JPH04308356A - Fuel injection device for compression ignition type internal combustion engine - Google Patents

Fuel injection device for compression ignition type internal combustion engine

Info

Publication number
JPH04308356A
JPH04308356A JP7303691A JP7303691A JPH04308356A JP H04308356 A JPH04308356 A JP H04308356A JP 7303691 A JP7303691 A JP 7303691A JP 7303691 A JP7303691 A JP 7303691A JP H04308356 A JPH04308356 A JP H04308356A
Authority
JP
Japan
Prior art keywords
fuel
injection
fuel injection
pressure
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7303691A
Other languages
Japanese (ja)
Other versions
JP2754938B2 (en
Inventor
Hiromichi Yanagihara
弘道 柳原
Yasuo Sato
康夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3073036A priority Critical patent/JP2754938B2/en
Publication of JPH04308356A publication Critical patent/JPH04308356A/en
Application granted granted Critical
Publication of JP2754938B2 publication Critical patent/JP2754938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To suppress the generation of combustion noise, NOx, soot and unburnt HC. CONSTITUTION:A fuel storage chamber 14 is formed in a fuel injection valve 6, and a needle 9 is operated by a piezoelectric element 15. The injection pressure based on cylinder internal pressure is set to be less than 400(kg/cm<2>). The diameter of a nozzle hole 8 is set to be more than 0.4m, and the oil droplet Sauter's mean diameter of fuel spay is made approximately between 0.2mm and 1.0mm. Fuel injection is completed in the comparatively early stage of a compression stroke. Upon the completion of fuel injection, completion ignition is performed after fuel spray is diffused in a wide range.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は圧縮着火式内燃機関の燃
料噴射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection system for a compression ignition internal combustion engine.

【0002】0002

【従来の技術】従来より圧縮着火式内燃機関において良
好な燃焼を得るためには噴射燃料の霧化を向上させて噴
霧油滴のザウター平均粒径を小さくすることが必須であ
ると考えられている。このザウター平均粒径は噴射燃料
の流速が速くなるほど小さくなるので噴射圧を高くする
ほどザウター平均粒径が小さくなる。また、このザウタ
ー平均粒径はノズル口の径に比例するのでノズル口の径
が小さくなるほどザウター平均粒径は小さくなる。従っ
てザウター平均粒径を小さくするためには噴射圧を高く
してノズル口の径を小さくすればよいのであるが従来で
は噴射圧を高くすると言っても限度があり、噴射圧をそ
れほど高くすることはできなかった。具体的に言うと従
来の通常の圧縮着火式内燃機関では噴射圧は300から
500(kg/cm2)程度であって各ノズル口の径は
大きくても0.3mm程度であり、この場合のザウター
平均粒径はほぼ0.05mm程度となる。
[Prior Art] It has been believed that in order to obtain good combustion in a compression ignition internal combustion engine, it is essential to improve the atomization of the injected fuel and reduce the Sauter average particle size of the sprayed oil droplets. There is. This Sauter average particle size becomes smaller as the flow velocity of the injected fuel becomes faster, so the Sauter average particle size becomes smaller as the injection pressure becomes higher. Furthermore, since this Sauter average particle diameter is proportional to the diameter of the nozzle opening, the smaller the diameter of the nozzle opening is, the smaller the Sauter average particle diameter becomes. Therefore, in order to reduce the Sauter average particle size, it is possible to increase the injection pressure and reduce the diameter of the nozzle orifice, but in the past, there was a limit to how high the injection pressure could be, and it was not possible to increase the injection pressure that high. I couldn't. Specifically, in a conventional compression ignition internal combustion engine, the injection pressure is about 300 to 500 (kg/cm2) and the diameter of each nozzle opening is about 0.3 mm at most. The average particle size is approximately 0.05 mm.

