WO2015060003A1 - Liquid composition for forming lead-free dielectric thin film, method for forming said thin film, and lead-free dielectric thin film formed by said method - Google Patents

Liquid composition for forming lead-free dielectric thin film, method for forming said thin film, and lead-free dielectric thin film formed by said method Download PDF

Info

Publication number
WO2015060003A1
WO2015060003A1 PCT/JP2014/072429 JP2014072429W WO2015060003A1 WO 2015060003 A1 WO2015060003 A1 WO 2015060003A1 JP 2014072429 W JP2014072429 W JP 2014072429W WO 2015060003 A1 WO2015060003 A1 WO 2015060003A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
lead
forming
dielectric thin
composition
Prior art date
Application number
PCT/JP2014/072429
Other languages
French (fr)
Japanese (ja)
Inventor
桜井 英章
順 藤井
曽山 信幸
舟窪 浩
荘雄 清水
純一 木村
Original Assignee
三菱マテリアル株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 国立大学法人東京工業大学 filed Critical 三菱マテリアル株式会社
Publication of WO2015060003A1 publication Critical patent/WO2015060003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the present invention provides a lead-free dielectric thin film that is lead-free, has a high relative dielectric constant, and contains at least two components of a BaTiO 3 component, a Bi (Mg 0.5 Ti 0.5 ) O 3 component, and a BiFeO 3 component.
  • the present invention relates to a liquid composition for forming a lead-free dielectric thin film to be formed by a chemical solution deposition method, a method for forming the thin film, and a lead-free dielectric thin film formed by the method. Note that this application claims priority based on Japanese Patent Application No. 2013-220952 filed in Japan on October 24, 2013, and the entire contents of Japanese Patent Application No. 2013-220952 are incorporated herein by reference.
  • Non-Patent Document 1 shows a thin film formed by epitaxially growing a binary composition of BaTiO 3 and Bi (Mg 0.5 Ti 0.5 ) O 3 by a pulse laser deposition method.
  • Non-Patent Document 2 shows a sintered body composed of a ternary composition of BaTiO 3 , Bi (Mg 0.5 Ti 0.5 ) O 3 and BiFeO 3 .
  • This sintered body is manufactured by a method of obtaining a sintered body from a general ceramic powder. For example, this sintered body includes a step of wet mixing raw material oxide powder at a predetermined mixing ratio, a step of drying and calcining the mixed powder, a step of crushing the calcined powder, and a pulverized product again.
  • a step of wet mixing a step of obtaining a granulated powder by adding a binder to the mixed powder, a step of sizing the granulated powder, a step of pressure-molding the sized powder into a mold, and this molding It is manufactured through a step of removing the binder from the body and a step of firing the molded body.
  • Non-Patent Document 1 is a binary system, and is produced by a pulsed laser deposition method, which is an expensive vacuum process. Therefore, there was a problem in the uniformity of the film composition on a large substrate.
  • the sintered body shown in Non-Patent Document 2 requires a number of processes and has a problem that it cannot be applied to a dielectric thin film because it is a bulk sintered body and not a thin film.
  • An object of the present invention is to provide a liquid composition for forming a lead-free dielectric thin film for forming a lead-free dielectric thin film having a high relative dielectric constant by a chemical solution deposition method.
  • a ninth aspect of the present invention is an invention based on any one of the fifth to eighth aspects, wherein the coating step and the drying step are repeated a plurality of times, and the baking step is repeated a plurality of times.
  • the coating film is crystallized in O 2 , N 2 , Ar, N 2 O, H 2 or a mixed gas thereof, in dry air, or in an atmosphere containing water vapor. This is a method for forming a lead-free dielectric thin film, which is a step of firing as described above.
  • a tenth aspect of the present invention is a crystalline lead-free dielectric thin film formed by a method based on any one of the fifth to eighth aspects.
  • the eleventh aspect of the present invention is a thin film capacitor having a lead-free dielectric thin film based on the tenth aspect, capacitor, IPD, DRAM memory capacitor, multilayer capacitor, LC noise filter element, transistor gate insulator, non-volatile It is a composite electronic component comprising either a memory or a pyroelectric infrared detection element.
  • a twelfth aspect of the present invention includes any one of a piezoelectric element, an electro-optical element, an actuator, a resonator, an ultrasonic motor, a surface acoustic wave element, or a transducer having a lead-free dielectric thin film based on the tenth aspect. It is a composite electronic component.
  • a lead-free dielectric thin film having a high relative dielectric constant needs an expensive apparatus as in Non-Patent Document 1. And can be formed without going through a complicated process as in Non-Patent Document 2.
  • liquid composition for forming a lead-free dielectric thin film according to the second aspect of the present invention it is possible to form a dielectric thin film that is lead-free and has a higher relative dielectric constant than the composition according to the first aspect. it can.
  • the dielectric is lead-free and has a higher relative dielectric constant than the liquid compositions according to the first and second aspects.
  • a thin film can be formed.
  • the liquid composition for forming a lead-free dielectric thin film according to the fourth aspect of the present invention is lead-free and has a substantially constant relative permittivity in a high temperature atmosphere as compared with a relative permittivity of 25 ° C.
  • a dielectric thin film with small dependency can be formed.
  • [BaTiO 3] ⁇ [Bi ( Mg 0.5 Ti 0.5) O 3] ⁇ shows the first region and the fourth region in the ternary phase diagram of [BiFeO 3] of the present invention.
  • the composition for forming a lead-free dielectric thin film of the present invention contains a liquid composition capable of forming BaTiO 3 , Bi (Mg 0.5 Ti 0.5 ) O 3 , and BiFeO 3 , respectively. Prepared.
  • the liquid composition for BaTiO 3 uses carboxylate or alkoxide as the Ba raw material and alkoxide as the Ti raw material, and these raw materials are used as solvents such as 2-methoxyethanol and acetic acid. It is prepared by mixing and dissolving at a predetermined molar ratio so that the total concentration in terms of metal oxide is about 1 to 25% by mass.
  • the barium carboxylate include barium 2-ethylbutyrate, barium 2-ethylhexanoate, and barium acetate.
  • the barium alkoxide include barium diisopropoxide and barium dibutoxide.
  • titanium alkoxide examples include titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium dimethoxydiisopropoxide, and the like.
  • the above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
  • the liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 is composed of carboxylate or alkoxide as Bi raw material, alkoxide as Mg raw material, and Ti raw material. Prepared by using each alkoxide and mixing and dissolving these raw materials in a solvent such as 2-methoxyethanol at a predetermined molar ratio and a total concentration in terms of metal oxide of about 1 to 25% by mass. Is done.
  • the bismuth carboxylate is bismuth 2-ethylbutyrate, bismuth 2-ethylhexanoate, and the bismuth alkoxide is abbreviated as Bi (OC (CH 3 ) 3 ) 3 (hereinafter referred to as Bi (Ot—Bu) 3 . ), Bi (OC (CH 3 ) 2 C 2 H 5 ) 3 (hereinafter abbreviated as Bi (Ot-Am) 3 ) and the like.
  • the magnesium alkoxide include magnesium ethoxide, magnesium methoxide, magnesium propoxide and the like.
  • examples of the titanium alkoxide include titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium dimethoxydiisopropoxide, and the like.
  • the above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
  • the liquid composition for BiFeO 3 uses carboxylate and alkoxide as Bi raw materials and iron (III) acetylacetonate as Fe raw materials, and these raw materials are 2-methoxyethanol and the like. In this solvent, it is prepared by mixing and dissolving in a predetermined molar ratio so that the total concentration in terms of metal oxide is about 1 to 25% by mass.
  • the bismuth carboxylate include bismuth 2-ethylbutyrate and bismuth 2-ethylhexanoate.
  • Examples of the bismuth alkoxide include Bi (Ot—Bu) 3 and Bi (Ot—Am) 3. Iron (III) acetylacetonate, iron nitrate and the like.
  • the above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
  • the composition is applied by a coating method such as spin coating, dip coating, or LSMCD (Liquid Source Misted Chemical Deposition) method. It apply
  • a coating method such as spin coating, dip coating, or LSMCD (Liquid Source Misted Chemical Deposition) method. It apply
  • the heat-resistant substrate to be used include Pt, Pt (top layer) / Ti, Pt (top layer) / Ta, Ru, RuO 2 , Ru (top layer) / RuO 2 , RuO on the substrate surface layer. 2 (top layer) / Ru, Ir, IrO 2 , Ir (top layer) / IrO 2 , Pt (top layer) / Ir, Pt (top layer) / IrO 2 , SrRuO 3 or (La X Sr (1-X ) )
  • a substrate using a perovskite-type conductive oxide such as CoO 3 may be mentioned, but the substrate is not limited thereto.
  • the baking is performed after repeating the application and drying steps a plurality of times.
  • the desired film thickness refers to the thickness of the dielectric thin film obtained after the main firing, and in the case of a high capacity density thin film capacitor, the thickness of the dielectric thin film after the main firing is in the range of 50 to 500 nm. It is.
  • pre-baking is performed in order to remove the solvent and to convert the organic compound or organometallic compound into a composite oxide by thermal decomposition or hydrolysis, and therefore, in the air, in an oxidizing atmosphere, or in a steam-containing atmosphere. Do. Even in heating in the air, the moisture required for hydrolysis is sufficiently secured by the humidity in the air. This heating may be performed in two stages: low temperature heating for removing the solvent and high temperature heating for decomposing the organometallic compound or organic compound.
  • the main baking is a process for baking and crystallizing the thin film obtained by the preliminary baking at a temperature equal to or higher than the crystallization temperature, whereby a dielectric thin film is obtained.
  • the firing atmosphere in this crystallization step is preferably O 2 , N 2 , Ar, N 2 O, H 2, or a mixed gas thereof.
  • Pre-baking is performed at 150 to 550 ° C. for about 1 to 30 minutes, and main baking is performed at 450 to 800 ° C. for about 1 to 60 minutes.
  • the main baking may be performed in a rapid heating process (RTA process) or a muffle furnace.
  • RTA process rapid heating process
  • the rate of temperature rise is preferably 10 to 100 ° C./second.
  • the dielectric thin film thus formed has a predetermined ratio of two or three of a liquid composition for BaTiO 3 , a liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 , and a liquid composition for BiFeO 3 . By doing so, a high relative dielectric constant can be obtained.
  • the relative permittivity and the dielectric loss tangent (tan ⁇ ) are evaluated as follows. Specifically, the dielectric constant and dielectric loss tangent of a capacitor using a dielectric thin film are measured with an impedance analyzer (measurement equipment manufacturer: Agilent Technologies, HP4194A). Crystallinity was evaluated by the presence or absence of a peak derived from the perovskite phase by the XRD ⁇ -2 ⁇ scan method.
  • Examples 1 to 11 and Comparative Example 1 First, 10 ml of 2-methoxyethanol was added to 0.0025 mol of titanium tetrabutoxide and stirred at room temperature for 60 minutes. To this mixed solution, 0.0025 mol of barium acetate was added and stirred at room temperature for 120 minutes. Subsequently, 0.2 ml of acetylacetone and 5 ml of acetic acid were added, and the mixture was stirred overnight at room temperature to prepare a liquid composition for BaTiO 3 . Next, 5 ml of 2-methoxyethanol was added to 0.00125 mol of titanium tetrabutoxide and stirred at room temperature for 60 minutes.
  • liquid composition for BaTiO 3 Two or three of the liquid composition for BaTiO 3 , the liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 , and the liquid composition for BiFeO 3 prepared in this way are in the ratio in terms of oxide shown in Table 1.
  • each dielectric constant and each tan ⁇ of the lead-free derivative thin films obtained in Example 3 (3), Example 7 (7), Example 8 (9) and Example 10 (11) shown in Table 1 are As a result, the average dielectric constant was 632.5, which was higher, and the average tan ⁇ was 12.75, which was a practical level.
  • a region surrounded by the third embodiment (3), the eighth embodiment (9), the seventh embodiment (7), and the tenth embodiment (11) is shown as a second region.
  • each dielectric constant and each tan ⁇ of the lead-free derivative thin films obtained in Example 5 (5), Example 7 (7), Example 8 (9) and Example 11 (10) shown in Table 1 are calculated.
  • Example 5 (5), Example 8 (9), Example 7 (7), and Example 11 (10) is shown as a third region.
  • the lead-free derivative thin film obtained in Comparative Example 1 (8) had an excellent relative dielectric constant of 1100, tan ⁇ was so large that it was impractical.
  • Examples 1 to 12 In addition to the lead-free dielectric thin films of Examples 1 to 11 prepared in Measurement Test 1, the molar ratio (x) of BaTiO 3 is 0.60, and the molar ratio (y) of Bi (Mg 0.5 Ti 0.5 ) O 3 is A lead-free derivative thin film of Example 12 in which the molar ratio (z) of 0.40 and BiFeO 3 was 0.00 was produced. Except for changing the molar ratio, the lead-free derivative thin film of Example 12 was produced in the same manner as in Examples 1 to 11.
  • the four types of lead-free derivative thin films of Examples 1 to 4 were 25 ° C., 50 ° C., 100 ° C., 150 ° C., 200 ° C., 250 ° C. under atmospheric conditions.
  • the relative dielectric constant at each temperature of 300 ° C., 350 ° C., and 400 ° C. was measured at a measurement frequency of 100 kHz by the impedance analyzer described above.
  • Example 1 to Example 4 Example 7, Example 8, Example 11, and Example 12 on the ternary diagram are shown in FIG. Table 2 shows the specific permittivity of each of the 12 types of lead-free derivative thin films at each temperature.
  • Table 2 shows the specific permittivity of each of the 12 types of lead-free derivative thin films at each temperature.
  • the relative dielectric constants of the derivative thin films of Example 1 (1) to Example 7 (7) at each temperature of 25 ° C. or higher are shown in FIG. 3, and Example 6 (6) and Example 8 (9) to Example FIG. 4 shows the relative dielectric constant of each 12 (13) derivative thin film at temperatures of 25 ° C. or higher.
  • Example 2 From the lead-free derivative thin films obtained in Example 1 (1), Example 2 (2), Example 3 (3) and Example 4 (4) shown in Table 2 and FIGS.
  • Examples 1-4 The specific dielectric constant at 400 ° C. or the specific dielectric constant at 250 ° C. of Example 12 is almost constant with the specific dielectric constant at 25 ° C., has a small temperature dependency, and is suitable for a derivative thin film used in a high temperature atmosphere. I found out.
  • the region surrounded by Example 1 (1), Example 2 (2), Example 3 (3), Example 4 (4), and Example 12 (13) is shown as the fourth region. It is.
  • the first region is shown to clarify that the fourth region is within the first region.
  • the lead-free dielectric thin film made from the liquid composition for forming a lead-free dielectric thin film of the present invention includes a thin film capacitor, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, an LC noise filter element, a transistor gate insulator, A composite electronic component consisting of either a non-volatile memory or a pyroelectric infrared detector, or a composite consisting of a piezoelectric element, electro-optic element, actuator, resonator, ultrasonic motor, surface acoustic wave element, or transducer Available for electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

