晶
粒径が比較的揃ったPZT薄膜を得ることが期待される
が、多元系における膜組成のターゲット組成からのずれ
などの組成制御の困難さや強誘電相であるペロブスカイ
ト相に結晶化させるためには、500〜600゜C以上
の熱処理が必要であるなど低温で成膜できるというスパ
ッタリング法の特徴を生かせないなどの問題がある。
On the other hand, by employing the vapor phase method, it is expected that a PZT thin film with a relatively uniform crystal grain size can be obtained, but it is difficult to control the composition, such as deviation of the film composition from the target composition in a multi-component system. In order to crystallize the perovskite phase, which is a sheath ferroelectric phase, there are problems such as heat treatment at 500 to 600° C. or higher, which prevents the sputtering method from taking advantage of its ability to form a film at low temperatures.

【0005】本発明は前述の事情に鑑み、組成のコント
ロールされた優れた誘電特性を有するPZT強誘電体薄
膜を容易に製造できるようにすることをその課題とする
In view of the above-mentioned circumstances, it is an object of the present invention to enable easy production of a PZT ferroelectric thin film having a controlled composition and excellent dielectric properties.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に本発明のPZT強誘電体薄膜の製造方法は、鉛化合物
溶液とジルコニウム化合物溶液とチタン化合物溶液の混
合物に粘度調整剤を添加して粘度調整したPZT強誘電
体薄膜形成材料層が形成された耐熱基板を500゜C以
上で焼成することを特徴とする。鉛化合物溶液、ジルコ
ニウム化合物溶液およびチタン化合物溶液は、鉛および
チタンの有機配位子錯体を含有するペ−ストを使用する
ことができる。有機配位子錯体は、たとえばナフテン酸
などのカルボン酸やβ−ジケトン、安息香酸、2−エチ
ルヘキサン酸を配位子とするものが使用される。前記粘
度調整剤としては、従来公知の増粘剤または希釈剤等を
適当に混合して使用することができる。前記耐熱性基板
はPZTの結晶化温度以上、好ましくは500゜C以上
に加熱しても変形や相変化のない基板であれば特に制限
はなく、たとえばホウケイ酸ガラス基板、石英ガラス基
板、アルミナ基板などが、その目的に応じて使用される
。前記耐熱基板にPZT強誘電体薄膜形成材料層を形成
する方法としては、スクリーン印刷法、ロールコート法
、スピンコート法等の従来公知の種々の厚膜法を採用す
ることができる。前記焼成条件を500゜C以上のピ−
ク温度で行うのは500゜C以下では強誘電体薄膜の形
成が困難であることによる。前記耐熱基板の加熱法は、
基板温度を所定温度に加熱できる方法であれば特に制限
はない。
[Means for Solving the Problems] In order to solve the above problems, the method for producing a PZT ferroelectric thin film of the present invention includes adding a viscosity modifier to a mixture of a lead compound solution, a zirconium compound solution, and a titanium compound solution. The method is characterized in that a heat-resistant substrate on which a viscosity-adjusted PZT ferroelectric thin film forming material layer is formed is fired at 500°C or higher. As the lead compound solution, zirconium compound solution, and titanium compound solution, a paste containing an organic ligand complex of lead and titanium can be used. The organic ligand complex used includes, for example, a carboxylic acid such as naphthenic acid, β-diketone, benzoic acid, or 2-ethylhexanoic acid as a ligand. As the viscosity modifier, conventionally known thickeners, diluents, etc. can be appropriately mixed and used. The heat-resistant substrate is not particularly limited as long as it does not deform or phase change even when heated to a temperature higher than the crystallization temperature of PZT, preferably 500°C or higher, such as a borosilicate glass substrate, a quartz glass substrate, or an alumina substrate. etc. are used depending on the purpose. As a method for forming the PZT ferroelectric thin film forming material layer on the heat-resistant substrate, various conventionally known thick film methods such as screen printing, roll coating, and spin coating can be employed. The firing conditions were changed to a peak temperature of 500°C or higher.
The reason why the process is carried out at a temperature below 500°C is that it is difficult to form a ferroelectric thin film at temperatures below 500°C. The heating method for the heat-resistant substrate is as follows:
There is no particular restriction as long as the method can heat the substrate to a predetermined temperature.

【0007】[0007]

【作用】前述の本発明のPZT強誘電体薄膜の製造方法
によれば、薄膜技術で使用されるような大形の製造設備
を必要としない厚膜技術によって、すぐれた特性のPZ
T強誘電体薄膜を形成することができる。本発明により
、耐熱性基板上に密着して形成されたPZT強誘電体薄
膜は、PZTの正方晶結晶を主体としており、結晶粒界
にアモルファス相が存在することもあるが、そのアモル
ファス層の存在によっても強誘電体薄膜としての特性に
障害が生じることはない。
[Operation] According to the method for manufacturing a PZT ferroelectric thin film of the present invention described above, PZT with excellent characteristics can be produced using thick film technology that does not require large manufacturing equipment as used in thin film technology.
A T ferroelectric thin film can be formed. According to the present invention, the PZT ferroelectric thin film formed in close contact with the heat-resistant substrate is mainly composed of tetragonal PZT crystals, and although an amorphous phase may exist at the grain boundaries, the amorphous layer is Its presence does not impair the properties of the ferroelectric thin film.