【0003】これに対して最近では例えば実開昭63−
12658号公報に記載されているようなコモンレール
式噴射装置が開発されている。このようなコモンレール
式噴射装置では噴射圧を1000 (kg/cm2)以
上とすることができるのでザウター平均粒径を更に小さ
くすることができる。 このようにザウター平均粒径が小さい場合には燃料噴射
時に必然的にかなり細かな燃料粒子も生成され、これら
の粒子がガス化してノズル口近傍の燃料噴霧周りに混合
気が形成される。このように混合気が形成されるとこの
混合気はただちに着火せしめられ、これが火種となって
噴射燃料が順次燃焼せしめられる。即ち、燃料噴射中に
圧縮着火が行われ、燃料噴射が完了するまでにかなりの
部分の燃料が燃焼せしめられる。
[0003] On the other hand, recently, for example,
A common rail injection device as described in Japanese Patent No. 12658 has been developed. In such a common rail type injection device, since the injection pressure can be set to 1000 (kg/cm2) or more, the Sauter average particle size can be further reduced. When the Sauter average particle diameter is small as described above, quite fine fuel particles are inevitably generated during fuel injection, and these particles are gasified to form an air-fuel mixture around the fuel spray near the nozzle opening. When the air-fuel mixture is formed in this way, the air-fuel mixture is immediately ignited, and this serves as a spark that sequentially causes the injected fuel to burn. That is, compression ignition is performed during fuel injection, and a considerable portion of the fuel is combusted by the time the fuel injection is completed.

【0004】0004

【発明が解決しようとする課題】しかしながらこのよう
に燃料噴霧周りに混合気が形成されるとこの混合気は一
気に着火燃焼せしめられる。その結果燃焼圧が急激に上
昇するために燃焼騒音が発生するばかりでなく、燃焼温
が高くなって多量のNOx が発生するという問題を生
じる。また、このように混合気が一気に着火燃焼せしめ
られると燃料噴霧内の油滴が油滴の状態で燃焼せしめら
れるために多量のすすおよび未燃HCが発生するという
問題がある。
However, when an air-fuel mixture is formed around the fuel spray in this way, this air-fuel mixture is ignited and combusted all at once. As a result, the combustion pressure suddenly increases, causing not only combustion noise, but also combustion temperature becoming high and a large amount of NOx being generated. Further, when the air-fuel mixture is ignited and burned all at once, the oil droplets in the fuel spray are combusted in the form of oil droplets, resulting in the generation of a large amount of soot and unburned HC.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに本発明によれば筒内圧を基準とした噴射圧をほぼ4
00(kg/cm2)以下に設定すると共に噴霧油滴の
ザウター平均粒径がほぼ0.2mmからほぼ1mmの間
となるようにノズル口の面積を設定して機関高負荷運転
時であっても全燃料噴射完了後暫らくしてから圧縮着火
を生じさせるようにしている。
[Means for Solving the Problems] In order to solve the above-mentioned problems, according to the present invention, the injection pressure based on the in-cylinder pressure is increased to approximately 4
00 (kg/cm2) or less, and set the area of the nozzle opening so that the Sauter average particle diameter of the sprayed oil droplets is between approximately 0.2 mm and approximately 1 mm, even during high engine load operation. Compression ignition is caused some time after all fuel injection is completed.

【0006】[0006]

【作用】従来に比べて噴射時期を早めると共に噴霧油滴
のザウター平均粒径を大きくすることによって個々の油
滴が蒸発燃焼せしめられる。
[Operation] By advancing the injection timing and increasing the Sauter average particle diameter of the sprayed oil droplets compared to the conventional method, individual oil droplets are evaporated and burned.

【0007】[0007]

