JPH04307703A - Resin-bonded magnet and its manufacture - Google Patents

Resin-bonded magnet and its manufacture

Info

Publication number
JPH04307703A
JPH04307703A JP3071730A JP7173091A JPH04307703A JP H04307703 A JPH04307703 A JP H04307703A JP 3071730 A JP3071730 A JP 3071730A JP 7173091 A JP7173091 A JP 7173091A JP H04307703 A JPH04307703 A JP H04307703A
Authority
JP
Japan
Prior art keywords
magnetic
shaped
ring
thin belt
long axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3071730A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
石橋利之
Shigenori Sato
佐藤成徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3071730A priority Critical patent/JPH04307703A/en
Publication of JPH04307703A publication Critical patent/JPH04307703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Abstract

PURPOSE:To obtain a magnetic flux which is higher than that at isotropy by a method wherein-a magnetic substance whose ratio of a projection length on a long axis to a projection length on a short axis is at 2 or more is used and the direction of the projection length the long axis is arranged parallel to a magnetization direction. CONSTITUTION:An alloy which is composed of 31% of Nd, 68% of Fe and 1% of B in terms of their wt.% is used; it is quenched; a thin belt is manufactured by using a roll provided with a slender groove. The obtained thin belt is needle-shaped. The thin belt is kneaded with an epoxy resin at 3wt.%; this kneaded substance is compressed and molded in a radial magnetic field; a ring-shaped magnet whose outside diameter is at 21mm, whose inside diameter is at 18mm and whose height is at 3mm is formed. The needle-shaped thin belt inside the obtained ring-shaped magnet is made uniform in the radial direction. Regarding a magnetic characteristic by VSM, (BH)max values in the comparison example are nearly the same at 9.2 and 9.1 MGOe, and peak values of a surface flux density are at 4.2 and 3.2kG. Although the magnet is isotropic in terms of its magnetic characteristic, a high surface flux is obtained from the relationship of a permeance and a magnetic circuit when a multipolar magnetization operation is executed. A comparison specimen forms a ring-shaped magnet in a state that it is not magnetized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、樹脂結合型磁石および
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-bonded magnet and a method for manufacturing the same.

【0002】0002

【従来の技術】従来、樹脂結合型磁石の一種に、特開昭
59−211549号公報にあるようにNd−Fe−B
系急冷薄帯を用いた磁石がある。
[Prior Art] Conventionally, as a type of resin-bonded magnet, Nd-Fe-B is used as disclosed in Japanese Patent Application Laid-Open No. 59-211549.
There are magnets that use quenched ribbons.

【0003】0003

【発明が解決しようとする課題】しかしながら、従来の
技術におけるNd−Fe−B系急冷粉末は、その結晶粒
の大きさのゆえに等方性の特性でしか使えていないとい
う問題点を有する。
However, the Nd--Fe--B based quenched powder in the prior art has a problem in that it can only be used with isotropic properties due to the size of its crystal grains.

【0004】そこで、本発明はこのような問題点を解決
するもので、その目的とするところは、より高い特性を
示す樹脂結合型磁石およびその製造方法を提供すること
にある。
SUMMARY OF THE INVENTION The present invention aims to solve these problems, and its object is to provide a resin-bonded magnet that exhibits even higher characteristics and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明の樹脂結合型磁石
は、長軸への射影長と短軸への射影長の比が2以上であ
る磁性体を用い、長軸への射影長方向を着磁方向と平行
に揃えたことを特徴とする。
[Means for Solving the Problems] The resin-bonded magnet of the present invention uses a magnetic material in which the ratio of the projected length to the long axis to the projected length to the short axis is 2 or more, and It is characterized by being aligned parallel to the magnetization direction.

【0006】また、上記磁性体が針状もしくは棒状,鱗
片状,板状であることを特徴とする。
[0006] The magnetic material is also characterized in that it is needle-shaped, rod-shaped, scale-shaped, or plate-shaped.

【0007】樹脂結合型磁石の製造方法は、長軸への射
影長と短軸への射影長の比が2以上である磁性体を、そ
の形状異方性を利用し磁場中で揃えることを特徴とする
[0007] The method for manufacturing resin-bonded magnets involves aligning magnetic materials in which the ratio of the projected length on the long axis to the projected length on the short axis is 2 or more in a magnetic field by utilizing their shape anisotropy. Features.

【0008】[0008]

【作用】本発明の上記の構成によれば、長軸への射影長
と短軸への射影長の比が2以上である磁性体を用い、長
軸への射影長方向を着磁方向と平行に揃えることにより
、特に多極着磁などを施したときにそのパーミアンスや
磁路の関係から、等方性のときよりも高い磁束を得るこ
とができるのである。
[Operation] According to the above structure of the present invention, a magnetic material whose ratio of the projected length to the long axis and the projected length to the short axis is 2 or more is used, and the projected length direction to the long axis is the magnetization direction. By arranging them in parallel, it is possible to obtain a higher magnetic flux than when they are isotropic due to the relationship of permeance and magnetic path, especially when multi-pole magnetization is applied.

