JPH0571405A - In-cylinder fuel injection type two-cycle internal combustion engine - Google Patents

In-cylinder fuel injection type two-cycle internal combustion engine

Info

Publication number
JPH0571405A
JPH0571405A JP4047581A JP4758192A JPH0571405A JP H0571405 A JPH0571405 A JP H0571405A JP 4047581 A JP4047581 A JP 4047581A JP 4758192 A JP4758192 A JP 4758192A JP H0571405 A JPH0571405 A JP H0571405A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
valve
injection valve
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4047581A
Other languages
Japanese (ja)
Inventor
Osamu Sakamoto
修 坂本
Senju Saito
千寿 斉藤
Seiichi Nishimura
誠一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Marine Co Ltd
Original Assignee
Sanshin Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanshin Kogyo KK filed Critical Sanshin Kogyo KK
Priority to US08/012,311 priority Critical patent/US5329902A/en
Publication of JPH0571405A publication Critical patent/JPH0571405A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0696W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To provide sufficient stratified combustion at a low speed and reduce inconsistent combustion which is liable to occur in such a case. CONSTITUTION:In an in-cylinder fuel injection type two-cycle internal combustion engine which has a cylinder head 14 provided with a fuel injection valve 50 and a spark plug 21, a piston 11 has the recessed portion 11a on the top combustion chamber side and the protruded portion 11b protruded to the recessed portion 11a on the combustion chamber side and the spark plug 21 has the electrode portion 21a faced into the recessed portion near the protruded portion, while the fuel injection of a fuel injection valve 50 is directed to the protruded portion 11b and so arranged that fuel directed to the protruded portion 11b can hit on the protruded portion 11b, be reflected and directed to the electrode portion 21a. On the other hand, the opening/closing timing of the fuel infection valve 50 and the sparking timing of the spark plug 21 at a low speed are set near the top dead center of the piston 11 and controlled so that at least a part of fuel directed to the electrode portion 21a can be passed therethrough during discharging of the electrode portion 21a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高圧燃料を直接燃焼
室に噴射する筒内燃料噴射式の2サイクル内燃機関に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-cylinder fuel injection type two-cycle internal combustion engine which directly injects high-pressure fuel into a combustion chamber.

【0002】[0002]

【従来の技術】ピストン頂面に凹部を形成すると共に該
凹部内壁面上に突出部を設けて該突出部上に衝突面を形
成し、シリンダヘッドに設けた燃料噴射弁から大部分の
燃料を該衝突面に向けて噴射せしめて他の領域よりも濃
い混合気領域を上記突出部周りに形成し、点火時にこの
濃い混合気領域内に位置する点火用電極をシリンダヘッ
ドに取り付けた直噴層状燃焼式4サイクル内燃機関が特
開昭63−162928号公報に記載されている。
2. Description of the Related Art A recess is formed on the top surface of a piston and a projection is provided on the inner wall surface of the recess to form a collision surface on the projection, so that most of the fuel is discharged from a fuel injection valve provided in a cylinder head. A direct injection layered structure in which an air-fuel mixture region that is denser than other regions is formed around the protrusion by injecting toward the collision surface and an ignition electrode located in this rich air-fuel mixture region is attached to the cylinder head during ignition. A combustion type four-cycle internal combustion engine is described in JP-A-63-162928.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記実施例
に記載されている内燃機関は4サイクル内燃機関であ
る。したがって、2サイクル内燃機関に較べ、燃焼室内
の圧縮後のガス温度が高く、またピストン頂面の温度も
高い。このため、噴射後の燃料は、断熱圧縮され高温と
なった圧縮ガスの熱により、更に、高温のピストン頂面
の熱により、気化され、急激にその運動エネルギーを消
失する。その結果、ピストン頂面で衝突した後の混合気
は殆ど気化し、点火栓に到達し難い。このため、点火栓
を十分ピストンの頂面に近接して配置しなけらばならな
い。更に、衝突後の混合気は、運動エネルギーを消失し
ているため、点火栓に到達し着火した混合気はその小さ
な運動エネルギーでは拡散せず、この面からの完全な燃
焼は期待しずらい。
The internal combustion engine described in the above embodiment is a 4-cycle internal combustion engine. Therefore, the gas temperature after compression in the combustion chamber is higher and the temperature of the top surface of the piston is higher than that of the two-cycle internal combustion engine. Therefore, the fuel after injection is vaporized by the heat of the compressed gas that has been adiabatically compressed to have a high temperature and further by the heat of the hot piston top surface, and its kinetic energy is rapidly lost. As a result, the air-fuel mixture after collision on the top surface of the piston is almost vaporized, and it is difficult to reach the spark plug. Therefore, the spark plug must be placed sufficiently close to the top surface of the piston. Furthermore, since the kinetic energy of the air-fuel mixture after collision has disappeared, the air-fuel mixture that has reached the spark plug and ignited does not diffuse with the small kinetic energy, and it is difficult to expect complete combustion from this aspect.

【0004】そこで、本発明は、かかる問題点に鑑みな
されたもので、低速時の燃焼を十分にし、かかる時に生
じ勝ちの不整燃焼を減少させることを目的とする。
Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to sufficiently perform combustion at a low speed and to reduce irregular combustion that tends to occur at such a time.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために、シリンダヘッドに燃料噴射弁と点火栓とを
備えた筒内燃料噴射式2サイクル内燃機関において、ピ
ストンの頂部燃焼室側に凹部と、該凹部に燃焼室側に突
出する凸部とを設けるとともに、前記点火栓の電極部を
前記凸部近傍の前記凹部内に臨ませ、一方、前記燃料噴
射弁の燃料噴射方向を前記凸部に向けるとともに、前記
凸部に向かった燃料が前記凸部に衝突後、反射して前記
電極部に向かうように前記燃料噴射方向を配設し、他
方、低速時前記燃料噴射弁の開閉時期及び前記点火栓の
点火時期をピストンの上死点近傍に設定するとともに、
前記電極部が放電している間に前記電極部に向かった前
記燃料の少なくとも一部が通過するように前記燃料噴射
弁の開閉時期及び前記点火栓の点火時期を制御したこと
を特徴とするものである。
In order to achieve the above object, the present invention provides a cylinder fuel injection type two-cycle internal combustion engine equipped with a fuel injection valve and an ignition plug in a cylinder head, in which the top combustion chamber side of the piston is located. A concave portion and a convex portion projecting to the combustion chamber side are provided in the concave portion, and the electrode portion of the spark plug is made to face the concave portion near the convex portion, while the fuel injection direction of the fuel injection valve is changed. The fuel injection direction is arranged so that the fuel directed to the convex portion and directed toward the convex portion collides with the convex portion, and then is reflected and toward the electrode portion, while the fuel injection valve at low speed is While setting the opening and closing timing and the ignition timing of the spark plug near the top dead center of the piston,
The opening / closing timing of the fuel injection valve and the ignition timing of the spark plug are controlled so that at least a part of the fuel toward the electrode portion passes while the electrode portion is discharging. Is.

【0006】本発明は上記目的を達成するために、シリ
ンダヘッドに燃料噴射弁と点火栓とを備えた筒内燃料噴
射式2サイクル内燃機関において、ピストンの頂部燃焼
室側に凹部と、該凹部に燃焼室側に突出する凸部とを設
けるとともに、前記点火栓の電極部を前記凸部近傍の前
記凹部内に臨ませ、一方、前記燃料噴射弁の燃料噴射方
向を前記凸部に向けるとともに、前記凸部に向かった燃
料が前記凸部に衝突後、反射して前記電極部に向かうよ
うに前記燃料噴射方向を配設し、他方、低速時前記燃料
噴射弁の開閉時期及び前記点火栓の点火時期をピストン
の上死点近傍に設定するとともに、前記燃料噴射弁から
燃料が実際に噴射した時から前記燃料が前記凸部で反射
して前記電極部に達する時までの飛翔時間と、前記燃料
噴射弁を閉弁指示する閉弁指示時期から前記燃料噴射弁
が実際に閉じるまでの閉弁遅れ時間とを加えた時間を前
記閉弁指示時期に加えた時期よりも、前記点火栓が放電
を開始する放電開始時期を早く設定したことを特徴とす
るものである。
In order to achieve the above object, the present invention is a cylinder fuel injection type two-cycle internal combustion engine having a fuel injection valve and a spark plug in a cylinder head, and a concave portion on the top combustion chamber side of a piston and the concave portion. And a projection protruding toward the combustion chamber, the electrode portion of the spark plug is made to face the recess near the projection, while the fuel injection direction of the fuel injection valve is directed to the projection. The fuel injection direction is arranged so that the fuel directed to the convex portion collides with the convex portion and then reflects toward the electrode portion, while the fuel injection valve is opened / closed at low speed and the spark plug. While setting the ignition timing of the piston in the vicinity of the top dead center of the piston, the flight time from the time when the fuel is actually injected from the fuel injection valve to the time when the fuel is reflected by the convex portion and reaches the electrode portion, Instruction to close the fuel injection valve From the timing of adding the valve closing delay time from the valve closing instruction timing to the actual closing of the fuel injection valve to the valve closing instruction timing, the discharge start timing at which the spark plug starts discharging It is characterized by setting early.