【実施例】図1を参照すると、1はディーゼル機関本体
、2はシリンダブロック、3はピストン、4はシリンダ
ヘッド、5は燃焼室、6は燃料噴射弁を夫々示す。燃料
噴射弁6はそのハウジング7内に燃焼室5内に開口する
ノズル口8と、ノズル口8の開閉制御を行うニードル9
とを具備する。ニードル9の頂面上には背圧室10が形
成され、背圧室10内にはニードル9を常時ノズル口8
に向けて付勢する圧縮ばね11が挿入される。ニードル
9の下端部周りには燃料溜まり12が形成され、この燃
料溜まり12は燃料通路13を介して環状をなす大容量
の燃料貯留室14に連通せしめられる。一方、ハウジン
グ7内にはピエゾ圧電素子15によって駆動されるピス
トン16が摺動可能に挿入され、このピストン16の先
端面によって圧力制御室17が画定される。この圧力制
御室17は燃料通路18を介して背圧室10に連通せし
められる。燃料貯留室14は燃料貯留室14に向けての
み流通可能な逆止弁19を介して圧力制御室17に連結
され、圧力制御室17は圧力制御室17に向けてのみ流
通可能な逆止弁20を介して燃料供給ポンプ21に連結
される。図1に示されるように燃料貯留室14はニード
ル9とピストン16間に設けられており、従ってこの燃
料貯留室14はノズル口8の近傍に形成されていること
になる。ピエゾ圧電素子15は電荷が充電されると軸方
向に伸長し、電荷が放電されると軸方向に収縮する。こ
のピエゾ圧電素子15に対する充放電作用は電子制御ユ
ニット30の出力信号に基いて制御される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, 1 is a diesel engine body, 2 is a cylinder block, 3 is a piston, 4 is a cylinder head, 5 is a combustion chamber, and 6 is a fuel injection valve. The fuel injection valve 6 has a nozzle port 8 that opens into the combustion chamber 5 in its housing 7, and a needle 9 that controls opening and closing of the nozzle port 8.
and. A back pressure chamber 10 is formed on the top surface of the needle 9, and the needle 9 is always connected to the nozzle port 8 in the back pressure chamber 10.
A compression spring 11 is inserted which urges the A fuel reservoir 12 is formed around the lower end of the needle 9, and this fuel reservoir 12 is communicated with an annular large-capacity fuel reservoir 14 via a fuel passage 13. On the other hand, a piston 16 driven by a piezoelectric element 15 is slidably inserted into the housing 7, and a pressure control chamber 17 is defined by the tip end surface of the piston 16. This pressure control chamber 17 is communicated with the back pressure chamber 10 via a fuel passage 18. The fuel storage chamber 14 is connected to a pressure control chamber 17 via a check valve 19 that allows flow only toward the fuel storage chamber 14, and the pressure control chamber 17 is connected to a check valve that allows flow only toward the pressure control chamber 17. It is connected to a fuel supply pump 21 via 20. As shown in FIG. 1, the fuel storage chamber 14 is provided between the needle 9 and the piston 16, and therefore, the fuel storage chamber 14 is formed near the nozzle port 8. The piezoelectric element 15 expands in the axial direction when charged with electric charge, and contracts in the axial direction when the electric charge is discharged. The charging and discharging action on the piezoelectric element 15 is controlled based on the output signal of the electronic control unit 30.

【0008】電子制御ユニット30はディジタルコンピ
ュータからなり、双方向性バス31によって相互に接続
されたROM(リードオンリメモリ)32、RAM(ラ
ンダムアクセスメモリ)33、CPU(マイクロプロセ
ッサ)34、入力ポート35および出力ポート36を具
備する。アクセルペダル37はアクセルペダル37の踏
込み量に比例した出力電圧を発生する負荷センサ38に
接続され、負荷センサ38の出力電圧はAD変換器39
を介して入力ポート35に入力される。また入力ポート
35には機関回転数を表わす出力信号を発生する回転数
センサ40が接続される。一方、出力ポート36は駆動
回路41を介してピエゾ圧電素子15に接続される。
The electronic control unit 30 is composed of a digital computer, and includes a ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, and an input port 35, which are interconnected by a bidirectional bus 31. and an output port 36. The accelerator pedal 37 is connected to a load sensor 38 that generates an output voltage proportional to the amount of depression of the accelerator pedal 37, and the output voltage of the load sensor 38 is connected to an AD converter 39.
The signal is input to the input port 35 via the input port 35. Also connected to the input port 35 is a rotational speed sensor 40 that generates an output signal representing the engine rotational speed. On the other hand, the output port 36 is connected to the piezoelectric element 15 via a drive circuit 41.