【0009】また、その形状異方性を利用し、磁場中で
成形することによって揃えることができる。
[0009] Further, by making use of its shape anisotropy, it can be made uniform by molding in a magnetic field.

【0010】0010

【実施例】以下、本発明について実施例に基づいて詳細
に説明する。
EXAMPLES The present invention will be explained in detail below based on examples.

【0011】(実施例1)重量%でNd31%,Fe6
8%,B1%の合金を細い溝のあるロールを用いたいわ
ゆるメルトスピニング法を用い、急冷薄帯を作製した。 得られた薄帯は、針状であった。この薄帯にエポキシ系
樹脂3重量%を混練したものをラジアル磁場中で圧縮成
形し、外径21mm,内径18mm,高さ3mmのリン
グ状磁石を作成した。得られたリング状磁石内の針状の
薄帯は半径方向に揃っていた。
(Example 1) Nd 31%, Fe6 in weight%
A quenched ribbon was prepared from an alloy containing 8% B and 1% B using a so-called melt spinning method using a roll with narrow grooves. The obtained ribbon was acicular. This ribbon was kneaded with 3% by weight of epoxy resin and compression molded in a radial magnetic field to create a ring-shaped magnet with an outer diameter of 21 mm, an inner diameter of 18 mm, and a height of 3 mm. The needle-shaped thin ribbons within the obtained ring-shaped magnet were aligned in the radial direction.

【0012】また、比較例として、磁場なしの状態で同
様にリング状磁石を作成した。当然針状薄帯はランダム
な方向を向いていた。
Further, as a comparative example, a ring-shaped magnet was similarly prepared without a magnetic field. Naturally, the acicular ribbons were oriented in random directions.

【0013】これらのリング状磁石を2mmの幅で切り
出し、VSMを用い磁気特性を測定した。また、24極
の多極着磁を施しその表面磁束密度を測定した。
These ring-shaped magnets were cut out to a width of 2 mm, and their magnetic properties were measured using a VSM. In addition, 24-pole multipole magnetization was performed and the surface magnetic flux density was measured.

【0014】VSMによる磁気特性は、本発明,比較例
の(BH)maxはおのおの9.2,9.1MGOeと
ほぼ同じであるが、表面磁束密度のピーク値は、おのお
の4.2,3.2kGであった。すなわち、本発明は磁
気特性的には等方性であるが、多極着磁を施すとパーミ
アンスや磁路の関係から高い表面磁束が得られている。
Regarding the magnetic properties of the VSM, the (BH)max of the present invention and the comparative example are almost the same as 9.2 and 9.1 MGOe, respectively, but the peak values of the surface magnetic flux density are 4.2 and 3.1, respectively. It was 2kG. That is, although the magnetic properties of the present invention are isotropic, when multipolar magnetization is applied, a high surface magnetic flux is obtained due to the relationship between permeance and magnetic path.

【0015】(実施例2)重量%でNd27%,Fe6
8%,Co4%,B1%の合金を、通常のロールを用い
て鱗片状の急冷薄帯を作製した。実施例1と同様に本発
明と比較例を作成したが、多極着磁して得られた表面磁
束密度のピーク値はおのおの3.9,3.3kGであっ
た。
(Example 2) Nd 27%, Fe6 in weight%
A scale-like quenched ribbon was produced from an alloy containing 8% Co, 4% Co, and 1% B using a normal roll. The present invention and a comparative example were prepared in the same manner as in Example 1, but the peak values of the surface magnetic flux density obtained by multipolar magnetization were 3.9 and 3.3 kG, respectively.

【0016】このことから、本発明が用いる磁性体の組
成や形状に依存しないことが分かる。
This shows that the present invention does not depend on the composition or shape of the magnetic material used.

【0017】(実施例3)実施例1の針状の急冷薄帯を
用い、射出成形および押出成形によって同様のリング磁
石を作成したが、比較例に対し本発明はおよそ10〜3
0%高い表面磁束密度が得られており、本発明が成形方
法に依存しないことが分かる。
(Example 3) A similar ring magnet was made by injection molding and extrusion using the needle-like quenched ribbon of Example 1.
A 0% higher surface magnetic flux density was obtained, indicating that the present invention does not depend on the molding method.

【0018】(実施例4)実施例2のリング状磁石を円
盤および軸に固定し、3600rpmで回転させた。比
較例が120時間後に剥離型の破壊を生じたのに対し、
本発明は1000時間経過後もなんら変化はなかった。
(Example 4) The ring-shaped magnet of Example 2 was fixed to a disk and a shaft, and rotated at 3600 rpm. Whereas the comparative example caused peeling-type failure after 120 hours,
There was no change in the present invention even after 1000 hours had elapsed.