【0008】[0008]

【実施例】次に本発明のPZT強誘電体薄膜の製造方法
の−実施例を説明する。 (1)レジネ−トの調整 2−エチルヘキサン酸鉛と2−エチルヘキサン酸ジルコ
ニウムと2−エチルヘキサン酸チタンを所望の原子比数
になるように混合する。混合比はPb:Zr:Ti=1
:x:1−x(0≦x≦1)となるような原子比数であ
ればよく、xの値によって200〜1500の誘電率を
自由に選択することができる。高い比誘電率を得たい場
合にはPb:Zr:Ti=1:O.52:0.48の比
率で混合してやるのが望ましい。この混合物溶液にレジ
ン、セルロ−ス、スキ−ジメジウムなどの増粘剤、ある
いはタ−ピオネ−ルなどの希釈剤を用いて1000〜1
0000cps程度に粘度調整し、レジネート(PZT
強誘電体薄膜形成用材料)を製造する。
EXAMPLES Next, examples of the method for manufacturing a PZT ferroelectric thin film of the present invention will be described. (1) Preparation of resinate Lead 2-ethylhexanoate, zirconium 2-ethylhexanoate, and titanium 2-ethylhexanoate are mixed in a desired atomic ratio. The mixing ratio is Pb:Zr:Ti=1
:x:1-x (0≦x≦1), and the dielectric constant can be freely selected from 200 to 1500 depending on the value of x. If you want to obtain a high dielectric constant, Pb:Zr:Ti=1:O. It is desirable to mix at a ratio of 52:0.48. Add a thickener such as resin, cellulose, or ski dimedium, or a diluent such as terpionaire to this mixture solution to
The viscosity was adjusted to about 0,000 cps, and resinate (PZT
ferroelectric thin film forming materials).

【0009】(2)誘電体膜の形成 前記(1)で調整したレジネ−トを絶縁基板上に印刷し
て、PZT強誘電体薄膜形成用材料層が形成された絶縁
基板を製造する。このPZT強誘電体薄膜形成用材料層
が形成された絶縁基板を焼成してPZT強誘電体薄膜を
形成する。焼成はベルト赤外炉を用いて800゜Cで3
0分間行う。一回の印刷・焼成で得られる薄膜の厚みは
(1)のレジネ−トの粘度と、スクリ−ン印刷の版の種
類とエマルジョンの厚みを変化させることで自由に変え
ることが出来、一回の印刷・焼成で0.1〜2μmの膜
厚が得られる。なお前記レジネートの印刷、焼成のプロ
セスを繰り返すことにより0.1〜10μmの膜厚のP
ZT強誘電体薄膜を得ることができる。
(2) Formation of dielectric film The resin prepared in (1) above is printed on an insulating substrate to produce an insulating substrate on which a layer of material for forming a PZT ferroelectric thin film is formed. The insulating substrate on which the PZT ferroelectric thin film forming material layer is formed is fired to form a PZT ferroelectric thin film. Firing was performed at 800°C using a belt infrared furnace.
Do this for 0 minutes. The thickness of the thin film obtained in one printing and firing process can be freely changed by changing the viscosity of the resin in (1), the type of screen printing plate, and the thickness of the emulsion. A film thickness of 0.1 to 2 μm can be obtained by printing and baking. By repeating the resin printing and firing process, P with a film thickness of 0.1 to 10 μm can be obtained.
A ZT ferroelectric thin film can be obtained.

【0010】図1は、前記実施例のPZT強誘電体薄膜
形成用材料層の熱重量分析図である。この図1から、P
ZT強誘電体薄膜が形成される温度(PZT強誘電体薄
膜の結晶化温度)は500゜C以上であり、500゜C
以下では強誘電体薄膜の形成が困難であることがわかる
。したがって、前記焼成条件は500゜C以上のピ−ク
温度で行う必要がある。前記実施例により製造された誘
電体体薄膜は図2に示すような誘電特性を持っており、
Zr:Tiの比率が0.52:0.48付近で最大の誘
電率を示す。なお、前記誘電率の測定はPZT強誘電体
薄膜をAu薄膜でサンドイッチし、25゜Cで1MHz
の周波数で測定した。
FIG. 1 is a thermogravimetric analysis diagram of the PZT ferroelectric thin film forming material layer of the above example. From this figure 1, P
The temperature at which the ZT ferroelectric thin film is formed (crystallization temperature of the PZT ferroelectric thin film) is 500°C or higher, and 500°C
It can be seen below that it is difficult to form a ferroelectric thin film. Therefore, the firing conditions need to be a peak temperature of 500 DEG C. or higher. The dielectric thin film produced according to the above example has dielectric properties as shown in FIG.
The maximum dielectric constant is exhibited when the ratio of Zr:Ti is around 0.52:0.48. The dielectric constant was measured by sandwiching a PZT ferroelectric thin film with an Au thin film at 25°C and 1MHz.
Measured at the frequency of

