JPH04307225A - Shaft for transmitting driving force made of fiber-reinforced resin - Google Patents

Shaft for transmitting driving force made of fiber-reinforced resin

Info

Publication number
JPH04307225A
JPH04307225A JP7305291A JP7305291A JPH04307225A JP H04307225 A JPH04307225 A JP H04307225A JP 7305291 A JP7305291 A JP 7305291A JP 7305291 A JP7305291 A JP 7305291A JP H04307225 A JPH04307225 A JP H04307225A
Authority
JP
Japan
Prior art keywords
pipe
section
fiber
frp
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7305291A
Other languages
Japanese (ja)
Inventor
Hitoshi Murotani
室谷 均
Koji Yamatsuta
山蔦 浩治
Yoshifumi Nakanou
中納 佳史
Yasuo Shinohara
泰雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP7305291A priority Critical patent/JPH04307225A/en
Publication of JPH04307225A publication Critical patent/JPH04307225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a shaft for transmitting driving force not broken easily even to large torque by forming a section tying the internal surface of the joining section of a pipe made of a fiber-reinforced resin and the straight pipe section of the internal surface of the pipe in a tapered shape having an inclination of 10 deg. or less from the top section of a regular polygonal corner to the pipe straight pipe section. CONSTITUTION:A section from the top section 9 of the corner of the regular polygonal section of the internal surface of a pipe 8 made of FRPs to a pipe straight pipe section is formed at an inclination of 10 deg. or less. On the other hand, the internal and external surfaces of the joining section 2 of the pipe 8 made of FRPs can be reinforced by FRPs. It is desirable that the joining section 2 is reinforced from the balance of lightening, strength and profitability. The reinforcement of the joining section 2 of the pipe 8 made of FRPs is started from the straight pipe section including a tapered section. It is favorable that the reinforcement starting point 11 of the external surface of the straight pipe section of the pipe made of FRPs is kept within 5mm from the end 10 of the straight pipe section of the internal surface of the pipe.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は自動車用または船舶用に
適した繊維強化樹脂製駆動力伝達用シャフトに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin drive force transmission shaft suitable for use in automobiles or ships.

【0002】0002

【従来の技術】従来、車両や船舶等の駆動力伝達用シャ
フトとして金属製中実棒または金属製中空パイプの両端
に金属製の継手要素を接合したものが使用されている。 近年、自動車の軽量化の要求が高まり、車体等の金属製
外板を繊維強化樹脂(以下FRPと称することがある)
化するだけでなく、構造部材の軽量化も注目を集めてい
る。その中で駆動力伝達用シャフトの軽量化はそれが回
転部分でもあり、その軽量化の効果は大きく、FRP化
が特に注目されている。
2. Description of the Related Art Conventionally, a solid metal rod or hollow metal pipe with metal coupling elements joined to both ends has been used as a driving force transmission shaft for vehicles, ships, etc. In recent years, the demand for lighter cars has increased, and the metal outer panels of car bodies and other parts are made of fiber-reinforced resin (hereinafter sometimes referred to as FRP).
In addition to the weight reduction of structural components, the weight reduction of structural members is also attracting attention. Among these, reducing the weight of the driving force transmission shaft is a rotating part, and the effect of reducing weight is significant, and FRP is attracting particular attention.

【0003】FRP製駆動力伝達用シャフトは、それを
従来の鋼鉄製からFRP製にすることでその重量が1/
4〜1/2になることもあり、各種の自動車に搭載され
るようになりつつある。
[0003] The weight of the FRP drive force transmission shaft has been reduced by 1/2 by changing from the conventional steel to FRP.
It can sometimes be reduced to 4 to 1/2, and is being installed in various types of automobiles.