【0009】燃料供給ポンプ21から吐出された加圧燃
料は逆止弁20を介して圧力制御室17内に供給され、
圧力制御室17に供給された加圧燃料は一方では逆止弁
19を介して燃料貯留室14内に供給され、他方では燃
料通路18を介して背圧室10内に供給される。従って
燃料貯留室14内の燃料圧と背圧室10内の燃料圧とは
等しくなっており、このときニードル9はノズル口8を
閉鎖している。ピエゾ圧電素子15から電荷が放電され
るとピエゾ圧電素子15が軸方向に収縮するためにピス
トン16が上昇し、圧力制御室17内の燃料圧が急激に
低下すると共に背圧室10内の燃料圧が急激に低下する
。その結果ニードル9が上昇するためにノズル口8から
の燃料噴射が開始される。なお、圧力制御室17内の燃
料圧が急激に低下すると逆止弁20を介して加圧燃料が
圧力制御室17内に供給されるので圧力制御室17内の
燃料圧は徐々に上昇する。しかしながらこの間ニードル
9は開弁した状態に保持される。次いでピエゾ圧電素子
15に電荷が充電されるとピエゾ圧電素子15が軸方向
に伸長する。その結果ピストン16が下降するために圧
力制御室17内の燃料圧が急激に上昇し、同時に背圧室
10内の燃料圧が急激に上昇する。その結果ニードル9
が下降するためにノズル口8からの燃料噴射が停止せし
められる。
Pressurized fuel discharged from the fuel supply pump 21 is supplied into the pressure control chamber 17 via the check valve 20.
The pressurized fuel supplied to the pressure control chamber 17 is supplied into the fuel storage chamber 14 via the check valve 19 on the one hand, and into the back pressure chamber 10 via the fuel passage 18 on the other hand. Therefore, the fuel pressure in the fuel storage chamber 14 and the fuel pressure in the back pressure chamber 10 are equal, and at this time the needle 9 closes the nozzle port 8. When the charge is discharged from the piezoelectric element 15, the piezoelectric element 15 contracts in the axial direction, causing the piston 16 to rise, causing the fuel pressure in the pressure control chamber 17 to drop rapidly, and the fuel in the back pressure chamber 10 to Pressure drops rapidly. As a result, the needle 9 rises, and fuel injection from the nozzle port 8 is started. Note that when the fuel pressure in the pressure control chamber 17 suddenly decreases, pressurized fuel is supplied into the pressure control chamber 17 via the check valve 20, so that the fuel pressure in the pressure control chamber 17 gradually increases. However, during this time, the needle 9 remains open. Next, when the piezoelectric element 15 is charged, the piezoelectric element 15 expands in the axial direction. As a result, the piston 16 descends, causing the fuel pressure in the pressure control chamber 17 to rise rapidly, and at the same time, the fuel pressure in the back pressure chamber 10 to rise rapidly. As a result, needle 9
As the fuel is lowered, fuel injection from the nozzle port 8 is stopped.

【0010】冒頭で述べたように燃料噴霧の油滴のザウ
ター平均粒径は噴射燃料の流速が速くなるほど小さくな
り、またノズル口8の径が小さくなるほど小さくなる。 筒内圧を基準とした噴射圧をΔPとすると噴射燃料の流
速はΔPの平方根に比例するのでノズル口8の径をDと
するとザウター平均粒径は
As mentioned at the beginning, the Sauter average particle size of the oil droplets in the fuel spray becomes smaller as the flow velocity of the injected fuel becomes faster, and as the diameter of the nozzle opening 8 becomes smaller. If the injection pressure based on the cylinder pressure is ΔP, the flow velocity of the injected fuel is proportional to the square root of ΔP. Therefore, if the diameter of the nozzle port 8 is D, the Sauter average particle diameter is

【数1】 にほぼ比例することになる。従来では例えばΔP=40
0(kg/cm2)のときに最大でもD=0.3mm程
度であるので
It is approximately proportional to [Equation 1]. Conventionally, for example, ΔP=40
0 (kg/cm2), the maximum D=0.3mm, so

【数2】 は最大でも 0.015(mm・kg/cm2)程度と
なり、このときのザウター平均粒径は0.05mm程度
となる。ところがザウター平均粒径がこの程度であると
図4(B)に示されるようにノズル口Cから噴射された
燃料噴霧Dの周りに混合気Eが形成され、この混合気E
がただちに着火せしめられる。即ち、噴射率Qを示す図
4(A)からわかるように噴射が開始されて混合気Eが
形成されると噴射中にこの混合気Eによって着火が行わ
れる。このような燃焼方法を用いると燃焼騒音が発生す
ると共に多量のNOx およびすすが発生し、多量の未
燃HCが発生することは前述した通りである。
[Equation 2] is approximately 0.015 (mm·kg/cm2) at the maximum, and the Sauter average particle diameter at this time is approximately 0.05 mm. However, when the Sauter average particle diameter is around this level, a mixture E is formed around the fuel spray D injected from the nozzle port C, as shown in FIG. 4(B).
is immediately ignited. That is, as can be seen from FIG. 4A showing the injection rate Q, when injection is started and a mixture E is formed, ignition is performed by this mixture E during injection. As described above, when such a combustion method is used, combustion noise is generated, a large amount of NOx and soot are generated, and a large amount of unburned HC is generated.