This liquid composition for forming a lead-free dielectric thin film contains at least two components selected from among a BaTiO3 component, a Bi(Mg0.5Ti0.5)O3 component and a BiFeO3 component; and if x[BaTiO3]·y[Bi(Mg0.5Ti0.5)O3]·z[BiFeO3] and x + y + z = 1, this liquid composition is within a first region that is surrounded by the point where x = 0.90 and y = 0.10, the point where x = 0.30 and z = 0.70, the point where x = 0.15, y = 0.10 and z = 0.75 and the point where x = 0.30 and y = 0.70 in the [BaTiO3]·[Bi(Mg0.5Ti0.5)O3]·[BiFeO3] ternary phase diagram. This liquid composition is used for the purpose of forming a lead-free dielectric thin film by a chemical solution deposition method.

Description

非鉛誘電体薄膜形成用液組成物及びその薄膜の形成方法並びにその方法で形成された非鉛誘電体薄膜Liquid composition for forming lead-free dielectric thin film, method for forming the thin film, and lead-free dielectric thin film formed by the method
 本発明は、鉛フリーで、高い比誘電率を有し、BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3成分のうち少なくとも2成分を含有する非鉛誘電体薄膜を化学溶液堆積法(Chemical Solution Deposition法)により形成するための非鉛誘電体薄膜形成用液組成物及びその薄膜の形成方法並びにその方法で形成された非鉛誘電体薄膜に関する。
 なお、本願は、2013年10月24日に日本に出願された特願2013-220952に基づく優先権を主張するものであり、特願2013-220952の全内容を本願に援用する。
The present invention provides a lead-free dielectric thin film that is lead-free, has a high relative dielectric constant, and contains at least two components of a BaTiO 3 component, a Bi (Mg 0.5 Ti 0.5 ) O 3 component, and a BiFeO 3 component. The present invention relates to a liquid composition for forming a lead-free dielectric thin film to be formed by a chemical solution deposition method, a method for forming the thin film, and a lead-free dielectric thin film formed by the method.
Note that this application claims priority based on Japanese Patent Application No. 2013-220952 filed in Japan on October 24, 2013, and the entire contents of Japanese Patent Application No. 2013-220952 are incorporated herein by reference.
 近年、鉛含有の誘電体薄膜を用いた各種電子機器の廃棄後の環境負荷を危惧し、鉛フリーの誘電体薄膜が求められている。こうした鉛フリーの誘電体薄膜として、BaTiO3や(Ba,Sr)TiO3が高い比誘電率を有するキャパシタ材料として広く用いられている。しかしながら、BaTiO3膜や(Ba,Sr)TiO3膜において、より高い比誘電率を実現するためには高いプロセス温度が必要であり、一方で、キャパシタのPtなどの金属電極は高温処理にて劣化するため、成膜プロセス温度の低減が必要であり、低温で容易に結晶化しかつ高い比誘電率を有する新規な誘電体組成が求められている。1つの手法として、ビスマス(Bi)化合物を材料系内に含有することで、結晶化温度を低減できることがBaTiO3焼結体においては知られているが、薄膜の場合の知見は乏しい。 In recent years, there has been a demand for lead-free dielectric thin films in view of the environmental impact after disposal of various electronic devices using lead-containing dielectric thin films. As such lead-free dielectric thin films, BaTiO 3 and (Ba, Sr) TiO 3 are widely used as capacitor materials having a high relative dielectric constant. However, a high process temperature is required to achieve a higher dielectric constant in the BaTiO 3 film and the (Ba, Sr) TiO 3 film, while metal electrodes such as Pt of capacitors are subjected to high temperature processing. Since it deteriorates, it is necessary to reduce the film forming process temperature, and there is a need for a novel dielectric composition that is easily crystallized at a low temperature and has a high relative dielectric constant. As one method, it is known in the BaTiO 3 sintered body that the crystallization temperature can be reduced by containing a bismuth (Bi) compound in the material system, but the knowledge in the case of a thin film is poor.
 非特許文献1には、BaTiO3とBi(Mg0.5Ti0.5)O3の二元系組成物をパルスレーザ蒸着法によりエピタキシャル成長させて形成された薄膜が示されている。また非特許文献2には、BaTiO3とBi(Mg0.5Ti0.5)O3とBiFeO3の三元系組成物で構成された焼結体が示されている。この焼結体は、一般的なセラミックス粉から焼結体を得る方法で製造される。例えば、この焼結体は、原料の酸化物粉末を所定の配合比で湿式混合する工程と、この混合粉を乾燥し仮焼する工程と、仮焼粉を粉砕する工程と、粉砕物を再度湿式混合する工程と、混合粉にバインダを添加して造粒粉を得る工程と、造粒粉を整粒する工程と、整粒粉を金型に入れて加圧成形する工程と、この成形体からバインダを除去する工程と、この成形体を焼成する工程を経て製造される。 Non-Patent Document 1 shows a thin film formed by epitaxially growing a binary composition of BaTiO 3 and Bi (Mg 0.5 Ti 0.5 ) O 3 by a pulse laser deposition method. Non-Patent Document 2 shows a sintered body composed of a ternary composition of BaTiO 3 , Bi (Mg 0.5 Ti 0.5 ) O 3 and BiFeO 3 . This sintered body is manufactured by a method of obtaining a sintered body from a general ceramic powder. For example, this sintered body includes a step of wet mixing raw material oxide powder at a predetermined mixing ratio, a step of drying and calcining the mixed powder, a step of crushing the calcined powder, and a pulverized product again. A step of wet mixing, a step of obtaining a granulated powder by adding a binder to the mixed powder, a step of sizing the granulated powder, a step of pressure-molding the sized powder into a mold, and this molding It is manufactured through a step of removing the binder from the body and a step of firing the molded body.
 上記非特許文献1に示される薄膜は二元系であり、高価な真空プロセスの1種であるパルスレーザ蒸着法で作製されるため量産成膜性に課題があり、かつ複雑な組成を成膜するため大きな基板上での膜組成の均一性に問題があった。また非特許文献2に示される焼結体は、数多くの工程を要する上、バルクの焼結体であって薄膜でないため、誘電体薄膜に適用できない問題があった。 The thin film shown in Non-Patent Document 1 is a binary system, and is produced by a pulsed laser deposition method, which is an expensive vacuum process. Therefore, there was a problem in the uniformity of the film composition on a large substrate. In addition, the sintered body shown in Non-Patent Document 2 requires a number of processes and has a problem that it cannot be applied to a dielectric thin film because it is a bulk sintered body and not a thin film.
 本発明の目的は、鉛フリーで、高い比誘電率を有する誘電体薄膜を化学溶液堆積法により形成するための非鉛誘電体薄膜形成用液組成物を提供することにある。 An object of the present invention is to provide a liquid composition for forming a lead-free dielectric thin film for forming a lead-free dielectric thin film having a high relative dielectric constant by a chemical solution deposition method.
 本発明の第1の観点は、BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3成分のうち少なくとも2成分を含有し、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.70とで囲まれた第1領域内の組成である、非鉛誘電体薄膜を化学溶液堆積法により形成するための非鉛誘電体薄膜形成用液組成物である。 The first aspect of the present invention includes at least two of a BaTiO 3 component, a Bi (Mg 0.5 Ti 0.5 ) O 3 component, and a BiFeO 3 component, and x [BaTiO 3 ] · y [Bi (Mg 0.5 When Ti 0.5 ) O 3 ] · z [BiFeO 3 ] and x + y + z = 1, on the ternary phase diagram of [BaTiO 3 ] · [Bi (Mg 0.5 Ti 0.5 ) O 3 ] · [BiFeO 3 ], x = 0.90 · y = 0.10, x = 0.30 · z = 0.70, x = 0.15 · y = 0.10 · z = 0.75, x = 0.30 A liquid composition for forming a lead-free dielectric thin film for forming a lead-free dielectric thin film by a chemical solution deposition method in the first region surrounded by y = 0.70.
 本発明の第2の観点は、第1の観点に基づく発明であって、第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である非鉛誘電体薄膜形成用液組成物である。 A second aspect of the present invention is an invention based on the first aspect, wherein the composition in the first region is x = 0.70 · y = 0.09 · z = 0.21, x = 0.30 · z = 0.70, x = 0.15 · y = 0.10 · z = 0.75, x = 0.30 · y = 0.50 · z = 0.20 It is a liquid composition for forming a lead-free dielectric thin film having a composition in the enclosed second region.
 本発明の第3の観点は、第2の観点に基づく発明であって、第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.30・z=0.40とで囲まれた第3領域内の組成である非鉛誘電体薄膜形成用液組成物である。 A third aspect of the present invention is an invention based on the second aspect, wherein the composition in the second region is x = 0.40 · y = 0.10 · z = 0.50, x = 0.30 · z = 0.70, x = 0.15 · y = 0.10 · z = 0.75, x = 0.30 · y = 0.30 · z = 0.40 It is the liquid composition for non-lead dielectric thin film formation which is a composition in the enclosed 3rd field.