【0007】本発明は上記目的を達成するために、シリ
ンダヘッドに燃料噴射弁と点火栓とを備えた筒内燃料噴
射式2サイクル内燃機関において、ピストンの頂部燃焼
室側に凹部と、該凹部に燃焼室側に突出する凸部とを設
けるとともに、前記点火栓の電極部を前記凸部近傍の前
記凹部内に臨ませ、一方、前記燃料噴射弁の燃料噴射方
向を前記凸部に向けるとともに、前記凸部に向かった燃
料が前記凸部に衝突後、反射して前記電極部に向かうよ
うに前記燃料噴射方向を配設し、他方、低速時前記燃料
噴射弁の開閉時期及び前記点火栓の点火時期をピストン
の上死点近傍に設定するとともに、前記燃料噴射弁から
燃料が実際に噴射した時から前記燃料が前記凸部で反射
して前記電極部に達する時までの飛翔時間と、前記燃料
噴射弁を開弁指示する開弁指示時期から前記燃料噴射弁
が実際に開くまでの開弁遅れ時間とを加えた時間を前記
開弁指示時期に加えた時期よりも、前記点火栓が放電を
終了する放電終了時期を遅く設定したことを特徴とする
ものである。
In order to achieve the above object, the present invention provides a cylinder fuel injection type two-cycle internal combustion engine having a fuel injection valve and an ignition plug in a cylinder head, and a recess on the top combustion chamber side of a piston and the recess. And a projection protruding toward the combustion chamber, the electrode portion of the spark plug is made to face the recess near the projection, while the fuel injection direction of the fuel injection valve is directed to the projection. The fuel injection direction is arranged so that the fuel directed to the convex portion collides with the convex portion and then reflects toward the electrode portion, while the fuel injection valve is opened / closed at low speed and the spark plug. While setting the ignition timing of the piston in the vicinity of the top dead center of the piston, the flight time from the time when the fuel is actually injected from the fuel injection valve to the time when the fuel is reflected by the convex portion and reaches the electrode portion, Instruction to open the fuel injection valve From the timing of adding the valve opening delay time from the valve opening instruction timing to the actual opening of the fuel injection valve to the valve opening instruction timing, the discharge end timing at which the spark plug ends discharge It is characterized by being set late.

【0008】本発明は上記目的を達成するために、シリ
ンダヘッドに燃料噴射弁と点火栓とを備えた筒内燃料噴
射式2サイクル内燃機関において、ピストンの頂部燃焼
室側に凹部と、該凹部に燃焼室側に突出する凸部とを設
けるとともに、前記点火栓の電極部を前記凸部近傍の前
記凹部内に臨ませ、一方、前記燃料噴射弁の燃料噴射方
向を前記凸部に向けるとともに、前記凸部に向かった燃
料が前記凸部に衝突後、反射して前記電極部に向かうよ
うに前記燃料噴射方向を配設し、他方、低速時前記燃料
噴射弁の開閉時期及び前記点火栓の点火時期をピストン
の上死点近傍に設定するとともに、前記燃料噴射弁から
燃料が実際に噴射した時から前記燃料が前記凸部で反射
して前記電極部に達する時までの飛翔時間と、前記燃料
噴射弁を開弁指示する開弁指示時期から前記燃料噴射弁
が実際に開くまでの開弁遅れ時間とを加えた時間を前記
開弁指示時期に加えた時期よりも、前記点火栓が放電を
終了する放電終了時期を遅く設定したことを特徴とする
ものである。
In order to achieve the above object, the present invention is a cylinder fuel injection type two-cycle internal combustion engine having a fuel injection valve and an ignition plug in a cylinder head, and a recess on the top combustion chamber side of a piston and the recess. And a projection protruding toward the combustion chamber, the electrode portion of the spark plug is made to face the recess near the projection, while the fuel injection direction of the fuel injection valve is directed to the projection. The fuel injection direction is arranged so that the fuel directed to the convex portion collides with the convex portion and then reflects toward the electrode portion, while the fuel injection valve is opened / closed at low speed and the spark plug. While setting the ignition timing of the piston in the vicinity of the top dead center of the piston, the flight time from the time when the fuel is actually injected from the fuel injection valve to the time when the fuel is reflected by the convex portion and reaches the electrode portion, Instruction to open the fuel injection valve From the timing of adding the valve opening delay time from the valve opening instruction timing to the actual opening of the fuel injection valve to the valve opening instruction timing, the discharge end timing at which the spark plug ends discharge It is characterized by being set late.

【0009】本発明は上記目的を達成するために、シリ
ンダヘッドに燃料噴射弁と点火栓とを備えた筒内燃料噴
射式2サイクル内燃機関において、ピストンが摺動する
シリンダ面に相対向するように掃気孔及び排気孔をそれ
ぞれ開口し、前記掃気孔の円周方向の両外縁と前記排気
孔の円周方向の両外縁とを結ぶ平面であって、シリンダ
中心軸と平行な2つの平面に挟まれた空間に、前記燃料
噴射弁と前記点火栓を配置したことを特徴とするもので
ある。
In order to achieve the above object, the present invention is directed to a cylinder fuel injection type two-cycle internal combustion engine having a cylinder head equipped with a fuel injection valve and an ignition plug so that the piston is opposed to the cylinder surface on which it slides. A scavenging hole and an exhaust hole respectively, and two planes that are parallel to the cylinder center axis and that connect both outer circumferential edges of the scavenging hole and both outer circumferential edges of the exhaust hole. The fuel injection valve and the ignition plug are arranged in the sandwiched space.

【0010】[0010]

【作用】低速時には、電極部が放電している間に電極部
に向かった燃料の少なくとも一部が通過するように燃料
噴射弁の開閉時期及び点火栓の点火時期を制御したの
で、電極部が放電開始する前に電極部を燃料が通過終了
することや、あるいは、電極部が放電終了した後に電極
部を燃料が通過開始することもない。また、電極部に向
かう燃料粒は、雰囲気温度が比較的低いため外周部のみ
気化し中心部は依然液状となっているので、電極部で燃
料粒の外周部が着火し、中心部の運動エネルギーによっ
て、着火したまま拡散し、燃焼室全体の燃焼を促進す
る。
In the low speed operation, the opening / closing timing of the fuel injection valve and the ignition timing of the spark plug are controlled so that at least a part of the fuel toward the electrode portion passes while the electrode portion is discharging. The fuel does not start passing through the electrode portion before the discharge starts, or the fuel does not start passing through the electrode portion after the discharge ends. Further, the fuel particles heading for the electrode portion are vaporized only in the outer peripheral portion because the ambient temperature is relatively low, and the central portion is still in a liquid state. By this, it spreads while igniting and promotes the combustion of the entire combustion chamber.

【0011】掃気孔が閉弁後にも、燃焼室内には掃気孔
から排気孔に向かう掃気流が残存しているが、請求項4
の発明によれば、凸部で反射した燃料粒群は電極部側に
変位し、電極部周りへの混合気供給を豊富とさせ、失火
を防止する。
The scavenging air flowing from the scavenging hole to the exhaust hole remains in the combustion chamber even after the scavenging hole is closed.
According to the invention, the fuel particle group reflected by the convex portion is displaced toward the electrode portion side, enriching the supply of the air-fuel mixture around the electrode portion, and preventing misfire.

【0012】[0012]

【実施例】図1は本発明を船外機に適用した燃料噴射装
置の全体概略図である。図2は本発明を適用したクラン
ク室圧縮式2サイクル内燃機関の縦断面図である。10
はクランク室圧縮式2サイクル内燃機関で、内燃機関1
0は、図2に示すように、クランク軸12、シリンダ1
3、シリンダヘッド14、クランクケース15、ピスト
ン11より構成される。ピストン11、シリンダ13お
よびシリンダヘッド14により燃焼室16が形成され
る。ピストン11、シリンダ13およびクランクケース
15によりクランク室17が形成され、その内部にクラ
ンク軸12を収納している。クランク室17にはリード
式の逆止弁20を介して絞弁19を有する吸気通路18
が連通している。シリンダ13には掃気通路23が形成
されている。この掃気通路23は一端をクランク室17
と他端を掃気孔24を介して燃焼室16に連通してい
る。ピストン11がシリンダ13内を上下に摺動するこ
とにより掃気通路23が燃焼室16と開閉している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall schematic view of a fuel injection device in which the present invention is applied to an outboard motor. FIG. 2 is a vertical sectional view of a crankcase compression type two-cycle internal combustion engine to which the present invention is applied. 10
Is a crank chamber compression type two-cycle internal combustion engine, and the internal combustion engine 1
0 indicates the crankshaft 12 and the cylinder 1 as shown in FIG.
3, a cylinder head 14, a crankcase 15, and a piston 11. A combustion chamber 16 is formed by the piston 11, the cylinder 13 and the cylinder head 14. A crank chamber 17 is formed by the piston 11, the cylinder 13 and the crank case 15, and the crank shaft 12 is housed therein. An intake passage 18 having a throttle valve 19 in the crank chamber 17 via a reed-type check valve 20.
Are in communication. A scavenging passage 23 is formed in the cylinder 13. One end of this scavenging passage 23 is the crank chamber 17
The other end communicates with the combustion chamber 16 through the scavenging hole 24. As the piston 11 slides up and down in the cylinder 13, the scavenging passage 23 opens and closes with the combustion chamber 16.

【0013】吸入空気はクランク室17の負圧で大気か
ら吸入通路18に導かれ、絞弁19で調量された上、逆
止弁19を通ってクランク室17に導入される。そし
て、クランク室17に導入された吸入空気は、ピストン
11で圧縮され、掃気通路23、23、23から燃焼室
16に掃気される。
The intake air is guided from the atmosphere to the intake passage 18 by the negative pressure in the crank chamber 17, is metered by the throttle valve 19, and then introduced into the crank chamber 17 through the check valve 19. Then, the intake air introduced into the crank chamber 17 is compressed by the piston 11 and is scavenged into the combustion chamber 16 through the scavenging passages 23, 23, 23.