【0004】FRP製駆動力伝達用シャフトの場合、一
般にFRP製の中空パイプの両端に継手要素を設けなけ
ればならず、そのためにFRP製パイプと継手要素を別
々に準備して、何らかの方法で接合することにより製造
されている。そのような方法として、例えば特開昭54
−159930号公報及び実開昭61−162619号
公報には、FRP製パイプの両端の接合部を正多角形状
に成形して、これとほぼ同一形状の接合部を有する継手
要素を挿入して、機械的接合やカシメの方法によって接
合することにより、駆動力伝達用シャフトを製造する方
法が提案されている。
[0004] In the case of an FRP drive force transmission shaft, it is generally necessary to provide a joint element at both ends of an FRP hollow pipe, so the FRP pipe and joint element are prepared separately and joined by some method. It is manufactured by As such a method, for example, Japanese Patent Application Laid-Open No. 1983
-159930 and Utility Model Application Publication No. 61-162619, the joints at both ends of an FRP pipe are formed into a regular polygonal shape, and a joint element having a joint having almost the same shape is inserted, A method of manufacturing a driving force transmission shaft by joining using mechanical joining or caulking has been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしこの正多角形状
の接合部による接合方法によると、FRP製パイプに負
荷されたトルクは各角部の機械的な反力と摩擦力によっ
て保持されているため、トルクが負荷されたときに継手
要素とFRP製パイプの接合部の間に微小なズレが生じ
、継手要素の角がFRP製パイプの接合部を半径方向に
押し拡げる働きをして、その結果として継手要素が滑っ
たり、FRP製パイプの接合部が破壊するという問題が
あった。
[Problem to be solved by the invention] However, according to this joining method using regular polygonal joints, the torque loaded on the FRP pipe is held by the mechanical reaction force and frictional force of each corner. , when torque is applied, a minute misalignment occurs between the joint element and the FRP pipe joint, and the corners of the joint element act to push the joint part of the FRP pipe apart in the radial direction, resulting in As a result, there were problems in that the joint elements slipped and the joints of the FRP pipes were destroyed.

【0006】この対策としてFRP製パイプの接合部を
さらにFRPや金属コネクタ−・スリ−ブ等で補強する
必要があった。しかし接合部を補強した場合でも、パイ
プの直管部から補強部に至る箇所で応力集中が大きいた
め、その部分にて破壊するという問題点があった。本発
明はこれらの問題点を解決するためになされたものであ
り、大きなトルクに対しても容易には破壊しない駆動力
伝達用シャフトを提供するものである。
[0006] As a countermeasure to this problem, it was necessary to further reinforce the joints of the FRP pipes with FRP, metal connectors, sleeves, and the like. However, even when the joint is reinforced, there is a problem in that the stress concentration is large in the area from the straight pipe part of the pipe to the reinforced part, which causes the pipe to break at that part. The present invention has been made to solve these problems, and provides a driving force transmission shaft that does not easily break even under large torques.

【0007】[0007]

【課題を解決するための手段】本発明は、継手要素とF
RP製パイプを接合してなるFRP製駆動力伝達用シャ
フトであって、継手要素の接合部の外面と繊維強化樹脂
製パイプの接合部の内面は正多角形状であり、繊維強化
樹脂製パイプの接合部の内面の正多角形状の部分とパイ
プ内面の直管部分を結ぶ部分は、正多角形状の角の頂部
からパイプ直管部に至るまで傾斜角10°以下のテーパ
ー状に形成されていることを特徴とする繊維強化樹脂製
駆動力伝達用シャフト、に関するものである。
[Means for Solving the Problems] The present invention provides a joint element and an F
This is an FRP driving force transmission shaft formed by joining RP pipes, and the outer surface of the joint of the joint element and the inner surface of the joint of the fiber-reinforced resin pipe are regular polygons, and the shape of the fiber-reinforced resin pipe is The part connecting the regular polygonal part on the inner surface of the joint and the straight pipe part on the inner surface of the pipe is formed in a tapered shape with an inclination angle of 10 degrees or less from the top of the regular polygonal corner to the straight pipe part. The present invention relates to a shaft for transmitting driving force made of fiber-reinforced resin.