 本発明の第4の観点は、第1の観点に基づく発明であって、第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である非鉛誘電体薄膜形成用液組成物である。 A fourth aspect of the present invention is an invention based on the first aspect, and is a composition in the first region, wherein x = 0.90 · y = 0.10 and x = 0.80 · y. = 0.09 · z = 0.21, x = 0.60 · y = 0.09 · z = 0.31, and the fourth region surrounded by x = 0.60 · y = 0.40 It is the liquid composition for lead-free dielectric thin film formation which is the inside composition.
  本発明の第5の観点は、BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3成分のうち少なくとも2成分を含有し、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.70とで囲まれた第1領域内の組成である、非鉛誘電体薄膜形成用液組成物を基板に塗布して塗膜を形成する塗布工程と、前記基板に形成された塗膜を、空気中、酸化雰囲気中又は含水蒸気雰囲気中で加熱して乾燥する乾燥工程と、前記乾燥工程の途中から或いは完了後に前記塗膜を、O2,N2,Ar,N2O,H2若しくはこれらの混合ガス中又は乾燥空気中或いは水蒸気を含む前記雰囲気中で結晶化温度以上で焼成する焼成工程とを含む非鉛誘電体薄膜の形成方法である。 The fifth aspect of the present invention includes at least two of a BaTiO 3 component, a Bi (Mg 0.5 Ti 0.5 ) O 3 component, and a BiFeO 3 component, and x [BaTiO 3 ] · y [Bi (Mg 0.5 When Ti 0.5 ) O 3 ] · z [BiFeO 3 ] and x + y + z = 1, on the ternary phase diagram of [BaTiO 3 ] · [Bi (Mg 0.5 Ti 0.5 ) O 3 ] · [BiFeO 3 ], x = 0.90 · y = 0.10, x = 0.30 · z = 0.70, x = 0.15 · y = 0.10 · z = 0.75, x = 0.30 A coating step in which a coating composition is formed by applying a liquid composition for forming a lead-free dielectric thin film, which is a composition in the first region surrounded by y = 0.70, to the substrate; A drying process in which the coated film is dried by heating in air, in an oxidizing atmosphere or in a steam-containing atmosphere, and during or after completion of the drying process , O 2, N 2, Ar , N 2 O, non-lead dielectric film and a firing step of firing at a crystallization temperature or higher with H 2 or or dry air these mixed gas or in the atmosphere containing water vapor It is the formation method.
 本発明の第6の観点は、第5の観点に基づく発明であって、前記非鉛誘電体薄膜形成用液組成物が前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である非鉛誘電体薄膜の形成方法である。 A sixth aspect of the present invention is the invention based on the fifth aspect, wherein the liquid composition for forming a lead-free dielectric thin film is a composition in the first region, and x = 0.70 · y = 0.09 · z = 0.21, x = 0.30 · z = 0.70, x = 0.15 · y = 0.10 · z = 0.75, x = 0.30 · This is a method for forming a lead-free dielectric thin film having a composition in the second region surrounded by y = 0.50 · z = 0.20.
 本発明の第7の観点は、第6の観点に基づく発明であって、前記非鉛誘電体薄膜形成用液組成物が前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.30・z=0.40とで囲まれた第3領域内の組成である非鉛誘電体薄膜の形成方法である。 A seventh aspect of the present invention is the invention based on the sixth aspect, wherein the liquid composition for forming a lead-free dielectric thin film is a composition in the second region, and x = 0.40 · y. = 0.10 · z = 0.50, x = 0.30 · z = 0.70, x = 0.15 · y = 0.10 · z = 0.75, x = 0.30 · This is a method for forming a lead-free dielectric thin film having a composition in the third region surrounded by y = 0.30 · z = 0.40.
 本発明の第8の観点は、第5の観点に基づく発明であって、前記非鉛誘電体薄膜形成用液組成物が前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である非鉛誘電体薄膜の形成方法である。 An eighth aspect of the present invention is the invention based on the fifth aspect, wherein the liquid composition for forming a lead-free dielectric thin film is a composition in the first region, and x = 0.90 · y. = 0.10, x = 0.80 · y = 0.09 · z = 0.21, x = 0.60 · y = 0.09 · z = 0.31, x = 0.60 · This is a method for forming a lead-free dielectric thin film having a composition in the fourth region surrounded by y = 0.40.
 本発明の第9の観点は、第5ないし第8の観点のいずれかの観点に基づく発明であって、前記塗布工程及び前記乾燥工程が複数回繰り返され、前記焼成工程が前記複数回繰り返された最終乾燥工程の途中から或いは完了後に前記塗膜を、O2,N2,Ar,N2O,H2若しくはこれらの混合ガス中又は乾燥空気中或いは水蒸気を含む前記雰囲気中で結晶化温度以上で焼成する工程である非鉛誘電体薄膜の形成方法である。 A ninth aspect of the present invention is an invention based on any one of the fifth to eighth aspects, wherein the coating step and the drying step are repeated a plurality of times, and the baking step is repeated a plurality of times. In the middle of or after completion of the final drying step, the coating film is crystallized in O 2 , N 2 , Ar, N 2 O, H 2 or a mixed gas thereof, in dry air, or in an atmosphere containing water vapor. This is a method for forming a lead-free dielectric thin film, which is a step of firing as described above.
 本発明の第10の観点は、第5ないし第8の観点のいずれかの観点に基づく方法により形成された結晶質の非鉛誘電体薄膜である。 A tenth aspect of the present invention is a crystalline lead-free dielectric thin film formed by a method based on any one of the fifth to eighth aspects.
  本発明の第11の観点は、第10の観点に基づく非鉛誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、LCノイズフィルタ素子、トランジスタのゲート絶縁体、不揮発性メモリ、又は焦電型赤外線検出素子のいずれかからなる複合電子部品である。 The eleventh aspect of the present invention is a thin film capacitor having a lead-free dielectric thin film based on the tenth aspect, capacitor, IPD, DRAM memory capacitor, multilayer capacitor, LC noise filter element, transistor gate insulator, non-volatile It is a composite electronic component comprising either a memory or a pyroelectric infrared detection element.
  本発明の第12の観点は、第10の観点に基づく非鉛誘電体薄膜を有する圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、表面弾性波素子、又はトランスジューサのいずれかからなる複合電子部品である。 A twelfth aspect of the present invention includes any one of a piezoelectric element, an electro-optical element, an actuator, a resonator, an ultrasonic motor, a surface acoustic wave element, or a transducer having a lead-free dielectric thin film based on the tenth aspect. It is a composite electronic component.
 本発明の第1の観点の非鉛誘電体薄膜形成用液組成物では、鉛フリーであって、高い比誘電率を有する誘電体薄膜を、非特許文献1のような高価な装置を要することなく、また非特許文献2のような複雑な工程を経ることなく形成することができる。 In the liquid composition for forming a lead-free dielectric thin film according to the first aspect of the present invention, a lead-free dielectric thin film having a high relative dielectric constant needs an expensive apparatus as in Non-Patent Document 1. And can be formed without going through a complicated process as in Non-Patent Document 2.
 本発明の第2の観点の非鉛誘電体薄膜形成用液組成物では、鉛フリーであって、第1の観点の組成物よりもより高い比誘電率を有する誘電体薄膜を形成することができる。 In the liquid composition for forming a lead-free dielectric thin film according to the second aspect of the present invention, it is possible to form a dielectric thin film that is lead-free and has a higher relative dielectric constant than the composition according to the first aspect. it can.
 本発明の第3の観点の非鉛誘電体薄膜形成用液組成物では、鉛フリーであって、第1及び第2の観点の液組成物よりも、更により高い比誘電率を有する誘電体薄膜を形成することができる。 In the liquid composition for forming a lead-free dielectric thin film according to the third aspect of the present invention, the dielectric is lead-free and has a higher relative dielectric constant than the liquid compositions according to the first and second aspects. A thin film can be formed.
 本発明の第4の観点の非鉛誘電体薄膜形成用液組成物では、鉛フリーであって、25℃の比誘電率と比べて高温雰囲気下で比誘電率がほぼ一定であって、温度依存性の小さい誘電体薄膜を形成することができる。 The liquid composition for forming a lead-free dielectric thin film according to the fourth aspect of the present invention is lead-free and has a substantially constant relative permittivity in a high temperature atmosphere as compared with a relative permittivity of 25 ° C. A dielectric thin film with small dependency can be formed.