【0011】これに対して本発明では例えばΔP= 1
00(kg/cm2)においてノズル口8の径Dは0.
4mm以上とされる。この場合ノズル口8の径Dを0.
4mmとしても
On the other hand, in the present invention, for example, ΔP=1
00 (kg/cm2), the diameter D of the nozzle opening 8 is 0.00 (kg/cm2).
It is assumed to be 4 mm or more. In this case, the diameter D of the nozzle opening 8 is set to 0.
Even if it is 4mm

【数3】 は0.04となり、このときのザウター平均粒径はほぼ
0.15mmとなる。図2の実線Aは本発明における
[Equation 3] is 0.04, and the Sauter average particle diameter at this time is approximately 0.15 mm. The solid line A in FIG. 2 is in the present invention.


数4】 の最小限を示しており、破線Bは従来における
[
4], and the dashed line B shows the minimum of

【数5】 の最大限を示している。本発明におけるようにザウター
平均粒径を大きくすると燃料噴霧の貫徹力が増大するた
めに図3(B)の燃料噴霧Dで示されるように油滴は従
来に比べて遠くまでかつ広範に拡散することになる。こ
のように油滴が広範に拡散されるまでには時間を要する
ので噴射率Qを示す図3(A)に示すように上死点TD
Cよりもかなり前に噴射が行われる。ザウター平均粒径
を大きくすると燃料噴霧Dの周りに形成される混合気E
は少量となり、しかも噴射時期が早められているのでこ
の混合気Eは形成後ただちに着火されることはない。噴
射が完了して暫らくすると混合気Eおよび油滴からの蒸
発作用によって形成された混合気が着火せしめられるが
これらの混合気量は少ないために燃焼圧が急激に上昇せ
ず、斯くして燃焼騒音の発生が抑制されることになる。 着火が行われると油滴が加熱されて油滴から少しずつ燃
料が蒸発し、この蒸発した燃料が徐々に燃焼せしめられ
る。油滴から燃料が蒸発すると周囲から蒸発潜熱を奪う
ので燃焼温度はさほど高くならず、斯くしてNOxの発
生が抑制されることになる。また、油滴が広範に拡散し
ており、しかも油滴から蒸発した燃料が順次燃焼せしめ
られるのですすや未燃HCの発生が抑制されることにな
る。
It shows the maximum of [Equation 5]. When the Sauter average particle diameter is increased as in the present invention, the penetration force of the fuel spray increases, so the oil droplets are spread farther and wider than in the past, as shown by fuel spray D in FIG. 3(B). It turns out. Since it takes time for the oil droplets to spread widely in this way, the top dead center TD is
Injection occurs well before C. Air-fuel mixture E formed around fuel spray D when Sauter average particle diameter is increased
Since the amount of fuel is small and the injection timing is advanced, this air-fuel mixture E is not ignited immediately after it is formed. Shortly after the injection is completed, the mixture E and the mixture formed by the evaporation action from the oil droplets are ignited, but since the amounts of these mixtures are small, the combustion pressure does not rise rapidly. The generation of combustion noise will be suppressed. When ignition occurs, the oil droplets are heated and the fuel evaporates little by little from the oil droplets, and the evaporated fuel is gradually combusted. When the fuel evaporates from the oil droplets, the latent heat of vaporization is taken away from the surroundings, so the combustion temperature does not become very high, thus suppressing the generation of NOx. Further, since the oil droplets are widely spread and the fuel evaporated from the oil droplets is sequentially burned, the generation of soot and unburned HC is suppressed.