【0008】以下に本発明を詳細に説明する。本発明の
特徴はFRP製パイプの内面の形状にある。前記のよう
にその内面の正多角形部分の角の頂部からパイプ直管部
に至るまでを傾斜角10°以下とする。好ましくは1°
より大きく5°より小さく、さらに好ましくは1°より
大きく3°より小さくする。この角度が1°以下の場合
はFRP製パイプを成形した際に直管部が短くなり、成
形が煩雑となりまた重量も重くなる。また、この角度が
10°より大きい場合は、パイプ直管部と継手要素との
接合部の間での応力集中が大きくなり、本来のFRP製
パイプの強度より低いトルクでこの部分が破壊する。
The present invention will be explained in detail below. The feature of the present invention lies in the shape of the inner surface of the FRP pipe. As mentioned above, the angle of inclination from the top of the corner of the regular polygon on the inner surface to the straight pipe portion is 10° or less. Preferably 1°
The angle is larger than 5°, more preferably larger than 1° and smaller than 3°. If this angle is less than 1°, the straight pipe portion will be short when the FRP pipe is formed, making the forming process complicated and increasing the weight. Moreover, if this angle is larger than 10 degrees, the stress concentration between the straight pipe part and the joint element becomes large, and this part breaks with a torque lower than the original strength of the FRP pipe.

【0009】前記の傾斜角はFRP製パイプを成形する
ときに用いるマンドレルのリング形状によって決めるこ
とができる。一方、このFRP製パイプの接合部はその
内外面をFRPにより補強することができる。軽量化、
強度及び経済性のバランスから接合部を補強することが
望ましい。FRP製パイプの接合部の補強はテーパー部
分を含んで、直管部分から始める。FRP製パイプ直管
部の外面の補強開始点はパイプ内面の直管部の端から5
mm以内とすることが好ましい。この距離が5mm以上
の場合には、パイプ直管部で破壊せず補強開始点近傍で
破壊する。
[0009] The above-mentioned angle of inclination can be determined by the ring shape of the mandrel used when forming the FRP pipe. On the other hand, the joint portion of this FRP pipe can be reinforced with FRP on its inner and outer surfaces. Weight saving,
It is desirable to reinforce the joint from a balance between strength and economy. Reinforcement of the joints of FRP pipes starts from the straight pipe parts, including the tapered parts. The starting point for reinforcing the outer surface of the straight section of the FRP pipe is 5 points from the end of the straight section on the inner surface of the pipe.
It is preferable to set it within mm. If this distance is 5 mm or more, the pipe will not break at the straight section, but will break near the reinforcement starting point.

【0010】本発明における接合部の正多角形状は正六
角形または正八角形が好ましい。接合部の多角形状が不
均一な場合、各角で伝達するトルクが異なり応力集中に
よる動力伝達能力の低下、また周方向に質量のバラツキ
が発生することによるダイナミック・バランスの悪化の
原因となる。また、角数が六角より少ない場合、応力集
中が増大し、角数が八角より多い場合はFRPと継手要
素の接合部でのズレが増大して、それぞれ動力伝達能力
の低下の原因となる。
[0010] The regular polygonal shape of the joint in the present invention is preferably a regular hexagon or a regular octagon. If the polygonal shape of the joint is uneven, the torque transmitted at each corner will be different, leading to a decrease in power transmission ability due to stress concentration, and a deterioration of dynamic balance due to variations in mass in the circumferential direction. Furthermore, if the number of angles is less than hexagonal, stress concentration increases, and if the number of angles is greater than octagonal, the misalignment at the joint between the FRP and the joint element increases, each of which causes a decrease in power transmission ability.