【0014】図1に示すように、燃料は、低圧燃料ポン
プ7により燃料タンク5から燃料フィルタ6を経てフロ
ート室を有するベーパーセパレーター8に送り込まれ
る。ベーパーセパレーター8の送り込まれた燃料は第2
の低圧燃料ポンプ9によってクランク軸12により回転
駆動される高圧燃料ポンプ3に供給される。よって、高
圧燃料ポンプ3の取入口(不図示)は常時正圧となる。
高圧燃料ポンプ3は、低圧燃料ポンプ9から供給された
燃料を高圧(70〜100kg/cm 2 ) で吐出し、アキュ
ムレーター10、燃料フィルタ11を介し燃料噴射弁5
0に燃料を供給している。燃料噴射弁50に供給された
高圧の燃料はその圧力が一定以上になった時には、レギ
ュレータ30が燃料をベーパーセパレーター8へ戻す。
このことにより燃料噴射弁50に供給される燃料の圧力
は常時一定(本実施例では70kg/cm 2 )に保持され
る。燃料噴射弁50はシリンダヘッド14にシリンダ1
3の中心軸と略平行に取付られ、後述の如く燃焼室16
に燃料を噴射している。なお、想像線Aで囲まれている
部分は、船外機のカウリング(不図示)により収納され
ている部分である。ベーパーセパレーター8の気層は吸
気通路18に連通され、ベーパーセパレーター8からの
燃料蒸発成分を燃焼室16で燃焼させ、大気にHC成分
が放出しないようにしている。
As shown in FIG. 1, the fuel is sent from the fuel tank 5 through the fuel filter 6 by the low-pressure fuel pump 7 to the vapor separator 8 having the float chamber. The fuel fed into the vapor separator 8 is the second
The low-pressure fuel pump 9 supplies the high-pressure fuel pump 3 which is rotationally driven by the crankshaft 12. Therefore, the intake (not shown) of the high-pressure fuel pump 3 is always positive pressure.
The high-pressure fuel pump 3 discharges the fuel supplied from the low-pressure fuel pump 9 at a high pressure (70 to 100 kg / cm 2 ), and the fuel injection valve 5 passes through the accumulator 10 and the fuel filter 11.
0 is supplying fuel. When the pressure of the high-pressure fuel supplied to the fuel injection valve 50 exceeds a certain level, the regulator 30 returns the fuel to the vapor separator 8.
As a result, the pressure of the fuel supplied to the fuel injection valve 50 is always kept constant (70 kg / cm 2 in this embodiment). The fuel injection valve 50 includes a cylinder head 14 and a cylinder 1
3 is attached substantially parallel to the central axis of the combustion chamber 16 as described later.
Is injecting fuel into. The portion surrounded by the imaginary line A is the portion accommodated by the cowling (not shown) of the outboard motor. The vapor layer of the vapor separator 8 is communicated with the intake passage 18 so that the fuel vaporized component from the vapor separator 8 is burned in the combustion chamber 16 so that the HC component is not released to the atmosphere.

【0015】図3に示すように、ピストン11は頂部の
中央が反燃焼室側に凹んだ円筒状の凹部11aを有し、
更にその凹部11aの中央にはその底面から燃焼室側に
突出した凸部11bを有している。シリンダヘッド14
に取付られた燃料噴射弁50はシリンダ13のシリンダ
中心軸と略平行に配置され、且つ噴射口61が凸部11
bの中心位置(図4における61)に配置されている。
なお、噴射口61は図4に示すように、後述する排気通
路22の反対側に変位した位置(図4における61'
)、あるいは排気通路22の側に変位した位置(図4
における61'')何れに配置してもよい。また、シリン
ダヘッド14には点火栓21の電極部21aが前記凸部
11b近傍の前記凹部11aに臨むように取付られてい
る。シリンダ13には、図4に示すように、排気通路2
2と、排気通路22と対向する掃気通路23aと、掃気
通路23aと排気通路22を結ぶ線を挟んで左右一対の
掃気通路23b、23cとが設けられ、それらの終端が
シリンダ13の摺動面にそれぞれ開口し、それぞれ排気
孔22a、掃気孔24a、掃気孔24b、掃気孔24c
を形成している。これら3つの掃気通路23a、23
b、23cからの新気で燃焼室16を掃気することによ
り所謂シュニーレ掃気を行っている。掃気孔24aの円
周方向の左右の両外縁(図4の24aの引出し線先の部
分)及び排気孔22aの円周方向の左右の両外縁(図4
の22aの引出し線先の部分)とを結ぶ平面であって、
シリンダ中心軸と平行な2つの平面25A、25Bに挟
まれた空間に、燃料噴射弁50の噴射口61と点火栓2
1の放電部21aを配置した。掃気孔24a、24b、
24cが閉じた後、また、排気孔22aが閉じた後も、
燃焼室16内には掃気孔24aから排気孔22aに向か
う掃気流が残存する。このため、電極部21aが噴射口
61の下流側となり、凸部11bで衝突した燃料粒群は
電極部21a側に変位し、電極部21a周りへの混合気
供給が豊富となる。
As shown in FIG. 3, the piston 11 has a cylindrical recess 11a whose center is recessed toward the side opposite to the combustion chamber.
Further, at the center of the concave portion 11a, a convex portion 11b protruding from the bottom surface thereof toward the combustion chamber is provided. Cylinder head 14
The fuel injection valve 50 attached to the cylinder 13 is disposed substantially parallel to the cylinder center axis of the cylinder 13, and the injection port 61 has a convex portion 11
It is arranged at the center position of b (61 in FIG. 4).
As shown in FIG. 4, the injection port 61 is located at a position (61 ′ in FIG. 4) displaced to the opposite side of the exhaust passage 22 described later.
), Or a position displaced toward the exhaust passage 22 (see FIG. 4).
61 ″) in any of the above. Further, the electrode portion 21a of the spark plug 21 is attached to the cylinder head 14 so as to face the concave portion 11a near the convex portion 11b. As shown in FIG. 4, the cylinder 13 has an exhaust passage 2
2, a scavenging passage 23a facing the exhaust passage 22, and a pair of left and right scavenging passages 23b and 23c with a line connecting the scavenging passage 23a and the exhaust passage 22 interposed therebetween, the ends of which are the sliding surface of the cylinder 13. To the exhaust hole 22a, the scavenging hole 24a, the scavenging hole 24b, and the scavenging hole 24c, respectively.
Is formed. These three scavenging passages 23a, 23
The so-called schnee scavenging is performed by scavenging the combustion chamber 16 with fresh air from b and 23c. Both the left and right outer edges of the scavenging hole 24a in the circumferential direction (portions of the lead lines of 24a in FIG. 4) and the left and right outer edges of the exhaust hole 22a in the circumferential direction (FIG. 4).
22a of the lead wire) and a plane connecting
The injection port 61 of the fuel injection valve 50 and the spark plug 2 are placed in a space sandwiched between two planes 25A and 25B parallel to the cylinder center axis.
1 discharge part 21a was arranged. Scavenging holes 24a, 24b,
After closing 24c, and also after closing the exhaust hole 22a,
A scavenging air flow from the scavenging hole 24a to the exhaust hole 22a remains in the combustion chamber 16. Therefore, the electrode portion 21a is located on the downstream side of the injection port 61, the fuel particle group colliding with the convex portion 11b is displaced to the electrode portion 21a side, and the supply of the air-fuel mixture around the electrode portion 21a becomes rich.

【0016】図5は燃料噴射弁50の断面側面図を示
す。図5を参照して燃料噴射弁50を説明する。燃料噴
射弁50はシリンダヘッド14に螺着されるスリーブ5
2、スリーブ52とOリング54aを介して嵌着される
バルブボデー54、内面をOリング54bを介してバル
ブボデー54に嵌着され、外径をスリーブ52に螺着さ
れるノズルホルダ53、励磁コイル57と押え部材59
をノズルホルダ53に収納し、ノズルホルダ53の外径
の雄ネジに螺着されるキャップ55を備えている。バル
ブボデー54はその中央の空洞部に軸方向移動可能にニ
ードルバルブ56を保持している。バルブボデー54の
下端には、図6で拡大して示すように1ケの小径の噴口
61を有するノズルプレート60が設けられている。燃
料噴射弁50は、スリーブ52にノズルプレート60、
バルブボデー54、ニードルバルブ56、スペーサ58
を順次嵌入した状態で励磁コイル57を挿入したノズル
ホルダ53を螺着し、そして圧縮ばね51、押え部材5
9を挿入した後、キャップ55を螺着することにより組
み立てられる。押え部材59の中心には孔59aが貫通
しており、高圧燃料ポンプ3からの高圧燃料が孔59a
へ導かれ、順次、圧縮ばね51及びニードルバルブ56
を収容する空間に導かれる。
FIG. 5 is a sectional side view of the fuel injection valve 50. The fuel injection valve 50 will be described with reference to FIG. The fuel injection valve 50 is a sleeve 5 screwed to the cylinder head 14.
2, a valve body 54 fitted to the sleeve 52 via an O-ring 54a, a nozzle holder 53 having an inner surface fitted to the valve body 54 via an O-ring 54b, and an outer diameter screwed to the sleeve 52; Coil 57 and pressing member 59
Is accommodated in the nozzle holder 53, and the cap 55 is screwed onto the male screw of the outer diameter of the nozzle holder 53. The valve body 54 holds a needle valve 56 in its central cavity so as to be axially movable. At the lower end of the valve body 54, a nozzle plate 60 having one small-diameter injection port 61 is provided as shown in an enlarged view in FIG. The fuel injection valve 50 includes a sleeve 52, a nozzle plate 60,
Valve body 54, needle valve 56, spacer 58
The nozzle holder 53 with the exciting coil 57 inserted therein is screwed into the compression spring 51, the pressing member 5
After inserting 9, the cap 55 is screwed and assembled. A hole 59a penetrates through the center of the pressing member 59 so that the high-pressure fuel from the high-pressure fuel pump 3 can pass through the hole 59a.
To the compression spring 51 and the needle valve 56.
Is led to the space that houses the.