【0012】このように本発明は全燃料噴霧が十分に拡
散した後に燃料噴霧が圧縮着火せしめられることを特徴
としており、従って図3(A)に示すように燃料噴射の
完了後、拡散に必要な時間、即ち拡散時間αを経過した
後に圧縮着火が行われるように燃料噴射時期が定められ
ている。この拡散時間αは図5に示されるようにザウタ
ー平均粒径S.M.Dが大きくなるほど長くなり、従っ
てこの拡散時間αは噴射圧ΔPおよびノズル口8の径D
から定められることになる。拡散時間αが長くなればそ
れに伴って燃料噴射時期が早まり、運転状態によって異
なるが燃料噴射時期は上死点前40度から 100度程
度に設定される。
As described above, the present invention is characterized in that the fuel spray is compressed and ignited after the entire fuel spray has been sufficiently diffused. Therefore, as shown in FIG. The fuel injection timing is determined so that compression ignition is performed after a period of time, that is, a diffusion time α has elapsed. As shown in FIG. 5, this diffusion time α is determined by the Sauter average particle size S. M. The larger D becomes, the longer it becomes. Therefore, this diffusion time α depends on the injection pressure ΔP and the diameter D of the nozzle opening 8
It will be determined from As the diffusion time α becomes longer, the fuel injection timing advances accordingly, and the fuel injection timing is set at about 40 degrees to 100 degrees before top dead center, although it varies depending on the operating condition.

【0013】ところで上述したようにΔP=100(k
g/cm2)とし、D=0.4mmとするとザウター平
均粒径はほぼ0.15mmとなる。しかしながら油滴の
蒸発燃焼を良好に行うためには油滴の体積に対する表面
積の割合をもう少し小さくして燃料の蒸発作用を抑制す
ることが好ましく、そのためにはザウター平均粒径はほ
ぼ0.2mmから1mmの範囲にあることが好ましい、
従って油滴はかなり大粒となる。ザウター平均粒径は
By the way, as mentioned above, ΔP=100(k
g/cm2) and D=0.4 mm, the Sauter average particle diameter is approximately 0.15 mm. However, in order to achieve good evaporative combustion of oil droplets, it is preferable to suppress the evaporation effect of the fuel by making the ratio of the surface area to the volume of the oil droplets a little smaller. Preferably in the range of 1 mm.
Therefore, the oil droplets become quite large. Sauter average particle size is

【数6】 に正比例するわけではないのでノズル口8の径Dを0.
5〜0.6mm以上にすればザウター平均粒径は0.2
mm以上となる。なお、ザウター平均粒径が大きくなる
と油滴の貫徹力が大きくなるので油滴がシリンダボア内
壁面やピストン3の頂面に付着しないように噴射圧ΔP
は低くする必要がある。従って本発明では噴射圧ΔPは
400(kg/cm2)以下に設定されている。
Since it is not directly proportional to [Equation 6], the diameter D of the nozzle opening 8 is set to 0.
If the diameter is 5 to 0.6 mm or more, the Sauter average particle size is 0.2
mm or more. Note that as the Sauter average particle diameter increases, the penetration force of the oil droplets increases, so the injection pressure ΔP is adjusted so that the oil droplets do not adhere to the inner wall surface of the cylinder bore or the top surface of the piston 3.
needs to be low. Therefore, in the present invention, the injection pressure ΔP is set to 400 (kg/cm2) or less.

【0014】上述したように従来の圧縮着火式内燃機関
ではザウター平均粒径が小さいことによって種々の問題
が生じるがこれ以外にも次のような問題がある。即ち、
従来の燃料噴射弁ではニードルが開弁して燃料噴射が開
始されると燃料噴射弁内の燃料圧が一時的に落ち込むた
めに図4(A)に示すように噴射開始後、ただちに噴射
圧が上昇しない。従って噴射圧の低い初期に噴射された
燃料を噴射圧の高くなったときに噴射された燃料が追い
越していくことになる。即ち、図4(B)において各燃
料噴霧に付した1,2,3,4,5,6は噴射順序を表
わしており、従って最初に噴射された燃料が次に噴射さ
れた燃料によって追い越されていくことがわかる。しか
しながらこのように燃料噴霧の追い越しが行われると燃
料噴霧が重なった領域は過濃な状態となり、斯くして多
量のすすや未燃HCが発生するという問題を生じる。
As mentioned above, in the conventional compression ignition internal combustion engine, various problems arise due to the small Sauter average particle diameter, and in addition to these, there are the following problems. That is,
In a conventional fuel injection valve, when the needle opens and fuel injection starts, the fuel pressure inside the fuel injection valve temporarily drops, so as shown in Fig. 4(A), the injection pressure drops immediately after the injection starts. It doesn't rise. Therefore, the fuel injected when the injection pressure is high will overtake the fuel injected at the beginning when the injection pressure is low. That is, in FIG. 4(B), the numbers 1, 2, 3, 4, 5, and 6 attached to each fuel spray represent the injection order, so that the fuel injected first is overtaken by the fuel injected next. I know what's going on. However, when the fuel sprays overtake each other in this way, the area where the fuel sprays overlap becomes extremely concentrated, resulting in the problem of generating a large amount of soot and unburned HC.