【0011】本発明に用いるFRPの強化繊維は、駆動
力伝達用シャフトの回転時の共振周波数を高める必要か
ら弾性率と強度の高い材料が望ましい。そのような繊維
として主に炭素繊維、ガラス繊維、アラミド繊維及びセ
ラミック繊維が挙げられる。これらの繊維を2種以上組
み合わせて用いてもよい。比強度と比剛性が大きい繊維
の方が軽量化の効果が顕著であるので好ましい。そのよ
うな例として炭素繊維が挙げられるが、炭素繊維とガラ
ス繊維のハイブリッド使用もコスト低減の観点から好ま
しい。
[0011] The FRP reinforcing fiber used in the present invention is preferably a material with high elastic modulus and strength because it is necessary to increase the resonance frequency during rotation of the shaft for transmitting driving force. Such fibers mainly include carbon fibers, glass fibers, aramid fibers and ceramic fibers. Two or more of these fibers may be used in combination. Fibers with higher specific strength and higher specific stiffness are preferable because they have a more significant weight reduction effect. Carbon fiber is an example of such a material, but hybrid use of carbon fiber and glass fiber is also preferable from the viewpoint of cost reduction.

【0012】マトリックス樹脂は特に制限されるもので
はない。エポキシ樹脂、不飽和ポリエステル樹脂、ビニ
ルエステル樹脂、ウレタン樹脂、フェノ−ル樹脂、アル
キッド樹脂、キシレン樹脂、メラミン樹脂、フラン樹脂
、シリコン樹脂等の熱硬化性樹脂、ポリエチレン樹脂、
ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリメチル
メタクリレ−ト樹脂、ABS樹脂、フッ素樹脂、ポリカ
−ボネ−ト樹脂、ポリエステル樹脂、ポリアミド樹脂(
ナイロン6、6・6、6・10、6・11、6・12等
)、ポリフェニレンサルファイド樹脂、ポリスルフォン
樹脂、ポリエ−テルスルフォン樹脂、ポリエ−テルエ−
テルケトン樹脂、ポリフェニレンオキシド樹脂等の熱可
塑性樹脂を挙げることができる。また、これらの樹脂は
2種以上を組み合わせて用いることができる。これらの
なかでエポキシ樹脂、不飽和ポリエステル樹脂、ビニル
エステル樹脂が取り扱い性及び物性の面から好ましい。
The matrix resin is not particularly limited. Thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, urethane resins, phenol resins, alkyd resins, xylene resins, melamine resins, furan resins, silicone resins, polyethylene resins,
Polypropylene resin, polyvinyl chloride resin, polymethyl methacrylate resin, ABS resin, fluororesin, polycarbonate resin, polyester resin, polyamide resin (
Nylon 6, 6/6, 6/10, 6/11, 6/12, etc.), polyphenylene sulfide resin, polysulfone resin, polyether sulfone resin, polyether ether
Examples include thermoplastic resins such as terketone resin and polyphenylene oxide resin. Moreover, these resins can be used in combination of two or more types. Among these, epoxy resins, unsaturated polyester resins, and vinyl ester resins are preferred from the viewpoint of ease of handling and physical properties.

【0013】[0013]

【実施例】以下に本発明を実施例によってさらに詳細に
説明するが本発明はこれらの実施例に何ら限定されるも
のではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples in any way.