【0017】なお、図7はノズルプレート60の変形例
であり、2ケの噴口61、61を設けている点が、図6
で示す実施例と異なる。図6の実施例のエンジンより大
排気量になる等のため、より多くの流量を噴射する必要
のある時に、2ケの噴口を設け、噴口からの噴射速度を
落とさずに噴射することが出来る。その結果、単に噴口
径を大きくしたものに比べ、ピストン11との衝突後の
飛散性が優れ、着火性が優れたものになる。
Incidentally, FIG. 7 shows a modified example of the nozzle plate 60, and the point that two nozzles 61, 61 are provided is shown in FIG.
Different from the embodiment shown in. Since the engine has a larger displacement than the engine of the embodiment of FIG. 6 and the like, when it is necessary to inject a larger flow rate, two injection holes are provided, and the injection can be performed without reducing the injection speed from the injection holes. .. As a result, as compared with the case where the diameter of the injection port is simply increased, the scattering property after the collision with the piston 11 is excellent and the ignitability is excellent.

【0018】次に燃料噴射弁50の作動について説明す
る。ニードルバルブ56は圧縮ばね51の下方への付勢
力で、下端のコーン状の部位56aがバルブボデー54
のコーン状の部位54aにシートし、高圧燃料が噴口6
1から噴出しないようになっている。励磁パルスがON
し励磁コイル57が励磁されると圧縮ばね51のばね力
および燃料圧に抗してニードルバルブ56が上方に引き
上げられ、ニードルバルブ56のフランジ部56bの上
端がスペーサ58の下面に衝突するまで引き上げられ、
その位置で保持される。その位置でもフランジ部56b
の切かき56cを介し、ニードルバルブ56を収容する
空間はフランジ部56bで閉止されず連通を保持してい
る。そして、ニードルバルブ56を収容する空間に溜ま
っていた高圧燃料がコーン状の部位54a、56aから
噴出し、更に、その下のノズルプレート60の小径の噴
口61から燃料が噴出する。その後、励磁コイル57の
励磁が解除されると圧縮ばね51の付勢力および燃料圧
により、ニードルバルブ56下方に戻され、コーン状の
部位56aがコーン状の部位54aにシートし、高圧燃
料の噴出が停止される。
Next, the operation of the fuel injection valve 50 will be described. The needle valve 56 is urged downward by the compression spring 51 so that the cone-shaped portion 56a at the lower end is the valve body 54.
Seated on the cone-shaped portion 54a of the
It is designed not to squirt from 1. Excitation pulse is ON
When the exciting coil 57 is excited, the needle valve 56 is pulled upward against the spring force of the compression spring 51 and the fuel pressure, and the needle valve 56 is pulled up until the upper end of the flange portion 56b collides with the lower surface of the spacer 58. The
Held in that position. Even at that position, the flange portion 56b
The space for accommodating the needle valve 56 through the cutout 56c is not closed by the flange portion 56b and maintains the communication. Then, the high-pressure fuel accumulated in the space accommodating the needle valve 56 is ejected from the cone-shaped portions 54a and 56a, and further, the fuel is ejected from the small-diameter injection port 61 of the nozzle plate 60 therebelow. After that, when the excitation of the exciting coil 57 is released, it is returned to the lower side of the needle valve 56 by the urging force of the compression spring 51 and the fuel pressure, the cone-shaped portion 56a seats on the cone-shaped portion 54a, and the high-pressure fuel is ejected. Is stopped.

【0019】次に、燃料噴射弁50の作動を、図8を用
いて説明する。図8は、横軸を時間軸、縦軸を励磁パル
スおよびバルブリフトを表している。励磁コイル57に
励磁パルスがONすると、励磁コイル57が励磁され
る。しかし、ニードルバルブ56は直ちに引き上げられ
ず、時間遅れt3 (この例では1.5ms)を伴って圧
縮ばね51のばね力および燃料圧に抗して引き上げられ
る。なお、励磁コイル57に印加される電圧が一定しな
い場合には、その時間遅れがその電圧に応じ長短し、ニ
ードルバルブ56の全開までの時間が不安定となる。そ
の結果、燃焼室への噴射タイミングは不安定となる。そ
の後、励磁コイル57が励磁保持され、全開状態が維持
される。
Next, the operation of the fuel injection valve 50 will be described with reference to FIG. In FIG. 8, the horizontal axis represents the time axis and the vertical axis represents the excitation pulse and the valve lift. When the exciting pulse is turned on to the exciting coil 57, the exciting coil 57 is excited. However, the needle valve 56 is not immediately pulled up, but is pulled up against the spring force of the compression spring 51 and the fuel pressure with a time delay t 3 (1.5 ms in this example). When the voltage applied to the exciting coil 57 is not constant, the time delay becomes long or short depending on the voltage, and the time until the needle valve 56 is fully opened becomes unstable. As a result, the injection timing into the combustion chamber becomes unstable. After that, the excitation coil 57 is kept excited, and the fully opened state is maintained.

【0020】次に、励磁パルスがOFFすると、励磁コ
イル57の励磁が解除され、ニードルバルブ56が圧縮
ばね51のばね力と燃料圧(主に燃料圧)により引き下
げられ、閉弁する。この場合の閉弁遅れ時間 t4 は短く
(この例では0.4ms)また、燃料圧は比較的安定し
ているので、閉弁遅れ時間t4 は開弁遅れ時間t3 より
も安定する。
Next, when the excitation pulse is turned off, the excitation of the excitation coil 57 is released, and the needle valve 56 is pulled down by the spring force of the compression spring 51 and the fuel pressure (mainly fuel pressure) to close the valve. In this case, the valve closing delay time t 4 is short (0.4 ms in this example) and the fuel pressure is relatively stable, so the valve closing delay time t 4 is more stable than the valve opening delay time t 3 .

【0021】次に、燃料噴射弁50から燃料が噴射され
る状況を図8、図9、図10、および図11を用いて説
明する。低負荷低回転時(例えば700RPM)のクラ
ンク角に対する励磁パルス、点火時期並びに排気孔及び
掃気孔の開閉時期を図10に示す。高負荷高回転時のそ
れを図11に示す。図10、図11いずれも、クランク
軸の回転方向は時計方向である。
Next, a situation in which fuel is injected from the fuel injection valve 50 will be described with reference to FIGS. 8, 9, 10, and 11. FIG. 10 shows the excitation pulse, the ignition timing, and the opening / closing timing of the exhaust hole and the scavenging hole with respect to the crank angle at low load and low rotation (for example, 700 RPM). FIG. 11 shows that at high load and high rotation. 10 and 11, the rotation direction of the crankshaft is clockwise.

【0022】まず、低負荷低回転時、励磁パルスすなわ
ち開弁信号は、排気孔が閉じた後暫く経過した後である
上死点前(BTDC)7度でONし、点火栓の点火時期
であるBTDC2度でOFFに戻される。燃料噴射弁5
0は、開弁信号を受けても直ちに開かず、時間遅れt3
をともなって開く。また、燃料噴射弁50は、開弁信号
がOFFになると僅かな時間遅れ t4 後に閉じる。
First, when the load is low and the rotation speed is low, the excitation pulse, that is, the valve opening signal is turned on at 7 degrees before top dead center (BTDC), which is a short time after the exhaust hole is closed, and at the ignition timing of the spark plug. It is turned off by a certain BTDC 2 times. Fuel injection valve 5
0 does not open immediately even when receiving a valve opening signal, and time delay t 3
Open with. Further, the fuel injection valve 50 is closed after a slight time delay t 4 when the valve opening signal is turned off.