【0019】このことは、単に表面の磁束密度の向上だ
けでなく、機械的強度も向上したことを意味している。
This means that not only the magnetic flux density on the surface is improved, but also the mechanical strength is improved.

【0020】[0020]

【発明の効果】以上述べたように本発明によれば、長軸
への射影長と短軸への射影長の比が2以上である磁性体
を用い、長軸への射影長方向を着磁方向と平行に揃えた
ことにより、多極着磁を施すことによって得られる表面
磁束密度が大きくなると同時に機械的強度も上昇するこ
とから、応用するモータやデバイスのさらなる高性能化
,小型化を実現でき、高速回転機器への応用が可能とな
るなど応用面にも多大の効果を有するものである。
Effects of the Invention As described above, according to the present invention, by using a magnetic material in which the ratio of the projected length to the long axis and the projected length to the short axis is 2 or more, the projected length direction to the long axis can be fixed. By aligning parallel to the magnetic direction, the surface magnetic flux density obtained by applying multi-pole magnetization increases and at the same time the mechanical strength also increases, making it possible to further improve the performance and miniaturize the motors and devices to which it is applied. This method has many practical effects, such as being able to be applied to high-speed rotating equipment.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  長軸への射影長と短軸への射影長の比
が2以上である磁性体を用い、長軸への射影長方向を着
磁方向と平行に揃えたことを特徴とする樹脂結合型磁石
[Claim 1] A magnetic material whose ratio of the projected length to the long axis and the projected length to the short axis is 2 or more is used, and the projected length direction to the long axis is aligned parallel to the magnetization direction. Resin bonded magnet.
【請求項2】  上記磁性体が針状もしくは棒状である
請求項1記載の樹脂結合型磁石。
2. The resin-bonded magnet according to claim 1, wherein the magnetic body is needle-shaped or rod-shaped.
【請求項3】  上記磁性体が鱗片状もしくは板状であ
る請求項1記載の樹脂結合型磁石。
3. The resin-bonded magnet according to claim 1, wherein the magnetic body is scale-shaped or plate-shaped.
【請求項4】  長軸への射影長と短軸への射影長の比
が2以上である磁性体を、その形状異方性を利用し磁場
中で揃えることを特徴とする樹脂結合型磁石の製造方法
4. A resin-bonded magnet characterized by aligning magnetic materials in which the ratio of the projected length on the long axis to the projected length on the short axis is 2 or more in a magnetic field by utilizing the shape anisotropy of the magnetic material. manufacturing method.
JP3071730A 1991-04-04 1991-04-04 Resin-bonded magnet and its manufacture Pending JPH04307703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3071730A JPH04307703A (en) 1991-04-04 1991-04-04 Resin-bonded magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3071730A JPH04307703A (en) 1991-04-04 1991-04-04 Resin-bonded magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH04307703A true JPH04307703A (en) 1992-10-29

Family

ID=13468932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3071730A Pending JPH04307703A (en) 1991-04-04 1991-04-04 Resin-bonded magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH04307703A (en)

Similar Documents

Publication Publication Date Title
JPH10284314A (en) Magnetic core material
US6605162B2 (en) Anisotropic magnet and process of producing the same
JP3618648B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JP2000060080A (en) Permanent-magnet motor and other device applied thereon
JP3007491B2 (en) Side-oriented anisotropic magnet
JPS61237405A (en) Multipolarized magnet
JP2005093729A (en) Anisotropic magnet, its manufacturing method, and motor using it
JPH04307703A (en) Resin-bonded magnet and its manufacture
JPH07161512A (en) Production of radial anisotropic rare earth sintered magnet
JPH0353505A (en) Bonded magnet and magnetization thereof
JP2001076925A (en) Permanent magnet having flat plate multipolar anisotropy and actuator
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JPH0687634B2 (en) Permanent magnet type motor
JPS60216512A (en) Magnet for magnetic roll
JP2005317845A (en) Anisotropic bond magnet and its manufacturing method
JPS5923448B2 (en) anisotropic magnet
JPH06244047A (en) Manufacture of resin bonded permanent magnet
JP4120147B2 (en) Method for manufacturing permanent magnet field type small DC motor
JP2002198216A (en) Sheet magnet and method of magnetizing the same
JPS59162239A (en) Manufacture of resin-bonded rare earth element-cobalt magnet
JP2558760B2 (en) Anisotropic permanent magnet
JP2563404B2 (en) Anisotropic permanent magnet
JPH04125907A (en) Nanocomposite permanent magnet material
JPS6271201A (en) Bond magnet
JPS60220907A (en) Ferromagnetic resin composition