【0014】実施例1 第2図に示す円筒状のマンドレル4に離型剤を塗布し、
その両端にリング5を装着した。円筒マンドレルの直径
は40mm、直管部の長さ495mmでその両端に直径
30mm、長さ350mmのチャッキング用軸6が付い
ている。リング5は内径30mmの中空のリングであっ
て、端部の外周は対辺間距離40mm、対頂点間距離4
6.2mmの正六角形(軸に対して垂直の断面において
)であり、他の一端は外径40mmの円形状をしており
、正六角形部分の角の頂部から円形端部分まではスム−
ズなテ−パ−部分を形成していた。正六角形部分の長さ
は50mm、テーパー部分の長さは60mmであった。 このマンドレルにエポキシ樹脂を含浸させたガラス繊維
及び炭素繊維をフィラメントワインディング法により巻
き付け、下記の積層構成のFRP製パイプを成形した。 正六角形部分及びテ−パ−部分にかけてはFRPの補強
構造とした。ここでGFはガラス繊維を、CFは炭素繊
維を表す。
Example 1 A mold release agent was applied to the cylindrical mandrel 4 shown in FIG.
Rings 5 were attached to both ends. The diameter of the cylindrical mandrel is 40 mm, the length of the straight tube part is 495 mm, and a chucking shaft 6 with a diameter of 30 mm and a length of 350 mm is attached to both ends of the mandrel. The ring 5 is a hollow ring with an inner diameter of 30 mm, and the outer periphery of the end has a distance between opposite sides of 40 mm and a distance between opposite sides of 4.
It is a regular hexagon of 6.2 mm (in a cross section perpendicular to the axis), and the other end has a circular shape with an outer diameter of 40 mm, and the area from the top of the corner of the regular hexagon to the circular end is smooth.
It formed a narrow tapered part. The length of the regular hexagonal portion was 50 mm, and the length of the tapered portion was 60 mm. Glass fibers and carbon fibers impregnated with epoxy resin were wound around this mandrel by a filament winding method to form an FRP pipe having the following laminated structure. The regular hexagonal part and the tapered part are reinforced with FRP. Here, GF represents glass fiber and CF represents carbon fiber.

【0015】 FRPパイプ直管部 内層〔GF90°/CF±20°/GF90°〕外層厚
み  0.5mm/4.0mm  /0.5mmFRP
パイプ補強部 内層〔GF90°/CF±20°/CF90°/GF9
0°〕外層 厚み  2.0mm/4.0mm  /0.5mm/2
.0mm
[0015] FRP pipe straight pipe inner layer [GF90°/CF±20°/GF90°] Outer layer thickness 0.5mm/4.0mm/0.5mmFRP
Pipe reinforcement inner layer [GF90°/CF±20°/CF90°/GF9
0°] Outer layer thickness 2.0mm/4.0mm /0.5mm/2
.. 0mm

【0016】次いでその上に離型フィルムを巻き付け、
150℃で2時間加熱硬化した。硬化後両端部の不用部
分を切断除去し、マンドレルから脱型して、第3図に示
すような正六角形の接合部2を有するFRP製パイプ1
を得た。このパイプの正六角形部分の内面の寸法を測定
したところ、対頂点間距離は46.2mmであり、パイ
プ直管部の内径は40.0mm、テ−パ−部分の長さは
60mm、すなわちFRP製パイプのテ−パ−部分の傾
斜角度は3°であった。
[0016] Next, a release film is wrapped thereon,
It was heat cured at 150°C for 2 hours. After curing, unnecessary parts at both ends are cut off and removed from the mandrel, resulting in an FRP pipe 1 having a regular hexagonal joint 2 as shown in Fig. 3.
I got it. When the dimensions of the inner surface of the regular hexagonal part of this pipe were measured, the distance between the apexes was 46.2 mm, the inner diameter of the straight pipe part was 40.0 mm, and the length of the tapered part was 60 mm, that is, FRP. The inclination angle of the tapered portion of the manufactured pipe was 3°.

【0017】一方、第5図に示す正六角形状の接合部を
有する鋼製継手要素を機械加工により製造した。FRP
製パイプの接合部の内面全面に接着剤パッチキッド(ハ
イソ−ル社製−登録商標)を塗布して、継手要素を圧入
し、第1図に示す継手要素を一体化した本発明の駆動力
伝達用シャフトを得た。このシャフトについてねじり試
験を行ったところ、トルク420kgf−mでパイプの
直管部の中央部が破壊した。
On the other hand, a steel joint element having a regular hexagonal joint shown in FIG. 5 was manufactured by machining. FRP
The driving force of the present invention which integrates the joint elements shown in Fig. 1 by applying adhesive Patch Kid (manufactured by Hysol Co., Ltd. - registered trademark) to the entire inner surface of the joint of manufactured pipes and press-fitting the joint element. Obtained a transmission shaft. When this shaft was subjected to a torsion test, the center portion of the straight pipe portion was broken at a torque of 420 kgf-m.