【0023】その噴射状態を図9を用いて説明すると、
ピストン11がシリンダヘッド14に近付くBTDC7
度で開弁信号が入るが、先に述べたように直ちに燃料噴
射弁50は開かず、時間遅れt3 をともなって開く。開
弁と同時に燃料噴射弁50から燃料が噴射し始める。噴
射された燃料は粒状の燃料粒となってピストン11に向
かう。一方、ピストン11が燃料噴射弁50に一層近づ
く。この過程を経た状態が図9(a) である。ここで、噴
射口61からピストン11の凸部11bまでの距離をl
1 、凸部11bから電極部21aまでの距離をl2 とし
(図9(a)を参照)、(l1 +l2 )を飛翔距離と称
す。その後、噴射された燃料粒とピストン11の両者の
運動により、燃料粒はピストン11の凹部11aに進入
する。更に燃料粒が進入し、遂には凸部11bに衝突す
る。その後、衝突した燃料粒は、凹部11aの底面に付
着することなく全周に反射し凹部11a内を飛散する。
その一部は点火栓21の電極部21aに達する(図9
(b) )。その頃、点火栓の点火が開始する(図9(b)
)。と同時に、開弁信号がOFFになり、燃料噴射弁
が僅かな時間遅れ t4 (0.4ms)で閉弁する。よっ
て、燃料の噴射が終了する。その後、噴射した燃料粒の
末尾が凸部11bに衝突する一方、まだ点火栓21がス
パークを維持する。その状態が図9(c) に示される。す
なわち、点火栓21は約ATDC6度までスパークを飛
ばし続け、この間中反射した燃料粒が電極部21aの間
を通過していく。図9(b) の着火開始時のみでなく、着
火開始後の所定時間、燃料粒に着火しつづけ、火焔が次
第に周りに広がる。
The injection state will be described with reference to FIG.
BTDC7 where piston 11 approaches cylinder head 14
Although the valve opening signal is input every time, the fuel injection valve 50 does not open immediately as described above, but opens with a time delay t 3 . At the same time when the valve is opened, fuel starts to be injected from the fuel injection valve 50. The injected fuel becomes granular fuel particles and heads for the piston 11. On the other hand, the piston 11 comes closer to the fuel injection valve 50. The state after this process is shown in FIG. 9 (a). Here, the distance from the injection port 61 to the convex portion 11b of the piston 11 is 1
1 , the distance from the convex portion 11b to the electrode portion 21a is l 2 (see FIG. 9A), and (l 1 + l 2 ) is called the flight distance. After that, the movement of both the injected fuel particles and the piston 11 causes the fuel particles to enter the recess 11 a of the piston 11. Further, the fuel particles further enter and finally collide with the convex portion 11b. After that, the colliding fuel particles are reflected on the entire circumference without adhering to the bottom surface of the recess 11a and scattered in the recess 11a.
Part of it reaches the electrode portion 21a of the spark plug 21 (see FIG. 9).
(b)). Around that time, the ignition of the spark plug will start (Fig. 9 (b)).
). At the same time, the valve opening signal turns off, and the fuel injection valve closes with a slight time delay t 4 (0.4 ms). Therefore, the fuel injection ends. After that, the end of the injected fuel particles collide with the convex portion 11b, while the spark plug 21 still maintains the spark. The state is shown in FIG. 9 (c). That is, the spark plug 21 continues to fly the spark up to about ATDC 6 degrees, and the fuel particles reflected during this time pass between the electrode portions 21a. Not only at the start of ignition in Fig. 9 (b), but the fuel particles continue to be ignited for a predetermined time after the start of ignition, and the flame gradually spreads around.

【0024】燃料噴射弁50は開弁信号のOFFから極
僅かな時間で且つ比較的安定して閉じる。そして、開弁
信号のOFF時から点火開始時期までの時間を一定時
間、本実施例では0、にしているので点火開始時には、
燃料粒の末尾が点火栓を通過後になることもない。すな
わち、点火開始する時には、常に点火栓21の電極部2
1aには、燃料粒が存在する。また、このエンジンの燃
焼最大圧は最高50kg/cm 2 であるから、この燃焼圧よ
り高い燃料噴射圧にすれば、その噴射時期は自由に設定
できる。そのようにした場合、TDCにかなり近づいて
から燃料噴射することが出来るので、低負荷時の少ない
燃料噴射量の時であっても、確実にピストン11の凹部
11aに燃料粒を滞留させることができ、点火を確実に
行うことができる。なお、閉弁信号のOFF時を点火開
始時期より進めることも、点火開始時期になお反射する
燃料粒の末尾が電極部21aを通過完了することがない
よう設定することを条件に、可能である。詳しくは、後
述の図14の説明部分にて説明する。更に、点火放電完
了するまでに少しでも反射する燃料が電極部21aを通
過するように設定しても着火性を向上することができ
る。詳しくは、後述の図15の説明部分にて説明する。
点火開始から点火完了までの全期間中反射燃料が電極部
21aを通過するようにすれば一層着火性が良くなる。
すなわち、点火開始から点火放電完了するまでの期間少
なくとも反射する燃料が電極部21aを通過するように
設定するだけで着火性を向上することができる。また、
点火放電完了後に反射燃料粒が電極部21aを通過する
ように設定する場合でも、電極部21aの点火後の残留
熱を利用して着火性を向上することもできる。
The fuel injection valve 50 closes relatively stably in a very short time after the valve opening signal is turned off. Then, since the time from when the valve opening signal is OFF to the ignition start timing is set to a fixed time, which is 0 in this embodiment, at the time of ignition start,
The end of the fuel grain will not be after passing through the spark plug. That is, when ignition is started, the electrode portion 2 of the spark plug 21 is always
Fuel particles are present in 1a. Further, since the maximum combustion pressure of this engine is 50 kg / cm 2 at maximum, if the fuel injection pressure is higher than this combustion pressure, the injection timing can be freely set. In such a case, the fuel can be injected after approaching the TDC considerably, so that the fuel particles can be reliably retained in the concave portion 11a of the piston 11 even when the fuel injection amount is small when the load is low. Therefore, ignition can be reliably performed. It should be noted that the OFF time of the valve closing signal may be advanced from the ignition start timing, provided that the end of the fuel particles still reflected at the ignition start timing is not set to complete passing through the electrode portion 21a. .. The details will be described later in the description of FIG. Further, the ignitability can be improved even if the fuel that is reflected even a little before the completion of the ignition discharge passes through the electrode portion 21a. The details will be described later in the description of FIG.
If the reflected fuel passes through the electrode portion 21a during the entire period from the start of ignition to the end of ignition, the ignitability is further improved.
That is, the ignitability can be improved only by setting the reflected fuel to pass through the electrode portion 21a at least during the period from the start of ignition to the completion of the ignition discharge. Also,
Even when the reflected fuel particles are set to pass through the electrode portion 21a after the completion of ignition discharge, the ignitability can be improved by utilizing the residual heat after ignition of the electrode portion 21a.

【0025】図11は、高負荷高回転時のクランク角に
対する励磁パルスAおよびB、点火時期並びに排気孔及
び掃気孔の開閉時期を示す。高負荷高回転時において
は、低負荷低回転の場合と異なり、点火時期がBTDC
18度に早まり、かつ燃料噴射開始時期が排気孔が閉じ
るより に前の下死点前52度(励磁パルスA)あるい
は排気孔開前(励磁パルスB)に開始する。これは、未
だ掃気行程の時あるいは掃気行程前ではあるが、燃料を
多く噴射させるためである。高負荷高回転時において
は、燃料が早くから噴射され、燃焼室が着火性の高い混
合気で満たされることとなり、低速低負荷時と異なりピ
ストン11の反射燃料粒に点火しなくても着火する。よ
って、噴射完了時を点火時期より大きく進めることが可
能である。これが励磁パルスBの例である。なお、高負
荷高回転時には、吸入空気量が十分多いため失火するこ
とはなく、また、吹き抜け量もそれ程多くはない。
FIG. 11 shows the excitation pulses A and B, the ignition timing, and the opening / closing timing of the exhaust hole and the scavenging hole with respect to the crank angle at high load and high rotation. At high load and high rotation, unlike the case of low load and low rotation, the ignition timing is BTDC.
It is advanced to 18 degrees, and the fuel injection start timing starts 52 degrees before bottom dead center (excitation pulse A) or before exhaust hole opening (excitation pulse B) before the exhaust hole is closed. This is for injecting a large amount of fuel during the scavenging stroke or before the scavenging stroke. At the time of high load and high rotation, the fuel is injected early, and the combustion chamber is filled with a highly ignitable mixture, and unlike the case of low speed and low load, the reflected fuel particles of the piston 11 are ignited without being ignited. Therefore, it is possible to advance the injection completion time more than the ignition timing. This is an example of the excitation pulse B. At high load and high rotation, the amount of intake air is sufficiently large so that there is no misfire, and the amount of blow-through is not so large.

【0026】図12は、ピストン11の凸部11bの変
形例を示す。図3の凸部11bと異なり、凹部11aの
底部において、周囲から中央に向かい次第に燃焼室16
側に突出し、ピストン11の中央付近で一番高く形成さ
れている。この場合、燃料噴射弁50から噴出される燃
料は、ピストン11の中央付近の一番高い凸部11bに
衝突するように、燃料噴射弁50とピストン11は配置
される。他の部分は、図3と同一構成であるので説明を
省略する。
FIG. 12 shows a modification of the convex portion 11b of the piston 11. Unlike the convex portion 11b of FIG. 3, at the bottom of the concave portion 11a, the combustion chamber 16 gradually increases from the periphery toward the center.
It protrudes to the side and is formed to be highest near the center of the piston 11. In this case, the fuel injection valve 50 and the piston 11 are arranged so that the fuel injected from the fuel injection valve 50 collides with the highest convex portion 11b near the center of the piston 11. The other parts have the same configuration as in FIG.

【0027】図13は、低速時における、点火時期、燃
料噴射弁50の作動状況及び電極部21aにおける通過
燃料量(時間当たり)を時間を横軸にとったタイムチャ
ートである。図14、図15は、他の実施例に係るタイ
ムチャートである。図16は燃料噴射弁50および点火
栓21の作動制御装置のブロック図である。図17乃至
図20は、図9に相当する図である。
FIG. 13 is a time chart with the horizontal axis representing the ignition timing, the operating condition of the fuel injection valve 50 and the amount of fuel passing through the electrode portion 21a (per hour) at low speed. 14 and 15 are time charts according to another embodiment. FIG. 16 is a block diagram of an operation control device for the fuel injection valve 50 and the spark plug 21. 17 to 20 are diagrams corresponding to FIG. 9.