【0015】このような燃料噴霧の追い越しを防止する
ために本発明による実施例では図1に示すようにノズル
口8の近傍に燃料貯留室14を設けている。このような
燃料貯留室14を設けるとニードル9が開弁するや否や
高い噴射圧で噴射され、しかも燃料貯留室14は大きな
容積を有するために噴射中においても噴射圧はさほど低
下しない。従って図3(A)に示すように立上りおよび
立下りがシャープな噴射率Qとなる。この場合には図3
(B)に示すように後から噴射された燃料噴霧が先に噴
射された燃料噴霧を追いかける形となり、後から噴射さ
れた燃料噴霧が先に噴射された燃料噴霧を追い越すこと
がなくなる。従って燃料噴霧が重なることがないので過
濃領域が形成されず、斯くしてすすや未燃HCが発生す
るのが阻止される。
In order to prevent such overtaking of the fuel spray, in the embodiment according to the present invention, a fuel storage chamber 14 is provided near the nozzle port 8, as shown in FIG. When such a fuel storage chamber 14 is provided, injection is performed at a high injection pressure as soon as the needle 9 opens, and since the fuel storage chamber 14 has a large volume, the injection pressure does not decrease much even during injection. Therefore, the injection rate Q has a sharp rise and fall as shown in FIG. 3(A). In this case, Figure 3
As shown in (B), the fuel spray injected later follows the fuel spray injected earlier, and the fuel spray injected later does not overtake the fuel spray injected earlier. Therefore, since the fuel sprays do not overlap, no over-concentration region is formed, and the generation of soot and unburned HC is thus prevented.

【0016】図6は燃料噴射制御を実行するためのメイ
ンルーチンを示している。図6を参照するとまず初めに
ステップ50において圧縮着火が行われる着火クランク
角θb が算出される。この着火クランク角θb は図
7に示すようにアクセルペダル37の踏込み量Lを機関
回転数Nの関数として予めROM 32内に記憶されて
いる。次いでステップ51では着火クランク角θb か
らクランク角度で表わした拡散時間αを減算することに
よって噴射完了時期θp が算出される。次いてステッ
プ52では燃料噴射時間TAUが算出される。この燃料
噴射時間TAUは図8に示すようにアクセルペダル37
の踏込み量Lと機関回転数Nの関数として予めROM 
32内に記憶されている。次いでステップ53では噴射
完了時期θp と燃料噴射時間TAUから噴射開始時期
θa が算出される。
FIG. 6 shows a main routine for executing fuel injection control. Referring to FIG. 6, first, in step 50, the ignition crank angle θb at which compression ignition is performed is calculated. This ignition crank angle θb is stored in advance in the ROM 32 as a function of the depression amount L of the accelerator pedal 37 and the engine speed N, as shown in FIG. Next, in step 51, the injection completion timing θp is calculated by subtracting the diffusion time α expressed in crank angle from the ignition crank angle θb. Next, in step 52, the fuel injection time TAU is calculated. This fuel injection time TAU is determined by the accelerator pedal 37 as shown in FIG.
ROM in advance as a function of the amount of depression L and the engine speed N.
32. Next, in step 53, the injection start timing θa is calculated from the injection completion timing θp and the fuel injection time TAU.

【0017】[0017]

【発明の効果】燃焼騒音、NOx 、すすおよび未燃H
Cの発生を抑制することができる。
[Effects of the invention] Combustion noise, NOx, soot and unburned H
The generation of C can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】燃料噴射弁および燃焼室の側面断面図である。FIG. 1 is a side sectional view of a fuel injection valve and a combustion chamber.

【図2】従来における[Figure 2] Conventional

【数7】 と本発明における[Math 7] and in the present invention

【数8】 を示す線図である。[Math. 8] FIG.

【図3】本発明における噴射方法を説明するための図で
ある。
FIG. 3 is a diagram for explaining the injection method in the present invention.