本発明の[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上における第1の領域、第2の領域及び第3の領域を示す図。 [BaTiO 3] · [Bi ( Mg 0.5 Ti 0.5) O 3] · first region in the ternary phase diagram of [BiFeO 3], shows the second and third regions of the present invention. 本発明の[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上における第1の領域及び第4の領域を示す図。 [BaTiO 3] · [Bi ( Mg 0.5 Ti 0.5) O 3] · shows the first region and the fourth region in the ternary phase diagram of [BiFeO 3] of the present invention. 実施例1(1)~実施例7(7)の誘導体薄膜の25℃以上の各温度における比誘電率を示す図。The figure which shows the dielectric constant in each temperature of 25 degreeC or more of the derivative thin film of Example 1 (1)-Example 7 (7). 実施例6(6)及び実施例8(9)~実施例12(13)の誘導体薄膜の25℃以上の各温度における比誘電率を示す図。The figure which shows the dielectric constant in each temperature of 25 degreeC or more of the derivative thin film of Example 6 (6) and Example 8 (9)-Example 12 (13).
 次に本発明を実施するための形態を図面に基づいて説明する。 Next, modes for carrying out the present invention will be described with reference to the drawings.
 <非鉛誘電体薄膜形成用液組成物の調製>
 本発明の非鉛誘電体薄膜形成用組成物は、BaTiO3と、Bi(Mg0.5Ti0.5)O3と、BiFeO3をそれぞれ形成可能な液組成物を含有してなり、それぞれ以下のように調製される。
<Preparation of a liquid composition for forming a lead-free dielectric thin film>
The composition for forming a lead-free dielectric thin film of the present invention contains a liquid composition capable of forming BaTiO 3 , Bi (Mg 0.5 Ti 0.5 ) O 3 , and BiFeO 3 , respectively. Prepared.
(1)BaTiO3用液組成物
 BaTiO3用液組成物は、Ba原料としてカルボン酸塩やアルコキシドを、Ti原料としてアルコキシドをそれぞれ用い、これらの原料を2-メトキシエタノールや酢酸等の溶剤に、所定のモル比で、かつ、金属酸化物換算の合計濃度が1~25質量%程度となるように混合溶解させることにより調製される。カルボン酸バリウムとしては、2-エチル酪酸バリウム、2-エチルヘキサン酸バリウム、酢酸バリウム等が挙げられ、バリウムアルコキシドとしては、バリウムジイソプロポキシド、バリウムジブトキシド等が挙げられる。またチタンアルコキシドとしては、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、チタニウムテトラブトキシド、チタニウムジメトキシジイソプロポキシド等が挙げられる。上記金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。また安定化剤としてアセチルアセトン等を加えても良い。
(1) Liquid composition for BaTiO 3 The liquid composition for BaTiO 3 uses carboxylate or alkoxide as the Ba raw material and alkoxide as the Ti raw material, and these raw materials are used as solvents such as 2-methoxyethanol and acetic acid. It is prepared by mixing and dissolving at a predetermined molar ratio so that the total concentration in terms of metal oxide is about 1 to 25% by mass. Examples of the barium carboxylate include barium 2-ethylbutyrate, barium 2-ethylhexanoate, and barium acetate. Examples of the barium alkoxide include barium diisopropoxide and barium dibutoxide. Examples of the titanium alkoxide include titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium dimethoxydiisopropoxide, and the like. The above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
(2)Bi(Mg0.5Ti0.5)O3用液組成物
  Bi(Mg0.5Ti0.5)O3用液組成物は、Bi原料としてカルボン酸塩やアルコキシドを、Mg原料としてアルコキシドを、Ti原料としてアルコキシドをそれぞれ用い、これらの原料を2-メトキシエタノール等の溶剤に、所定のモル比で、かつ、金属酸化物換算の合計濃度が1~25質量%程度となるように混合溶解させることにより調製される。カルボン酸ビスマスとしては、2-エチル酪酸ビスマス、2-エチルヘキサン酸ビスマス等が、ビスマスアルコキシドとしては、Bi(OC(CH3)3)3(以下、Bi(Ot-Bu)3と略記する。)、Bi(OC(CH3)225)3(以下、Bi(Ot-Am)3と略記する。)等が挙げられる。またマグネシウムアルコキシドとしては、マグネシウムエトキシド、マグネシウムメトキシド、マグネシウムプロポキシド等が挙げられる。更にチタンアルコキシドとしては、チタニウムテトラエトキシド、チタニウムテトライソプロポキシド、チタニウムテトラブトキシド、チタニウムジメトキシジイソプロポキシド等が挙げられる。上記金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。また安定化剤としてアセチルアセトン等を加えても良い。
(2) Liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 The liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 is composed of carboxylate or alkoxide as Bi raw material, alkoxide as Mg raw material, and Ti raw material. Prepared by using each alkoxide and mixing and dissolving these raw materials in a solvent such as 2-methoxyethanol at a predetermined molar ratio and a total concentration in terms of metal oxide of about 1 to 25% by mass. Is done. The bismuth carboxylate is bismuth 2-ethylbutyrate, bismuth 2-ethylhexanoate, and the bismuth alkoxide is abbreviated as Bi (OC (CH 3 ) 3 ) 3 (hereinafter referred to as Bi (Ot—Bu) 3 . ), Bi (OC (CH 3 ) 2 C 2 H 5 ) 3 (hereinafter abbreviated as Bi (Ot-Am) 3 ) and the like. Examples of the magnesium alkoxide include magnesium ethoxide, magnesium methoxide, magnesium propoxide and the like. Further, examples of the titanium alkoxide include titanium tetraethoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium dimethoxydiisopropoxide, and the like. The above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
(3)BiFeO3用液組成物
  BiFeO3用液組成物は、Bi原料としてカルボン酸塩やアルコキシドを、Fe原料として鉄(III)アセチルアセトナートをそれぞれ用い、これらの原料を2-メトキシエタノール等の溶剤に、所定のモル比で、かつ、金属酸化物換算の合計濃度が1~25質量%程度となるように混合溶解させることにより調製される。カルボン酸ビスマスとしては、2-エチル酪酸ビスマス、2-エチルヘキサン酸ビスマス等が、ビスマスアルコキシドとしては、Bi(Ot-Bu)3、Bi(Ot-Am)3等が挙げられ、Fe原料としては、鉄(III)アセチルアセトナート、硝酸鉄等が挙げられる。上記金属アルコキシドはそのまま使用しても良いが、分解を促進させるためにその部分加水分解物を使用しても良い。また安定化剤としてアセチルアセトン等を加えても良い。
(3) Liquid composition for BiFeO 3 The liquid composition for BiFeO 3 uses carboxylate and alkoxide as Bi raw materials and iron (III) acetylacetonate as Fe raw materials, and these raw materials are 2-methoxyethanol and the like. In this solvent, it is prepared by mixing and dissolving in a predetermined molar ratio so that the total concentration in terms of metal oxide is about 1 to 25% by mass. Examples of the bismuth carboxylate include bismuth 2-ethylbutyrate and bismuth 2-ethylhexanoate. Examples of the bismuth alkoxide include Bi (Ot—Bu) 3 and Bi (Ot—Am) 3. Iron (III) acetylacetonate, iron nitrate and the like. The above metal alkoxide may be used as it is, but a partially hydrolyzed product thereof may be used to promote decomposition. Moreover, you may add acetylacetone etc. as a stabilizer.
(4)非鉛誘電体薄膜形成用液組成物の調製
 上述したBaTiO3用液組成物、Bi(Mg0.5Ti0.5)O3用液組成物及びBiFeO3用液組成物の二者又は三者を所定の割合で秤量し、均一に混合することにより、本発明の非鉛誘電体薄膜形成用液組成物が調製される。
(4) Preparation of liquid composition for forming a lead-free dielectric thin film Two or three of the liquid composition for BaTiO 3 , the liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 , and the liquid composition for BiFeO 3 Are weighed at a predetermined ratio and mixed uniformly to prepare the liquid composition for forming a lead-free dielectric thin film of the present invention.
 <非鉛誘電体薄膜の形成>
  得られた非鉛誘電体薄膜形成用液組成物を用いて、誘電体薄膜を形成するには、上記組成物をスピンコート、ディップコート、LSMCD(Liquid Source Misted Chemical Deposition)法等の塗布法により耐熱性基板上に塗布し、乾燥(仮焼成)及び本焼成を行う。
<Formation of lead-free dielectric thin film>
In order to form a dielectric thin film using the obtained lead-free dielectric thin film forming liquid composition, the composition is applied by a coating method such as spin coating, dip coating, or LSMCD (Liquid Source Misted Chemical Deposition) method. It apply | coats on a heat resistant board | substrate, and performs drying (preliminary baking) and main baking.
 使用される耐熱性基板の具体例としては、基板表層部に、Pt,Pt(最上層)/Ti,Pt(最上層)/Ta,Ru,RuO2,Ru(最上層)/RuO2,RuO2(最上層)/Ru,Ir,IrO2,Ir(最上層)/IrO2,Pt(最上層)/Ir,Pt(最上層)/IrO2,SrRuO3又は(LaXSr(1-X))CoO3等のペロブスカイト型導電性酸化物等を用いた基板が挙げられるが、これらに限定されるものではない。 Specific examples of the heat-resistant substrate to be used include Pt, Pt (top layer) / Ti, Pt (top layer) / Ta, Ru, RuO 2 , Ru (top layer) / RuO 2 , RuO on the substrate surface layer. 2 (top layer) / Ru, Ir, IrO 2 , Ir (top layer) / IrO 2 , Pt (top layer) / Ir, Pt (top layer) / IrO 2 , SrRuO 3 or (La X Sr (1-X ) ) A substrate using a perovskite-type conductive oxide such as CoO 3 may be mentioned, but the substrate is not limited thereto.