【0028】図16を用い、燃料噴射弁50および点火
栓21の作動制御装置を説明する。ECU(燃料噴射弁
の電子制御装置)80はCPU(中央演算処理装置)8
8及びCDIユニット81 を内蔵している。CPU88
は入力インタフェイス(I/F)を介してクランク角セ
ンサ72及びパルサコイル73、74と接続され、また
A/D変換器を介して絞弁19の角度を検出するスロッ
トルセンサ71と接続され、これらからの情報とエンジ
ンの運転状況に応じて各種制御量を予め記憶したメモリ
(マップ)89の情報とを比較処理し、ECU80内の
CDIユニット81やECU80外の燃料噴射弁50を
制御している。ここで、CDIユニット81は周知の回
路からなり、念のためここで説明すると、チャージコイ
ル75はダイオード82と接続し、更にコンデンサ84
とサイリスタ86と接続し、コンデンサ84はイグニッ
ションコイル91、92に接続し、サイリスタ86は接
地している。チャージコイル75からダイオード82を
通ってコンデンサ84が充電され、パルサコイル74か
らの信号をCPU88で処理した後、サイリスタ86の
トリガーに放電開始信号を印加し、コンデンサ84に充
電された電荷がアースされ、イグニッションコイル9
1、92に高電圧が励起する。よって、点火栓21が高
電圧が印加され、放電し点火する。一方、CPU88は
スロットルセンサ71、クランク角センサ72、パルサ
コイル73からの情報に基づき、メモリ89の記憶され
た情報を参照しながら燃料噴射弁50、50、50、5
0の開弁及び閉弁のための駆動信号を送る。
The operation control device for the fuel injection valve 50 and the spark plug 21 will be described with reference to FIG. An ECU (electronic control device for fuel injection valve) 80 is a CPU (central processing unit) 8
8 and CDI unit 81. CPU88
Is connected to a crank angle sensor 72 and pulser coils 73 and 74 via an input interface (I / F), and is connected to a throttle sensor 71 for detecting the angle of the throttle valve 19 via an A / D converter. And the information in the memory (map) 89 in which various control amounts are stored in advance according to the operating condition of the engine are compared to control the CDI unit 81 in the ECU 80 and the fuel injection valve 50 outside the ECU 80. .. Here, the CDI unit 81 is composed of a well-known circuit. To be on the safe side, the charge coil 75 is connected to the diode 82, and the capacitor 84 is further provided.
Is connected to the thyristor 86, the capacitor 84 is connected to the ignition coils 91 and 92, and the thyristor 86 is grounded. After the capacitor 84 is charged from the charge coil 75 through the diode 82 and the signal from the pulser coil 74 is processed by the CPU 88, a discharge start signal is applied to the trigger of the thyristor 86, and the charge charged in the capacitor 84 is grounded. Ignition coil 9
A high voltage is excited at 1, 92. Therefore, a high voltage is applied to the spark plug 21, and the spark plug 21 is discharged and ignited. On the other hand, the CPU 88 refers to the information stored in the memory 89 based on the information from the throttle sensor 71, the crank angle sensor 72, and the pulsar coil 73, and then the fuel injection valves 50, 50, 50, 5
Send a drive signal for opening and closing 0.

【0029】図13を用いて点火栓21、燃料噴射弁5
0等の作動を時間をおって説明する。なお、図13の横
軸はいずれも、時間で、図13の左から右にかけて時間
経過を示す。チャージコイル75によりコンデンサ84
が充電される((a)参照)。そして、CPU88が放
電開始信号を送ると((b)参照)、直ちにコンデンサ
84がアースされ、と同時にイグニッションコイル91
に高電圧が発生し、点火栓21の電極部21aが放電を
開始し、その状態を持続する((c)参照)。なお、こ
の持続時間、すなわち、放電時間t2 はコンデンサ84
の容量やイグニッションコイル91の特性により変化す
る。また、充電開始時期を変化させても、放電時間t2
が変化する。したがって、充電開始時期、コンデンサ8
4の容量およびイグニッションコイル91の特性を選択
することにより、放電時間を制御することが出来る。な
お、チャージコイル75のクランク軸まわりの取り付け
位置やチャージコイル75の特性を変化させることによ
り、充電開始時期を変化させることができる。
The spark plug 21 and the fuel injection valve 5 will be described with reference to FIG.
The operation of 0, etc. will be explained over time. Note that the horizontal axis in FIG. 13 is time, and shows the passage of time from left to right in FIG. Capacitor 84 by charge coil 75
Are charged (see (a)). Then, when the CPU 88 sends a discharge start signal (see (b)), the capacitor 84 is immediately grounded, and at the same time, the ignition coil 91.
Then, a high voltage is generated, the electrode portion 21a of the spark plug 21 starts to discharge, and the state is maintained (see (c)). This duration, that is, the discharge time t 2
And the characteristics of the ignition coil 91. Even if the charging start time is changed, the discharging time t 2
Changes. Therefore, the charging start time, the capacitor 8
The discharge time can be controlled by selecting the capacitance of No. 4 and the characteristics of the ignition coil 91. The charging start timing can be changed by changing the mounting position of the charge coil 75 around the crankshaft and the characteristics of the charge coil 75.

【0030】CPU88は、先に説明した様に、燃料噴
射弁50に開弁・閉弁のための駆動信号を送る((d)
参照)。まず、開弁信号を送ると、励磁コイル57が励
磁し、開弁時間遅れt3 をともなって次第にリフトし、
遂に全開する。更に、時間経過すると、CPU88が閉
弁信号を送ると、励磁コイル57が励磁解除され、僅か
に閉弁遅れ時間 t4 をともなって全閉する((e)参
照)。燃料噴射弁50が開弁すると、先に説明した様
に、燃料は凸部11bに衝突し、反射し、その一部は凹
部11aに臨んだ電極部21aに達する。図9(a)で
説明したように、飛翔距離(l1 +l2 )を燃料の飛翔
速度(正確には、空気抵抗のため燃料噴射弁50からの
噴射速度にこの空気抵抗分を減じた飛翔速度であるが、
この噴射速度で代用しても可)で除して求めた時間が経
過した時、すなわち、飛翔時間t5 後に電極部21aに
燃料が到達し、燃料噴射弁50が閉弁した後飛翔時間t
5 経過後に電極部21aに燃料が通過するのが終了す
る。本実施例では、電極部21aに燃料が通過する全期
間前後に渡って放電期間t2 が設定されている。このた
め、燃料は常に電極部21aで着火され、不整燃焼を生
ずることがない。その間の、燃料の流れと、点火の関係
を図17乃至図20を用いて説明する。図13の、
、、の各状態は、図17、図18、図19、図2
0に相当する。すなわち、図17では、燃料噴射弁50
がリフトを開始する直前である。図18では、燃料噴射
弁50が全開し、燃料が凸部11bに衝突し、反射し、
その先端が電極部21aに達する寸前の状態を表してい
る。その時、点火既に開始している。図19では、燃料
噴射弁50は閉弁し、従って、燃料噴射弁50から燃料
の噴射は終了しているが、既に噴射された燃料が逐次凸
部11bに衝突し、また、電極部21aを通過し、混合
気に着火し爆発寸前の状態である。図20では、燃料が
電極部21aを通過し終わり、また、点火栓21が放電
を終了しているが、しかし既に混合気は着火されている
ので、完全燃焼して爆発する。
As described above, the CPU 88 sends a drive signal for opening / closing the fuel injection valve 50 ((d)).
reference). First, when a valve opening signal is sent, the exciting coil 57 is excited and gradually lifts with a valve opening time delay t 3 ,
Finally fully open. Further, when the time elapses, when the CPU 88 sends a valve closing signal, the exciting coil 57 is deenergized and is fully closed with a slight valve closing delay time t 4 (see (e)). When the fuel injection valve 50 opens, as described above, the fuel collides with the convex portion 11b and is reflected, and a part of the fuel reaches the electrode portion 21a facing the concave portion 11a. As described with reference to FIG. 9A, the flight distance (l 1 + l 2 ) is changed to the flight speed of the fuel (to be precise, due to air resistance, the injection speed from the fuel injection valve 50 is reduced by this air resistance). Speed,
When the time obtained by dividing by the injection speed is also applicable, that is, when the fuel reaches the electrode portion 21a after the flight time t 5 and the fuel injection valve 50 is closed, the flight time t
After the lapse of 5, the passage of fuel through the electrode portion 21a ends. In this embodiment, the discharge period t 2 is set before and after the entire period in which the fuel passes through the electrode portion 21a. Therefore, the fuel is always ignited at the electrode portion 21a, and irregular combustion does not occur. The relationship between fuel flow and ignition during that time will be described with reference to FIGS. 17 to 20. In FIG.
The states of, and are shown in FIG. 17, FIG. 18, FIG. 19, and FIG.
Equivalent to 0. That is, in FIG. 17, the fuel injection valve 50
Is just before starting the lift. In FIG. 18, the fuel injection valve 50 is fully opened, and the fuel collides with the convex portion 11b and is reflected,
The state is shown in which the tip is just before reaching the electrode portion 21a. At that time, ignition has already started. In FIG. 19, the fuel injection valve 50 is closed, and therefore, the fuel injection from the fuel injection valve 50 has ended, but the already injected fuel successively collides with the convex portion 11b, and the electrode portion 21a Passed, ignited the mixture and was on the verge of explosion. In FIG. 20, the fuel has finished passing through the electrode portion 21a and the spark plug 21 has finished discharging, but since the air-fuel mixture has already been ignited, it completely burns and explodes.

【0031】図14は、燃料噴射時期と点火栓の放電時
期の相対関係についての他の実施例である。この図では
燃料噴射弁50への駆動信号と電極部21aの通過燃料
量のみを表している。この実施例では、放電開始時期を
燃料が電極部21aを通過終了する僅か前すなわちt6
時間前に設定している。なお、t2 、 t4 、t5 は図1
3で説明したのと同じで意味で用いている。
FIG. 14 shows another embodiment of the relative relationship between the fuel injection timing and the spark plug discharge timing. In this figure, only the drive signal to the fuel injection valve 50 and the amount of fuel passing through the electrode portion 21a are shown. In this example, slightly before the discharge start timing fuel finishes passing through the electrode portion 21a i.e. t 6
It is set before time. Note that t 2 , t 4 , and t 5 are shown in FIG.
It is used with the same meaning as explained in 3.