【図4】従来における噴射方法を説明するための図であ
る。
FIG. 4 is a diagram for explaining a conventional injection method.

【図5】拡散時間を示す線図である。FIG. 5 is a diagram showing diffusion time.

【図6】メインルーチンを示すフローチャートである。FIG. 6 is a flowchart showing the main routine.

【図7】着火クランク角を示す図である。FIG. 7 is a diagram showing the ignition crank angle.

【図8】燃料噴射時間を示す図である。FIG. 8 is a diagram showing fuel injection time.

【符号の説明】[Explanation of symbols]

6…燃料噴射弁 8…ノズル口 14…燃料貯留室 6...Fuel injection valve 8...Nozzle mouth 14...Fuel storage chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  筒内圧を基準とした噴射圧をほぼ40
0(kg/cm2)以下に設定すると共に噴霧油滴のザ
ウター平均粒径がほぼ0.2mmからほぼ1mmの間と
なるようにノズル口の面積を設定して機関高負荷運転時
であっても全燃料噴射完了後暫らくしてから圧縮着火を
生じさせるようにした圧縮着火式内燃機関の燃料噴射装
置。
[Claim 1] The injection pressure based on the cylinder pressure is approximately 40
0 (kg/cm2) or less and set the area of the nozzle opening so that the Sauter average particle diameter of the sprayed oil droplets is between approximately 0.2 mm and approximately 1 mm, even during high engine load operation. A fuel injection device for a compression ignition internal combustion engine that causes compression ignition some time after completion of all fuel injection.
JP3073036A 1991-04-05 1991-04-05 Fuel injection device for compression ignition type internal combustion engine Expired - Lifetime JP2754938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3073036A JP2754938B2 (en) 1991-04-05 1991-04-05 Fuel injection device for compression ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3073036A JP2754938B2 (en) 1991-04-05 1991-04-05 Fuel injection device for compression ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
JPH04308356A true JPH04308356A (en) 1992-10-30
JP2754938B2 JP2754938B2 (en) 1998-05-20

Family

ID=13506730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3073036A Expired - Lifetime JP2754938B2 (en) 1991-04-05 1991-04-05 Fuel injection device for compression ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2754938B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467757A (en) * 1993-08-20 1995-11-21 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine and combustion method of same
US5626115A (en) * 1995-03-10 1997-05-06 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467757A (en) * 1993-08-20 1995-11-21 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine and combustion method of same
US5626115A (en) * 1995-03-10 1997-05-06 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine

Also Published As

Publication number Publication date
JP2754938B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US5467757A (en) Compression-ignition type engine and combustion method of same
US4770138A (en) Fuel injection type internal combustion engine
JP4379479B2 (en) In-cylinder injection engine control method, control device for implementing the control method, and control circuit device used in the control device
US6006720A (en) Internal combustion engine
US5271362A (en) Two-stroke engine
JPH11153034A (en) Direct injection spark ignition type engine
JP3186373B2 (en) In-cylinder injection spark ignition engine
JP2005538308A (en) Method of operating an internal combustion engine by direct fuel injection
JP2671606B2 (en) Fuel injection controller for direct injection type internal combustion engine
JP2812236B2 (en) Compression ignition type internal combustion engine
KR910002118B1 (en) System for supplying fuel into electronic control into cylinder
JP3191562B2 (en) Combustion method for compression ignition type internal combustion engine
JPH08193536A (en) Fuel injection controller of cylinder injection type internal combustion engine
JP2751626B2 (en) In-cylinder direct injection spark ignition engine
JP2754938B2 (en) Fuel injection device for compression ignition type internal combustion engine
JP3851727B2 (en) Diesel engine subchamber combustion chamber
JP2513004B2 (en) In-cylinder direct injection spark ignition engine
JPH0730693B2 (en) Fuel injection method for internal combustion engine
JP3644057B2 (en) Direct injection spark ignition internal combustion engine
JP3218817B2 (en) Fuel injection device for direct injection type internal combustion engine
JP3141683B2 (en) Fuel injection valve
JPH0571405A (en) In-cylinder fuel injection type two-cycle internal combustion engine
JP2590551B2 (en) Fuel injection device for internal combustion engine
JPS6027828Y2 (en) internal combustion engine
JPH02146239A (en) Intra-tube direct injection type spark ignition engine