 なお、1回の塗布では、所望の膜厚が得られない場合には、塗布、乾燥の工程を複数回繰返し行った後、本焼成を行う。ここで、所望の膜厚とは、本焼成後に得られる誘電体薄膜の厚さをいい、高容量密度の薄膜キャパシタ用途の場合、本焼成後の誘電体薄膜の膜厚が50~500nmの範囲である。 In addition, when a desired film thickness cannot be obtained by one application, the baking is performed after repeating the application and drying steps a plurality of times. Here, the desired film thickness refers to the thickness of the dielectric thin film obtained after the main firing, and in the case of a high capacity density thin film capacitor, the thickness of the dielectric thin film after the main firing is in the range of 50 to 500 nm. It is.
 また、仮焼成は、溶媒を除去するとともに有機化合物や有機金属化合物を熱分解又は加水分解して複合酸化物に転化させるために行うことから、空気中、酸化雰囲気中、又は含水蒸気雰囲気中で行う。空気中での加熱でも、加水分解に必要な水分は空気中の湿気により十分に確保される。この加熱は、溶媒の除去のための低温加熱と、有機金属化合物や有機化合物の分解のための高温加熱の2段階で実施しても良い。 In addition, pre-baking is performed in order to remove the solvent and to convert the organic compound or organometallic compound into a composite oxide by thermal decomposition or hydrolysis, and therefore, in the air, in an oxidizing atmosphere, or in a steam-containing atmosphere. Do. Even in heating in the air, the moisture required for hydrolysis is sufficiently secured by the humidity in the air. This heating may be performed in two stages: low temperature heating for removing the solvent and high temperature heating for decomposing the organometallic compound or organic compound.
 本焼成は、仮焼成で得られた薄膜を結晶化温度以上の温度で焼成して結晶化させるための工程であり、これにより誘電体薄膜が得られる。この結晶化工程の焼成雰囲気はO2、N2、Ar、N2O又はH2等或いはこれらの混合ガス等が好適である。 The main baking is a process for baking and crystallizing the thin film obtained by the preliminary baking at a temperature equal to or higher than the crystallization temperature, whereby a dielectric thin film is obtained. The firing atmosphere in this crystallization step is preferably O 2 , N 2 , Ar, N 2 O, H 2, or a mixed gas thereof.
 仮焼成は、150~550℃で1~30分間程度行われ、本焼成は450~800℃で1~60分間程度行われる。本焼成は、急速加熱処理(RTA処理)やマッフル炉で行っても良い。RTA処理で本焼成する場合、その昇温速度は10~100℃/秒が好ましい。 Pre-baking is performed at 150 to 550 ° C. for about 1 to 30 minutes, and main baking is performed at 450 to 800 ° C. for about 1 to 60 minutes. The main baking may be performed in a rapid heating process (RTA process) or a muffle furnace. When the main baking is performed by the RTA treatment, the rate of temperature rise is preferably 10 to 100 ° C./second.
 このようにして形成された誘電体薄膜は、BaTiO3用液組成物、Bi(Mg0.5Ti0.5)O3用液組成物及びBiFeO3用液組成物の二者又は三者を所定の割合にすることにより、高い比誘電率が得られる。 The dielectric thin film thus formed has a predetermined ratio of two or three of a liquid composition for BaTiO 3 , a liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 , and a liquid composition for BiFeO 3 . By doing so, a high relative dielectric constant can be obtained.
 <非鉛誘電体薄膜の評価方法>
 上記のようにして得られた非鉛誘電体薄膜について、以下のようにして比誘電率と誘電正接(tanδ)が評価される。具体的には、誘電体薄膜を用いたキャパシタの比誘電率及び誘電正接をインピーダンス・アナライザにより測定する(測定機器メーカー:アジレントテクノロジー、HP4194A)。結晶性はXRDのθ-2θスキャン法により、ペロブスカイト相由来のピーク有無により評価した。
<Evaluation method of lead-free dielectric thin film>
With respect to the lead-free dielectric thin film obtained as described above, the relative permittivity and the dielectric loss tangent (tan δ) are evaluated as follows. Specifically, the dielectric constant and dielectric loss tangent of a capacitor using a dielectric thin film are measured with an impedance analyzer (measurement equipment manufacturer: Agilent Technologies, HP4194A). Crystallinity was evaluated by the presence or absence of a peak derived from the perovskite phase by the XRD θ-2θ scan method.
 次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
 <実施例1~11、比較例1>
 先ずチタニウムテトラブトキシド0.0025モルに2-メトキシエタノール10mlを添加し、室温で60分間攪拌した。この混合液に酢酸バリウムを0.0025モル加え、室温で120分間攪拌した。続いてアセチルアセトン0.2mlと酢酸5mlを加え、室温で一昼夜攪拌し、BaTiO3用液組成物を調製した。次にチタニウムテトラブトキシド0.00125モルに2-メトキシエタノール5mlを添加し、室温で60分間攪拌した。この混合液にアセチルアセトンで安定化させたマグネシウムエトキシドを0.00125モル加え、室温で30分間攪拌した。続いてBi(Ot-Am)3を0.0025モルを加え、室温で60分間攪拌し、Bi(Mg0.5Ti0.5)O3用液組成物を調製した。更に、鉄(III)アセチルアセトナート0.0025モルに2-メトキシエタノール10mlを添加し、室温で60分間攪拌し、80℃に昇温して60分間攪拌し、室温で60分間攪拌した。続いてBi(Ot-Am)3を0.0025モル加え、室温で30分間攪拌し、BiFeO3用液組成物を調製した。
<Examples 1 to 11 and Comparative Example 1>
First, 10 ml of 2-methoxyethanol was added to 0.0025 mol of titanium tetrabutoxide and stirred at room temperature for 60 minutes. To this mixed solution, 0.0025 mol of barium acetate was added and stirred at room temperature for 120 minutes. Subsequently, 0.2 ml of acetylacetone and 5 ml of acetic acid were added, and the mixture was stirred overnight at room temperature to prepare a liquid composition for BaTiO 3 . Next, 5 ml of 2-methoxyethanol was added to 0.00125 mol of titanium tetrabutoxide and stirred at room temperature for 60 minutes. To this mixed solution, 0.00125 mol of magnesium ethoxide stabilized with acetylacetone was added and stirred at room temperature for 30 minutes. Subsequently, 0.0025 mol of Bi (Ot—Am) 3 was added and stirred at room temperature for 60 minutes to prepare a liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 . Furthermore, 10 ml of 2-methoxyethanol was added to 0.0025 mol of iron (III) acetylacetonate, and the mixture was stirred at room temperature for 60 minutes, heated to 80 ° C., stirred for 60 minutes, and stirred at room temperature for 60 minutes. Subsequently, 0.0025 mol of Bi (Ot-Am) 3 was added and stirred at room temperature for 30 minutes to prepare a BiFeO 3 liquid composition.
 このように調製されたBaTiO3用液組成物、Bi(Mg0.5Ti0.5)O3用液組成物及びBiFeO3用液組成物の二者又は三者を表1に示す酸化物換算の割合で秤量し、均一に混合することにより、実施例1~11及び比較例1の非鉛誘電体薄膜形成用液組成物を得た。 Two or three of the liquid composition for BaTiO 3 , the liquid composition for Bi (Mg 0.5 Ti 0.5 ) O 3 , and the liquid composition for BiFeO 3 prepared in this way are in the ratio in terms of oxide shown in Table 1. The liquid compositions for forming lead-free dielectric thin films of Examples 1 to 11 and Comparative Example 1 were obtained by weighing and mixing uniformly.
 <室温下での測定試験>
 基板として、(111)SrRuO3/(111)Pt/TiOX/SiO2/(100)Siを用意し、(111)SrRuO3上にスピンコート法により、三者の割合の異なる非鉛誘電体薄膜形成用液組成物を塗布した。(111)SrRuO3は高周波マグネトロンスパッタリング装置により成膜した。塗布後、大気雰囲気中、400℃、1分間、仮焼成を行い、更に大気雰囲気中、750℃、5分間、本焼成を行った。本焼成後、厚さ300nmの12種類の非鉛誘電体薄膜を作製した。これらの非鉛誘電体薄膜を室温の大気雰囲気下において、それぞれの比誘電率とそれぞれの誘電正接(tanδ)を上述したインピーダンス・アナライザにより測定周波数を1kHzにて測定した。その結果を表1及び図1の三元相図に示す。なお、表1中、xはBaTiO3のモル比を、yはBi(Mg0.5Ti0.5)O3のモル比を、zはBiFeO3のモル比をそれぞれ示す。また図1の丸数字の1~7は実施例1~7を、図1の丸数字8は比較例1を、図1の丸数字9~12は実施例8~11をそれぞれ示す。また、XRD測定(θ-2θスキャン法)より、全ての膜は結晶質で、かつペロブスカイト単相であることが確認された。
<Measurement test at room temperature>
(111) SrRuO 3 / (111) Pt / TiO x / SiO 2 / (100) Si is prepared as a substrate, and a lead-free dielectric material having a different ratio between the three by spin coating on (111) SrRuO 3 A liquid composition for forming a thin film was applied. (111) SrRuO 3 was deposited by a high-frequency magnetron sputtering apparatus. After the application, pre-baking was performed at 400 ° C. for 1 minute in the air atmosphere, and then main baking was performed at 750 ° C. for 5 minutes in the air atmosphere. After the main firing, 12 types of lead-free dielectric thin films having a thickness of 300 nm were prepared. These lead-free dielectric thin films were measured for their relative dielectric constants and their respective dielectric loss tangents (tan δ) at a measurement frequency of 1 kHz using the impedance analyzer described above in an air atmosphere at room temperature. The results are shown in Table 1 and the ternary phase diagram of FIG. In Table 1, x represents the molar ratio of BaTiO 3 , y represents the molar ratio of Bi (Mg 0.5 Ti 0.5 ) O 3 , and z represents the molar ratio of BiFeO 3 . 1 represent Examples 1 to 7, circle numbers 8 in FIG. 1 represent Comparative Example 1, and circle numbers 9 to 12 in FIG. 1 represent Examples 8 to 11, respectively. Further, XRD measurement (θ-2θ scan method) confirmed that all the films were crystalline and had a perovskite single phase.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <評価1>