【0032】図15では、燃料噴射時期と点火栓の放電
時期の相対関係についての更なる他の実施例である。こ
の図でも燃料噴射弁50への駆動信号と電極部21aの
通過燃料量のみを表している。この実施例では、放電終
了時期を燃料が電極部21aを通過開始する僅か後すな
わちt7 時間前に設定している。なお、t3 、t5 は図
13で説明したのと同じで意味で用いている。
FIG. 15 shows still another embodiment of the relative relationship between the fuel injection timing and the spark plug discharge timing. Also in this figure, only the drive signal to the fuel injection valve 50 and the amount of fuel passing through the electrode portion 21a are shown. In this embodiment, the discharge end time is set slightly after the fuel starts passing through the electrode portion 21a, that is, before t 7 hours. Note that t 3 and t 5 have the same meanings as described in FIG. 13 and are used.

【0033】図14、図15のいずれの実施例において
も、電極部21aに燃料が通過している期間の内、少な
くとも一部の期間で電極部21aが必ず放電する様に設
定している。すなわち、放電開始前に燃料が通過終了し
ないように(図14)、或いは、放電終了後に燃料が通
過開始しないようにした(図15)。従って、混合気は
着実に着火し、不整燃焼の発生を防止できる。
In both of the embodiments shown in FIGS. 14 and 15, the electrode portion 21a is set to always discharge during at least a part of the period during which the fuel is passing through the electrode portion 21a. That is, the fuel is prevented from passing through before the start of discharge (FIG. 14), or the fuel is prevented from passing through after the end of discharge (FIG. 15). Therefore, the air-fuel mixture is ignited steadily and irregular combustion can be prevented.

【0034】なお、図15の実施例において、放電期間
終了前に電極部21aを燃料が通過するようにしている
が、本発明は放電期間終了後極僅かな時間経過後に燃料
が電極部21aを通過するように設定してもよい。なぜ
なら、放電期間終了後極僅かな時間、電極部21aは発
火温度以上になっているからである。
In the embodiment of FIG. 15, the fuel is allowed to pass through the electrode portion 21a before the end of the discharge period. However, in the present invention, the fuel passes through the electrode portion 21a after a very short time after the end of the discharge period. It may be set to pass. This is because the electrode portion 21a is at or above the ignition temperature for a very short time after the end of the discharge period.

【0035】[0035]

【発明の効果】本発明は、低速時の少ない燃料噴射量の
ときにも、点火栓の電極部に燃料を供給でき、しかも燃
料が確実に存在するときに点火するので、確実に燃焼で
きる。よって、失火による不整燃焼を減少することがで
きる。
According to the present invention, the fuel can be supplied to the electrode portion of the spark plug even when the fuel injection amount is small at a low speed, and the ignition is performed when the fuel is surely present, so that the fuel can be reliably burned. Therefore, irregular combustion due to misfire can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を船外機に適用した燃料噴射装置の全体
概略図である。
FIG. 1 is an overall schematic diagram of a fuel injection device in which the present invention is applied to an outboard motor.

【図2】本発明を適用したクランク室圧縮式2サイクル
内燃機関の縦断面図である。
FIG. 2 is a vertical cross-sectional view of a crankcase compression type two-cycle internal combustion engine to which the present invention is applied.

【図3】図2のピストン、シリンダヘッド、燃料噴射弁
等を拡大した縦断面図である。
FIG. 3 is an enlarged vertical sectional view of a piston, a cylinder head, a fuel injection valve and the like in FIG.

【図4】図3のIV−IV線に沿ってみた平面断面図であ
る。
FIG. 4 is a plan sectional view taken along line IV-IV in FIG.

【図5】燃料噴射弁のみの縦断面図である。FIG. 5 is a vertical sectional view of only a fuel injection valve.

【図6】燃料噴射弁の噴出口付近を拡大した縦断面図で
ある。
FIG. 6 is an enlarged vertical sectional view of the vicinity of an injection port of a fuel injection valve.

【図7】燃料噴射弁の噴出口の変形例を示した縦断面図
である。
FIG. 7 is a vertical cross-sectional view showing a modified example of the injection port of the fuel injection valve.

【図8】燃料噴射弁のバルブリフト量と励磁パルスを表
した図である
FIG. 8 is a diagram showing a valve lift amount and an excitation pulse of a fuel injection valve.

【図9】燃料噴射弁から燃料が噴射される様子を表した
説明図である。
FIG. 9 is an explanatory view showing how fuel is injected from a fuel injection valve.

【図10】低負荷低回転時における、排気孔および掃気
孔の開閉並びに励磁パルスおよび点火時期を表した図で
ある。
FIG. 10 is a diagram showing opening / closing of an exhaust hole and a scavenging hole, an excitation pulse, and an ignition timing at a low load and a low rotation speed.

【図11】高負荷高回転時における、図10に相当する
図である。
FIG. 11 is a diagram corresponding to FIG. 10 at the time of high load and high rotation.

【図12】ピストンの凸部の変形例を示した縦断面図で
ある。
FIG. 12 is a vertical cross-sectional view showing a modified example of the convex portion of the piston.

【図13】図13は、低速時における、点火時期、燃料
噴射弁50の作動状況及び電極部21aにおける通過燃
料量(時間当たり)を時間を横軸にとったタイムチャー
トである。
FIG. 13 is a time chart in which the horizontal axis represents the ignition timing, the operating condition of the fuel injection valve 50, and the passing fuel amount (per hour) at the electrode portion 21a at low speed.

【図14】他の実施例に係るタイムチャートである。FIG. 14 is a time chart according to another embodiment.

【図15】更なる他の実施例に係るタイムチャートであ
る。
FIG. 15 is a time chart according to still another embodiment.

【図16】燃料噴射弁50および点火栓21の作動制御
装置のブロック図である。
16 is a block diagram of an operation control device for the fuel injection valve 50 and the spark plug 21. FIG.

【図17】燃料噴射弁から燃料が噴射される様子を表し
た説明図である。
FIG. 17 is an explanatory diagram showing how fuel is injected from a fuel injection valve.

【図18】燃料噴射弁から燃料が噴射される様子を表し
た説明図である。
FIG. 18 is an explanatory diagram showing how fuel is injected from a fuel injection valve.

【図19】燃料噴射弁から燃料が噴射される様子を表し
た説明図である。
FIG. 19 is an explanatory view showing how fuel is injected from a fuel injection valve.

【図20】燃料噴射弁から燃料が噴射される様子を表し
た説明図である。
FIG. 20 is an explanatory diagram showing how fuel is injected from a fuel injection valve.

【符号の説明】[Explanation of symbols]