【0011】[0011]

【発明の効果】前述の本発明のPZT強誘電体薄膜の製
造方法によれば、製造設備が簡素な厚膜技術を用いて、
組成のコントロールされた優れた誘電特性を有するPZ
T強誘電体薄膜を容易に製造することができる。
[Effects of the Invention] According to the method for manufacturing a PZT ferroelectric thin film of the present invention described above, thick film technology with simple manufacturing equipment is used, and
PZ with excellent dielectric properties with controlled composition
A T ferroelectric thin film can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  図1は、前記実施例のPZT強誘電体薄膜
形成用材料層の熱重量分析図である。
FIG. 1 is a thermogravimetric analysis diagram of the PZT ferroelectric thin film forming material layer of the above example.

【図2】  図2は本発明のPZT強誘電体薄膜の製造
方法の−実施例により製造したPZT強誘電体薄膜の誘
電特性を示す図である。
FIG. 2 is a diagram showing the dielectric properties of a PZT ferroelectric thin film manufactured by an example of the method for manufacturing a PZT ferroelectric thin film of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  鉛化合物溶液とジルコニウム化合物溶
液とチタン化合物溶液の混合物に粘度調整剤を添加して
粘度調整したPZT強誘電体薄膜形成材料層が形成され
た耐熱基板耐熱基板を500゜C以上で焼成することを
特徴とするPZT強誘電体薄膜の製造方法。
Claim 1: A heat-resistant substrate on which a PZT ferroelectric thin film forming material layer is formed, the viscosity of which is adjusted by adding a viscosity modifier to a mixture of a lead compound solution, a zirconium compound solution, and a titanium compound solution, is heated to 500°C or higher. 1. A method for producing a PZT ferroelectric thin film, the method comprising firing the PZT ferroelectric thin film.
JP3102034A 1991-04-06 1991-04-06 Manufacture of pzt ferroelectric thin film Pending JPH04308607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3102034A JPH04308607A (en) 1991-04-06 1991-04-06 Manufacture of pzt ferroelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3102034A JPH04308607A (en) 1991-04-06 1991-04-06 Manufacture of pzt ferroelectric thin film

Publications (1)

Publication Number Publication Date
JPH04308607A true JPH04308607A (en) 1992-10-30

Family

ID=14316482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3102034A Pending JPH04308607A (en) 1991-04-06 1991-04-06 Manufacture of pzt ferroelectric thin film

Country Status (1)

Country Link
JP (1) JPH04308607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095651A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Precursor sol for forming dielectric film, method for preparing precursor sol, dielectric film and method for forming dielectric film
JP2008147682A (en) * 2007-12-18 2008-06-26 Seiko Epson Corp Piezoelectric thin-film element and ink jet recording head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095651A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Precursor sol for forming dielectric film, method for preparing precursor sol, dielectric film and method for forming dielectric film
JP2008147682A (en) * 2007-12-18 2008-06-26 Seiko Epson Corp Piezoelectric thin-film element and ink jet recording head

Similar Documents

Publication Publication Date Title
KR970006997B1 (en) Method for controlling crystal orientation of ferr
JP2532381B2 (en) Ferroelectric thin film element and manufacturing method thereof
JPH06116095A (en) Method for controlling crystal orientation property of ferroelectric thin film
WO1990013149A1 (en) SOL GEL PROCESS FOR PREPARING Pb(Zr,Ti)O3 THIN FILMS
US5244691A (en) Process for depositing a thin layer of a ceramic composition and a product obtained thereby
JP4122430B2 (en) Ferroelectric film
WO2015060003A1 (en) Liquid composition for forming lead-free dielectric thin film, method for forming said thin film, and lead-free dielectric thin film formed by said method
US5620739A (en) Thin film capacitors on gallium arsenide substrate and process for making the same
JPH04308607A (en) Manufacture of pzt ferroelectric thin film
JP2995290B2 (en) Method of forming PZT-based ferroelectric thin film
JPH04206871A (en) Semiconductor device and manufacture thereof
JPH0578103A (en) Thick film inorganic oxide
US5571495A (en) Dielectric thin film of substituted lead titanate
JP3040004B2 (en) Method for producing lead-based composite perovskite oxide thin film
JPS61285609A (en) Lead titanate ferrodielectric thin film and manufacture thereof
JP2955293B2 (en) Manufacturing method of dielectric thin film
JPH0414516B2 (en)
JPH04319204A (en) Manufacture of dielectric thin film
JP3438509B2 (en) Ceramic thin film and method for producing the same
JPH0695443B2 (en) Method of manufacturing ferroelectric thin film
US6007868A (en) Method of manufacturing ferroelectric bismuth-titanate layers on a substrate from solution
JPH09213569A (en) Multilayer dielectric and capacitor
JPH0597407A (en) Laminated and patterned inorganic oxide film and its formation thereof
JPH03285864A (en) Thin dielectric film
GB2357281A (en) Fabrication of ceramic films