 表1に示される実施例1(1)と実施例7(7)と実施例8(9)と実施例11(12)で得られた非鉛誘導体薄膜の各比誘電率と各tanδ(誘電正接)を見ると、その比誘電率の平均が525であり高く、そのtanδの平均が12.25であり実用的なレベルであり、誘電特性が良好であった。図1において、実施例1(1)と実施例8(9)と実施例7(7)と実施例11(12)で囲まれた領域は第1の領域として示される。また表1に示される実施例3(3)と実施例7(7)と実施例8(9)と実施例10(11)で得られた非鉛誘導体薄膜の各比誘電率と各tanδを見ると、その比誘電率の平均が632.5であり更に高く、そのtanδの平均が12.75で実用的なレベルであった。図1において、実施例3(3)と実施例8(9)と実施例7(7)と実施例10(11)で囲まれた領域は第2の領域として示される。更に表1に示される実施例5(5)と実施例7(7)と実施例8(9)と実施例11(10)で得られた非鉛誘導体薄膜の各比誘電率と各tanδを見ると、その比誘電率の平均が762.5であり更に高く、そのtanδの平均が12.75であり実用的なレベルであった。図1において、実施例5(5)と実施例8(9)と実施例7(7)と実施例11(10)で囲まれた領域は第3の領域として示される。一方、比較例1(8)で得られた非鉛誘導体薄膜は比誘電率が1100と優れるものの、実用不可能な程tanδが極めて大きかった。
<Evaluation 1>
Respective dielectric constants and tanδ (dielectrics) of the lead-free derivative thin films obtained in Example 1 (1), Example 7 (7), Example 8 (9) and Example 11 (12) shown in Table 1 When the tangent) was observed, the average of the relative dielectric constant was as high as 525, the average of the tan δ was 12.25 as a practical level, and the dielectric characteristics were good. In FIG. 1, a region surrounded by Example 1 (1), Example 8 (9), Example 7 (7), and Example 11 (12) is shown as a first region. In addition, each dielectric constant and each tan δ of the lead-free derivative thin films obtained in Example 3 (3), Example 7 (7), Example 8 (9) and Example 10 (11) shown in Table 1 are As a result, the average dielectric constant was 632.5, which was higher, and the average tan δ was 12.75, which was a practical level. In FIG. 1, a region surrounded by the third embodiment (3), the eighth embodiment (9), the seventh embodiment (7), and the tenth embodiment (11) is shown as a second region. Furthermore, each dielectric constant and each tan δ of the lead-free derivative thin films obtained in Example 5 (5), Example 7 (7), Example 8 (9) and Example 11 (10) shown in Table 1 are calculated. As a result, the average of the relative dielectric constant was 762.5, which was higher, and the average of the tan δ was 12.75, which was a practical level. In FIG. 1, the region surrounded by Example 5 (5), Example 8 (9), Example 7 (7), and Example 11 (10) is shown as a third region. On the other hand, although the lead-free derivative thin film obtained in Comparative Example 1 (8) had an excellent relative dielectric constant of 1100, tan δ was so large that it was impractical.
 <実施例1~12>
  測定試験1で作製した実施例1~11の非鉛誘電体薄膜に加えて、BaTiO3のモル比(x)が0.60、Bi(Mg0.5Ti0.5)O3のモル比(y)が0.40、BiFeO3のモル比(z)が0.00である実施例12の非鉛誘導体薄膜を作製した。モル比を変更した以外、実施例12の非鉛誘導体薄膜は、実施例1~11と同様に作製した。
<Examples 1 to 12>
In addition to the lead-free dielectric thin films of Examples 1 to 11 prepared in Measurement Test 1, the molar ratio (x) of BaTiO 3 is 0.60, and the molar ratio (y) of Bi (Mg 0.5 Ti 0.5 ) O 3 is A lead-free derivative thin film of Example 12 in which the molar ratio (z) of 0.40 and BiFeO 3 was 0.00 was produced. Except for changing the molar ratio, the lead-free derivative thin film of Example 12 was produced in the same manner as in Examples 1 to 11.
 <高温下での測定試験>
  こうして作製した12種類の非鉛誘導体薄膜のうち、実施例1~4の4種類の非鉛誘導体薄膜について、大気雰囲気下、25℃、50℃、100℃、150℃、200℃、250℃、300℃、350℃及び400℃の各温度における比誘電率を上述したインピーダンス・アナライザにより測定周波数を100kHzにてそれぞれ測定した。実施例1~4以外の実施例5~12の8種類の非鉛誘導体薄膜について、大気雰囲気下、25℃、50℃、100℃、150℃、200℃及び250℃の各温度における比誘電率を上述したインピーダンス・アナライザによりそれぞれ測定した。比較例1の非鉛誘導体薄膜については、この測定試験を行わなかった。三元図上における実施例1~実施例4、実施例7、実施例8、実施例11及び実施例12を図2に示す。また12種類の非鉛誘導体薄膜の各温度における比誘電率を表2に示す。更に実施例1(1)~実施例7(7)の誘導体薄膜の25℃以上の各温度における比誘電率を図3に示し、実施例6(6)及び実施例8(9)~実施例12(13)の誘導体薄膜の25℃以上の各温度における比誘電率を図4に示す。図2及び図4の丸数字の13は実施例12を示す。
<Measurement test under high temperature>
Of the 12 types of lead-free derivative thin films thus prepared, the four types of lead-free derivative thin films of Examples 1 to 4 were 25 ° C., 50 ° C., 100 ° C., 150 ° C., 200 ° C., 250 ° C. under atmospheric conditions. The relative dielectric constant at each temperature of 300 ° C., 350 ° C., and 400 ° C. was measured at a measurement frequency of 100 kHz by the impedance analyzer described above. For the eight types of lead-free derivative thin films of Examples 5 to 12 other than Examples 1 to 4, the relative dielectric constant at each temperature of 25 ° C., 50 ° C., 100 ° C., 150 ° C., 200 ° C. and 250 ° C. in the air atmosphere Were measured by the impedance analyzer described above. For the lead-free derivative thin film of Comparative Example 1, this measurement test was not performed. Example 1 to Example 4, Example 7, Example 8, Example 11, and Example 12 on the ternary diagram are shown in FIG. Table 2 shows the specific permittivity of each of the 12 types of lead-free derivative thin films at each temperature. Furthermore, the relative dielectric constants of the derivative thin films of Example 1 (1) to Example 7 (7) at each temperature of 25 ° C. or higher are shown in FIG. 3, and Example 6 (6) and Example 8 (9) to Example FIG. 4 shows the relative dielectric constant of each 12 (13) derivative thin film at temperatures of 25 ° C. or higher. In FIG. 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <評価2>
 表2及び図3、図4に示される実施例1(1)と実施例2(2)と実施例3(3)と実施例4(4)で得られた非鉛誘導体薄膜の25℃から400℃までの温度範囲における各比誘電率と実施例12(13)で得られた非鉛誘導体薄膜の25℃から250℃までの温度範囲における各比誘電率を見ると、実施例1~4の400℃における比誘電率又は実施例12の250℃における比誘電率は、それぞれ25℃における比誘電率とほぼ一定であり、温度依存性が小さく、高温雰囲気下で使用される誘導体薄膜に適することが判った。図2において、実施例1(1)と実施例2(2)と実施例3(3)と実施例4(4)と実施例12(13)で囲まれた領域は第4の領域として示される。図2において、第1の領域は、第4の領域が第1の領域内にあることを明らかにするために示している。
<Evaluation 2>
From the lead-free derivative thin films obtained in Example 1 (1), Example 2 (2), Example 3 (3) and Example 4 (4) shown in Table 2 and FIGS. When the relative dielectric constants in the temperature range up to 400 ° C. and the relative dielectric constants in the temperature range from 25 ° C. to 250 ° C. of the lead-free derivative thin film obtained in Example 12 (13) are seen, Examples 1-4 The specific dielectric constant at 400 ° C. or the specific dielectric constant at 250 ° C. of Example 12 is almost constant with the specific dielectric constant at 25 ° C., has a small temperature dependency, and is suitable for a derivative thin film used in a high temperature atmosphere. I found out. In FIG. 2, the region surrounded by Example 1 (1), Example 2 (2), Example 3 (3), Example 4 (4), and Example 12 (13) is shown as the fourth region. It is. In FIG. 2, the first region is shown to clarify that the fourth region is within the first region.
 本発明の非鉛誘電体薄膜形成用液組成物から作られた非鉛誘電体薄膜は、薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、LCノイズフィルタ素子、トランジスタのゲート絶縁体、不揮発性メモリ、又は焦電型赤外線検出素子のいずれかからなる複合電子部品、或いは圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、表面弾性波素子、又はトランスジューサのいずれかからなる複合電子部品に利用できる。 The lead-free dielectric thin film made from the liquid composition for forming a lead-free dielectric thin film of the present invention includes a thin film capacitor, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, an LC noise filter element, a transistor gate insulator, A composite electronic component consisting of either a non-volatile memory or a pyroelectric infrared detector, or a composite consisting of a piezoelectric element, electro-optic element, actuator, resonator, ultrasonic motor, surface acoustic wave element, or transducer Available for electronic components.