10・・・・・クランク室圧縮式2サイクル内燃機関 11・・・・・ピストン 11a・・・・凹部 11b・・・・凸部 13・・・・・シリンダ 14・・・・・シリンダヘッド 16・・・・・燃焼室 21・・・・・点火栓 21a・・・・点火栓の電極部 22・・・・・排気通路 23・・・・・掃気通路 50・・・・・燃料噴射弁 10 ... Crank chamber compression type 2-cycle internal combustion engine 11 ... Piston 11a ... Recess 11b ... Convex 13 ... Cylinder 14 ... Cylinder head 16 ... combustion chamber 21 ... spark plug 21a ... spark plug electrode 22 ... exhaust passage 23 ... scavenging passage 50 ... fuel injection valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 43/00 301 J 8109−3G F02M 61/14 310 S 7226−3G 69/04 P 9248−3G 69/10 9248−3G F02P 5/15 A 9150−3G 13/00 301 A 8923−3G 303 A 8923−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location F02D 43/00 301 J 8109-3G F02M 61/14 310 S 7226-3G 69/04 P 9248-3G 69/10 9248-3G F02P 5/15 A 9150-3G 13/00 301 A 8923-3G 303 A 8923-3G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッドに燃料噴射弁と点火栓と
を備えた筒内燃料噴射式2サイクル内燃機関において、
ピストンの頂部燃焼室側に凹部と、該凹部に燃焼室側に
突出する凸部とを設けるとともに、前記点火栓の電極部
を前記凸部近傍の前記凹部内に臨ませ、一方、前記燃料
噴射弁の燃料噴射方向を前記凸部に向けるとともに、前
記凸部に向かった燃料が前記凸部に衝突後、反射して前
記電極部に向かうように前記燃料噴射方向を配設し、他
方、低速時前記燃料噴射弁の開閉時期及び前記点火栓の
点火時期をピストンの上死点近傍に設定するとともに、
前記電極部が放電している間に前記電極部に向かった前
記燃料の少なくとも一部が通過するように前記燃料噴射
弁の開閉時期及び前記点火栓の点火時期を制御したこと
を特徴とする筒内燃料噴射式2サイクル内燃機関。
1. An in-cylinder fuel injection type two-cycle internal combustion engine having a cylinder head equipped with a fuel injection valve and an ignition plug,
A recess is provided on the top combustion chamber side of the piston, and a projection projecting toward the combustion chamber is provided on the recess, and the electrode portion of the spark plug is exposed in the recess near the projection, while the fuel injection is performed. The fuel injection direction of the valve is directed to the convex portion, and the fuel injection direction is arranged so that the fuel toward the convex portion collides with the convex portion and then is reflected and toward the electrode portion, while low speed is applied. While setting the opening / closing timing of the fuel injection valve and the ignition timing of the spark plug near the top dead center of the piston,
A cylinder characterized in that the opening / closing timing of the fuel injection valve and the ignition timing of the spark plug are controlled so that at least a part of the fuel toward the electrode portion passes while the electrode portion is discharging. Internal fuel injection type 2-cycle internal combustion engine.
【請求項2】 シリンダヘッドに燃料噴射弁と点火栓と
を備えた筒内燃料噴射式2サイクル内燃機関において、
ピストンの頂部燃焼室側に凹部と、該凹部に燃焼室側に
突出する凸部とを設けるとともに、前記点火栓の電極部
を前記凸部近傍の前記凹部内に臨ませ、一方、前記燃料
噴射弁の燃料噴射方向を前記凸部に向けるとともに、前
記凸部に向かった燃料が前記凸部に衝突後、反射して前
記電極部に向かうように前記燃料噴射方向を配設し、他
方、低速時前記燃料噴射弁の開閉時期及び前記点火栓の
点火時期をピストンの上死点近傍に設定するとともに、
前記燃料噴射弁から燃料が実際に噴射した時から前記燃
料が前記凸部で反射して前記電極部に達する時までの飛
翔時間と、前記燃料噴射弁を閉弁指示する閉弁指示時期
から前記燃料噴射弁が実際に閉じるまでの閉弁遅れ時間
とを加えた時間を前記閉弁指示時期に加えた時期より
も、前記点火栓が放電を開始する放電開始時期を早く設
定したことを特徴とする筒内燃料噴射式2サイクル内燃
機関。
2. A cylinder fuel injection type two-cycle internal combustion engine having a fuel injection valve and a spark plug in a cylinder head,
A recess is provided on the top combustion chamber side of the piston, and a projection projecting toward the combustion chamber is provided on the recess, and the electrode portion of the spark plug is exposed in the recess near the projection, while the fuel injection is performed. The fuel injection direction of the valve is directed to the convex portion, and the fuel injection direction is arranged so that the fuel toward the convex portion collides with the convex portion and then is reflected and toward the electrode portion, while low speed is applied. While setting the opening / closing timing of the fuel injection valve and the ignition timing of the spark plug near the top dead center of the piston,
From the flight time from the time when the fuel is actually injected from the fuel injection valve to the time when the fuel is reflected by the convex portion and reaches the electrode portion, and the valve closing instruction timing for instructing the valve closing of the fuel injection valve, The discharge start timing at which the spark plug starts discharge is set earlier than the timing of adding the valve closing delay time until the fuel injection valve actually closes to the valve closing instruction timing. In-cylinder fuel injection two-cycle internal combustion engine.
【請求項3】 シリンダヘッドに燃料噴射弁と点火栓と
を備えた筒内燃料噴射式2サイクル内燃機関において、
ピストンの頂部燃焼室側に凹部と、該凹部に燃焼室側に
突出する凸部とを設けるとともに、前記点火栓の電極部
を前記凸部近傍の前記凹部内に臨ませ、一方、前記燃料
噴射弁の燃料噴射方向を前記凸部に向けるとともに、前
記凸部に向かった燃料が前記凸部に衝突後、反射して前
記電極部に向かうように前記燃料噴射方向を配設し、他
方、低速時前記燃料噴射弁の開閉時期及び前記点火栓の
点火時期をピストンの上死点近傍に設定するとともに、
前記燃料噴射弁から燃料が実際に噴射した時から前記燃
料が前記凸部で反射して前記電極部に達する時までの飛
翔時間と、前記燃料噴射弁を開弁指示する開弁指示時期
から前記燃料噴射弁が実際に開くまでの開弁遅れ時間と
を加えた時間を前記開弁指示時期に加えた時期よりも、
前記点火栓が放電を終了する放電終了時期を遅く設定し
たことを特徴とする筒内燃料噴射式2サイクル内燃機
関。
3. An in-cylinder fuel injection type two-cycle internal combustion engine having a cylinder head provided with a fuel injection valve and an ignition plug,
A recess is provided on the top combustion chamber side of the piston, and a projection projecting toward the combustion chamber is provided on the recess, and the electrode portion of the spark plug is exposed in the recess near the projection, while the fuel injection is performed. The fuel injection direction of the valve is directed to the convex portion, and the fuel injection direction is arranged so that the fuel toward the convex portion collides with the convex portion and then is reflected and toward the electrode portion, while low speed is applied. While setting the opening / closing timing of the fuel injection valve and the ignition timing of the spark plug near the top dead center of the piston,
From the flight time from the time when the fuel is actually injected from the fuel injection valve to the time when the fuel is reflected by the convex portion and reaches the electrode portion, and the valve opening instruction timing for instructing the valve opening of the fuel injection valve, From the timing of adding the valve opening delay time until the fuel injection valve actually opens and the valve opening instruction time,
An in-cylinder fuel injection type two-cycle internal combustion engine characterized in that a discharge end timing at which the spark plug ends discharge is set to be late.
【請求項4】 シリンダヘッドに燃料噴射弁と点火栓と
を備えた筒内燃料噴射式2サイクル内燃機関において、
ピストンが摺動するシリンダ面に相対向するように掃気
孔及び排気孔をそれぞれ開口し、前記掃気孔の円周方向
の両外縁と前記排気孔の円周方向の両外縁とを結ぶ平面
であって、シリンダ中心軸と平行な2つの平面に挟まれ
た空間に、前記燃料噴射弁と前記点火栓を配置したこと
を特徴とする筒内燃料噴射式2サイクル内燃機関。
4. An in-cylinder fuel injection type two-cycle internal combustion engine having a cylinder head equipped with a fuel injection valve and an ignition plug,
A scavenging hole and an exhaust hole are opened so as to face the cylinder surface on which the piston slides, and a plane connecting the outer peripheral edges of the scavenging hole and the outer peripheral edges of the exhaust hole. In addition, the in-cylinder fuel injection type two-cycle internal combustion engine is characterized in that the fuel injection valve and the ignition plug are arranged in a space sandwiched between two planes parallel to the cylinder center axis.
JP4047581A 1991-02-02 1992-02-03 In-cylinder fuel injection type two-cycle internal combustion engine Pending JPH0571405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/012,311 US5329902A (en) 1991-02-02 1993-02-02 Cylinder fuel injection type two-cycle internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3355891 1991-02-02
JP3-33558 1991-02-02

Publications (1)

Publication Number Publication Date
JPH0571405A true JPH0571405A (en) 1993-03-23

Family

ID=12389884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4047581A Pending JPH0571405A (en) 1991-02-02 1992-02-03 In-cylinder fuel injection type two-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0571405A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019058A1 (en) * 1996-10-30 1998-05-07 Ficht Gmbh & Co. Kg Method of operating an internal combustion engine
EP0824186A3 (en) * 1996-08-09 1999-07-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system for internal combustion engine
JP4087064B2 (en) * 1998-06-22 2008-05-14 株式会社日立製作所 In-cylinder injection internal combustion engine, control method for internal combustion engine, and fuel injection valve
JP2012149607A (en) * 2011-01-20 2012-08-09 Toyota Central R&D Labs Inc Ignition device for internal combustion engine
US11858797B2 (en) 2018-09-03 2024-01-02 Quantex Arc Limited Beverage dispenser head for mixing concentrate, diluent and additive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824186A3 (en) * 1996-08-09 1999-07-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system for internal combustion engine
WO1998019058A1 (en) * 1996-10-30 1998-05-07 Ficht Gmbh & Co. Kg Method of operating an internal combustion engine
JP4087064B2 (en) * 1998-06-22 2008-05-14 株式会社日立製作所 In-cylinder injection internal combustion engine, control method for internal combustion engine, and fuel injection valve
JP2012149607A (en) * 2011-01-20 2012-08-09 Toyota Central R&D Labs Inc Ignition device for internal combustion engine
US11858797B2 (en) 2018-09-03 2024-01-02 Quantex Arc Limited Beverage dispenser head for mixing concentrate, diluent and additive

Similar Documents

Publication Publication Date Title
JPH05288134A (en) Cylinder fuel injection type two-cycle engine
EP0639710B1 (en) Compression-ignition type engine and combustion method of same
KR940001928B1 (en) Timing of fuel injected engines
EP0534491A2 (en) Fuel injection control system with split fuel injection for diesel engine
CA2134452A1 (en) Improvements in or relating to internal combustion engines
KR910002118B1 (en) System for supplying fuel into electronic control into cylinder
JP2812236B2 (en) Compression ignition type internal combustion engine
EP0435183B1 (en) High pressure fuel injection unit and method for controlling same
US5259344A (en) Intermittent fuel-injection method and device for two-stroke engine
JPH0571405A (en) In-cylinder fuel injection type two-cycle internal combustion engine
JPH0579386A (en) Inter-cylinder injection type internal combustion engine
CA2228216C (en) Process for controlling the ignition point in internal combustion engines
GB2182096A (en) I.C. engine fuel injection control
JPH07317588A (en) Compressed ignition type internal combustion engine and its combusting method
JP2761398B2 (en) Starting device for internal combustion engine
US20020195080A1 (en) Fuel-injected internal combustion engine with reduced squish factor
JP3134564B2 (en) Fuel injection timing control device for internal combustion engine
JP2543338B2 (en) Fuel injection two-stroke engine
US6722341B2 (en) Fuel injection control system and control method for two-cycle in-cylinder direct injection engine
US20240110530A1 (en) Engine
JP3254086B2 (en) Combustion device for two-cycle gasoline engine
JP2719962B2 (en) Fuel injection device for two-stroke internal combustion engine
EP0095190A2 (en) Electronically controlled injection system for internal combustion engines
JPH07259705A (en) Device for incylinder fuel injection
JPH1136872A (en) Combustion chamber structure of cylindrical injection type 2-stroke engine