Claims (12)

  1.  BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3成分のうち少なくとも2成分を含有し、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.70とで囲まれた第1領域内の組成である、非鉛誘電体薄膜を化学溶液堆積法により形成するための非鉛誘電体薄膜形成用液組成物。 It contains at least two of a BaTiO 3 component, a Bi (Mg 0.5 Ti 0.5 ) O 3 component, and a BiFeO 3 component, and x [BaTiO 3 ] · y [Bi (Mg 0.5 Ti 0.5 ) O 3 ] · z [ When BiFeO 3 ] and x + y + z = 1, x = 0.90 · y = 0 on the ternary phase diagram of [BaTiO 3 ] · [Bi (Mg 0.5 Ti 0.5 ) O 3 ] · [BiFeO 3 ] .10, x = 0.30 · z = 0.70, x = 0.15 · y = 0.10 · z = 0.75, and x = 0.30 · y = 0.70 A liquid composition for forming a lead-free dielectric thin film for forming a lead-free dielectric thin film by a chemical solution deposition method having a composition in the first region.
  2.   前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である請求項1記載の非鉛誘電体薄膜形成用液組成物。 The composition in the first region, where x = 0.70 · y = 0.09 · z = 0.21, x = 0.30 · z = 0.70, and x = 0.15 · y. 2. The lead-free dielectric according to claim 1, wherein the composition is in the second region surrounded by 0.10 · z = 0.75 and x = 0.30 · y = 0.50 · z = 0.20. Body thin film forming liquid composition.
  3.   前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.30・z=0.40とで囲まれた第3領域内の組成である請求項2記載の非鉛誘電体薄膜形成用液組成物。 The composition in the second region, where x = 0.40 · y = 0.10 · z = 0.50, x = 0.30 · z = 0.70, and x = 0.15 · y The lead-free dielectric according to claim 2, wherein the composition is in the third region surrounded by = 0.10 · z = 0.75 and x = 0.30 · y = 0.30 · z = 0.40. Body thin film forming liquid composition.
  4.   前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である請求項1記載の非鉛誘電体薄膜形成用液組成物。 The composition in the first region, where x = 0.90 · y = 0.10, x = 0.80 · y = 0.09 · z = 0.21, and x = 0.60 · y 2. The liquid composition for forming a lead-free dielectric thin film according to claim 1, wherein the composition is in the fourth region surrounded by 0.09 · z = 0.31 and x = 0.60 · y = 0.40. object.
  5.  BaTiO3の成分、Bi(Mg0.5Ti0.5)O3の成分及びBiFeO3成分のうち少なくとも2成分を含有し、x[BaTiO3]・y[Bi(Mg0.5Ti0.5)O3]・z[BiFeO3]、かつx+y+z=1とするとき、[BaTiO3]・[Bi(Mg0.5Ti0.5)O3]・[BiFeO3]の三元相図上で、x=0.90・y=0.10と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.70とで囲まれた第1領域内の組成である、非鉛誘電体薄膜を化学溶液堆積法により形成するための非鉛誘電体薄膜形成用液組成物を基板に塗布して塗膜を形成する塗布工程と、
     前記基板に形成された塗膜を、空気中、酸化雰囲気中又は含水蒸気雰囲気中で加熱して乾燥する乾燥工程と、
     前記乾燥工程の途中から或いは完了後に前記塗膜を、O2,N2,Ar,N2O,H2若しくはこれらの混合ガス中又は乾燥空気中或いは水蒸気を含む前記雰囲気中で結晶化温度以上で焼成する焼成工程と
     を含む非鉛誘電体薄膜の形成方法。
    It contains at least two of a BaTiO 3 component, a Bi (Mg 0.5 Ti 0.5 ) O 3 component, and a BiFeO 3 component, and x [BaTiO 3 ] · y [Bi (Mg 0.5 Ti 0.5 ) O 3 ] · z [ When BiFeO 3 ] and x + y + z = 1, x = 0.90 · y = 0 on the ternary phase diagram of [BaTiO 3 ] · [Bi (Mg 0.5 Ti 0.5 ) O 3 ] · [BiFeO 3 ] .10, x = 0.30 · z = 0.70, x = 0.15 · y = 0.10 · z = 0.75, and x = 0.30 · y = 0.70 An application step of applying a liquid composition for forming a lead-free dielectric thin film for forming a lead-free dielectric thin film by a chemical solution deposition method to a substrate, which is a composition in the first region, and forming a coating film; ,
    A drying step of heating and drying the coating film formed on the substrate in air, in an oxidizing atmosphere or in a steam-containing atmosphere;
    In the middle of or after completion of the drying step, the coating film is heated to a crystallization temperature or higher in O 2 , N 2 , Ar, N 2 O, H 2 or a mixed gas thereof, in dry air, or in the atmosphere containing water vapor. A method for forming a lead-free dielectric thin film, comprising:
  6.   前記非鉛誘電体薄膜形成用液組成物が前記第1領域内の組成であって、x=0.70・y=0.09・z=0.21と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.50・z=0.20とで囲まれた第2領域内の組成である請求項5記載の非鉛誘電体薄膜の形成方法。 The liquid composition for forming a lead-free dielectric thin film has a composition in the first region, and x = 0.70 · y = 0.09 · z = 0.21 and x = 0.30 · z = In the second region surrounded by 0.70, x = 0.15 · y = 0.10 · z = 0.75, and x = 0.30 · y = 0.50 · z = 0.20 The method for forming a lead-free dielectric thin film according to claim 5, wherein the composition is:
  7.   前記非鉛誘電体薄膜形成用液組成物が前記第2領域内の組成であって、x=0.40・y=0.10・z=0.50と、x=0.30・z=0.70と、x=0.15・y=0.10・z=0.75と、x=0.30・y=0.30・z=0.40とで囲まれた第3領域内の組成である請求項6記載の非鉛誘電体薄膜の形成方法。 The liquid composition for forming a lead-free dielectric thin film has a composition in the second region, and x = 0.40 · y = 0.10 · z = 0.50 and x = 0.30 · z = In the third region surrounded by 0.70, x = 0.15 · y = 0.10 · z = 0.75, and x = 0.30 · y = 0.30 · z = 0.40 The method for forming a lead-free dielectric thin film according to claim 6 having the composition:
  8.   前記非鉛誘電体薄膜形成用液組成物が前記第1領域内の組成であって、x=0.90・y=0.10と、x=0.80・y=0.09・z=0.21と、x=0.60・y=0.09・z=0.31と、x=0.60・y=0.40とで囲まれた第4領域内の組成である請求項5記載の非鉛誘電体薄膜の形成方法。 The liquid composition for forming a lead-free dielectric thin film has a composition in the first region, and x = 0.90 · y = 0.10 and x = 0.80 · y = 0.09 · z = The composition in the fourth region surrounded by 0.21, x = 0.60 · y = 0.09 · z = 0.31, and x = 0.60 · y = 0.40. 5. A method for forming a lead-free dielectric thin film according to 5.
  9.  前記塗布工程及び前記乾燥工程が複数回繰り返され、
     前記焼成工程が前記複数回繰り返された最終乾燥工程の途中から或いは完了後に前記塗膜を、O2,N2,Ar,N2O,H2若しくはこれらの混合ガス中又は乾燥空気中或いは水蒸気を含む前記雰囲気中で結晶化温度以上で焼成する工程である請求項5ないし8いずれか1項に記載の非鉛誘電体薄膜の形成方法。
    The coating step and the drying step are repeated multiple times,
    The coating is applied in the middle of or after completion of the final drying process in which the baking process is repeated a plurality of times, in O 2 , N 2 , Ar, N 2 O, H 2, a mixed gas thereof, in dry air, or in steam. The method for forming a lead-free dielectric thin film according to any one of claims 5 to 8, which is a step of firing at a crystallization temperature or higher in the atmosphere containing.
  10.  請求項5ないし9いずれか1項に記載の方法により形成された結晶質の非鉛誘電体薄膜。 A crystalline lead-free dielectric thin film formed by the method according to any one of claims 5 to 9.
  11.  請求項10に記載の非鉛誘電体薄膜を有する薄膜コンデンサ、キャパシタ、IPD、DRAMメモリ用コンデンサ、積層コンデンサ、LCノイズフィルタ素子、トランジスタのゲート絶縁体、不揮発性メモリ、又は焦電型赤外線検出素子のいずれかからなる複合電子部品。 11. A thin film capacitor, a capacitor, an IPD, a DRAM memory capacitor, a multilayer capacitor, an LC noise filter element, a transistor gate insulator, a nonvolatile memory, or a pyroelectric infrared detection element having the lead-free dielectric thin film according to claim 10 A composite electronic component consisting of either
  12.  請求項10に記載の非鉛誘電体薄膜を有する圧電素子、電気光学素子、アクチュエータ、共振子、超音波モータ、表面弾性波素子、又はトランスジューサのいずれかからなる複合電子部品。 A composite electronic component comprising any one of a piezoelectric element, an electro-optical element, an actuator, a resonator, an ultrasonic motor, a surface acoustic wave element, or a transducer having the lead-free dielectric thin film according to claim 10.
PCT/JP2014/072429 2013-10-24 2014-08-27 Liquid composition for forming lead-free dielectric thin film, method for forming said thin film, and lead-free dielectric thin film formed by said method WO2015060003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013220952 2013-10-24
JP2013-220952 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015060003A1 true WO2015060003A1 (en) 2015-04-30

Family

ID=52992610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072429 WO2015060003A1 (en) 2013-10-24 2014-08-27 Liquid composition for forming lead-free dielectric thin film, method for forming said thin film, and lead-free dielectric thin film formed by said method

Country Status (2)

Country Link
JP (1) JP2015107904A (en)
WO (1) WO2015060003A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017012798A1 (en) * 2015-07-17 2017-01-26 Epcos Ag Dielectric composition, dielectric element, electronic component and laminated electronic component
CN108929111A (en) * 2018-09-10 2018-12-04 武汉理工大学 A kind of dielectric film and preparation method thereof of superelevation discharge energy-storage density
CN111320468A (en) * 2020-03-03 2020-06-23 北京科技大学 Preparation method of doped bismuth ferrite-barium titanate lead-free piezoelectric ceramic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112108156B (en) * 2019-06-20 2023-05-02 天津城建大学 Ag nanoparticle modified MgFe 2 O 4 Preparation method of nanorod composite film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053422A (en) * 2008-08-29 2010-03-11 Fujifilm Corp Oxide body, method for producing the same, and piezoelectric element
JP2013067553A (en) * 2011-09-06 2013-04-18 Canon Inc Piezoelectric ceramics, manufacturing method for piezoelectric ceramics, piezoelectric element, liquid discharge head, liquid discharge apparatus, ultrasonic motor, optical apparatus, vibration generator, dust removing device, imaging apparatus, and electronic apparatus
JP2013191751A (en) * 2012-03-14 2013-09-26 Canon Inc Piezoelectric material, piezoelectric device, liquid discharging head, ultrasonic motor and dust removal apparatus
WO2013146303A1 (en) * 2012-03-26 2013-10-03 国立大学法人山梨大学 Dielectric material, dielectric element, capacitor, multilayer capacitor, and power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010053422A (en) * 2008-08-29 2010-03-11 Fujifilm Corp Oxide body, method for producing the same, and piezoelectric element
JP2013067553A (en) * 2011-09-06 2013-04-18 Canon Inc Piezoelectric ceramics, manufacturing method for piezoelectric ceramics, piezoelectric element, liquid discharge head, liquid discharge apparatus, ultrasonic motor, optical apparatus, vibration generator, dust removing device, imaging apparatus, and electronic apparatus
JP2013191751A (en) * 2012-03-14 2013-09-26 Canon Inc Piezoelectric material, piezoelectric device, liquid discharging head, ultrasonic motor and dust removal apparatus
WO2013146303A1 (en) * 2012-03-26 2013-10-03 国立大学法人山梨大学 Dielectric material, dielectric element, capacitor, multilayer capacitor, and power storage device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANGRONG ZHOU ET AL.: "Remarkably high-temperature stable piezoelectric propertiesof Bi(Mg0.5Ti0.5)O3 modified BiFeO3-BaTiO3 ceramics", APPL.PHYS. LETT., vol. 101, 2012, pages 039201 *
MASAKI ITO ET AL.: "BaTiO3-Bi(Mg, Ti)03-BiFe03 Usumaku no Atsuden Tokusei", EXTENDED ABSTRACTS; THE JAPAN SOCIETY OF APPLIED PHYSICS, 73RD, 2012, pages 06 - 02 5 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017012798A1 (en) * 2015-07-17 2017-01-26 Epcos Ag Dielectric composition, dielectric element, electronic component and laminated electronic component
CN107836026A (en) * 2015-07-17 2018-03-23 埃普科斯股份有限公司 Dielectric composition, dielectric element, electronic unit and lamination electronic unit
CN107836026B (en) * 2015-07-17 2019-10-15 埃普科斯股份有限公司 Dielectric composition, dielectric element, electronic component and lamination electronic component
US10475576B2 (en) 2015-07-17 2019-11-12 Tdk Electronics Ag Dielectric composition, dielectric element, electronic component and laminated electronic component
CN108929111A (en) * 2018-09-10 2018-12-04 武汉理工大学 A kind of dielectric film and preparation method thereof of superelevation discharge energy-storage density
CN108929111B (en) * 2018-09-10 2021-06-22 武汉理工大学 Dielectric film with ultrahigh discharge energy storage density and preparation method thereof
CN111320468A (en) * 2020-03-03 2020-06-23 北京科技大学 Preparation method of doped bismuth ferrite-barium titanate lead-free piezoelectric ceramic material

Also Published As

Publication number Publication date
JP2015107904A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
WO2015060004A1 (en) Lead-free dielectric thin film, composition for forming same and method for forming same
JP5418725B2 (en) Piezoelectric thin film element
KR20120128567A (en) Method for producing ferroelectric thin film
JP6296207B2 (en) Dielectric thin film, capacitive element and electronic component
JP2013136502A (en) Composition for forming ferroelectric thin film, method for forming the thin film, and thin film formed by the method
WO2015060003A1 (en) Liquid composition for forming lead-free dielectric thin film, method for forming said thin film, and lead-free dielectric thin film formed by said method
KR101943648B1 (en) Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
KR101980382B1 (en) Dielectric thin film-forming composition, method of forming dielectric thin film and dielectric thin film formed by the method
KR102330630B1 (en) Composition for forming manganese- and niobium-doped pzt piezoelectric film
KR102384736B1 (en) Mn-doped pzt-based piezoelectric film formation composition and mn-doped pzt-based piezoelectric film
KR102111825B1 (en) Silicon substrate having ferroelectric film attached thereto
KR102007543B1 (en) METHOD OF FORMING PNbZT FERROELECTRIC THIN FILM
JP5929654B2 (en) Ferroelectric thin film forming composition and method for forming the thin film
KR20160138383A (en) Manganese- and niobium-doped pzt piezoelectric film
EP3261138B1 (en) Piezoelectric ptzt film
KR100803440B1 (en) Complex metal oxide raw material composition
WO2012141104A1 (en) Ferroelectric thin film and method for producing same
JP5560460B2 (en) Method for forming dielectric thin film
KR102007542B1 (en) Method of producing ferroelectric thin film-forming composition and application of the same
JP6075144B2 (en) Composition for forming LaNiO3 thin film and method for forming LaNiO3 thin film using this composition
JP6550791B2 (en) PNbZT film forming composition manufacturing method and PNbZT piezoelectric film forming method
Čakare et al. Antiferroelectric PbZrO3 films prepared by sol-gel processing
CN108695062B (en) Polycrystalline dielectric thin film and capacitor element
JP7230579B2 (en) Method for manufacturing ferroelectric film
KR101138239B1 (en) A fabrication method of thin piezoelectric films with high piezoelectric constant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856232

Country of ref document: EP

Kind code of ref document: A1