【0018】実施例2 実施例1と同様の手法により、正六角形部分の長さは5
0mm、テ−パ−部分の長さを30mmとしてパイプを
成形した。このハイプの補強部である正六角形部分の内
面寸法を測定した結果、対頂点間距離は46.2mm、
パイプ直管部内径は40.0mm、テ−パ−部分の長さ
は30mm、すなわちテ−パ−の傾斜角度は5.9°で
あった。実施例1と同様に継手要素を接合して、ねじり
試験を行ったところ、トルク300kgf−mでシャフ
ト直管部のFRPの補強の開始点の周辺で破壊したが、
実用レベルの強度に達していた。
Example 2 Using the same method as in Example 1, the length of the regular hexagonal part was 5.
A pipe was formed with a length of 0 mm and a tapered portion of 30 mm. As a result of measuring the inner dimensions of the regular hexagonal part that is the reinforcement part of this hype, the distance between the vertices is 46.2 mm,
The inner diameter of the straight pipe portion was 40.0 mm, the length of the tapered portion was 30 mm, ie, the inclination angle of the taper was 5.9°. When the joint elements were joined in the same manner as in Example 1 and a torsion test was conducted, the FRP of the straight pipe section of the shaft broke around the starting point of reinforcement at a torque of 300 kgf-m.
It had reached a practical level of strength.

【0019】比較例 実施例1と同様の手法により正六角形部分の長さは50
mm、テ−パ−部分の長さを30mmとしてパイプを成
形した。このバイプの補強部である正六角形部分の内面
寸法を測定した結果、対頂点間距離は46.2mm、パ
イプ直管部の内径は40.0mm、テ−パ−部分の長さ
は15mm、すなわちパイプの内面のテ−パ−の傾斜角
度は11.7°であった。実施例1と同様にして継手要
素を接合し、得られたシャフトのねじり試験を行った結
果、トルク100kgf−mと非常に低いトルクでシャ
フト直管部のFRPの補強の開始点の周辺で破壊した。
Comparative Example Using the same method as in Example 1, the length of the regular hexagonal part was 50
mm, and the length of the tapered part was 30 mm, and a pipe was molded. As a result of measuring the inner dimensions of the regular hexagonal part that is the reinforcement part of this pipe, the distance between the two apexes is 46.2 mm, the inner diameter of the straight pipe part is 40.0 mm, and the length of the tapered part is 15 mm. The inclination angle of the taper on the inner surface of the pipe was 11.7°. The joint elements were joined in the same manner as in Example 1, and the resulting shaft was subjected to a torsion test. As a result, the shaft fractured around the starting point of reinforcement of the FRP in the straight pipe section at a very low torque of 100 kgf-m. did.

【0020】[0020]

【発明の効果】本発明の駆動力伝達用シャフトはFRP
パイプと継手要素の接合部分が強固であり、本来のFR
Pパイプが有する強度を発揮するので、自動車用、船舶
用またはヘリコプタ−用等に好適に用いることができる
[Effect of the invention] The driving force transmission shaft of the present invention is made of FRP.
The joint between the pipe and the fitting element is strong and the original FR
Since it exhibits the strength that P pipe has, it can be suitably used for automobiles, ships, helicopters, etc.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】第1図は本発明のFRP製駆動力伝達用シャフ
トの正面図。
FIG. 1 is a front view of the FRP driving force transmission shaft of the present invention.

【図2】第2図はその製作に用いたマンドレルの正面図
FIG. 2 is a front view of the mandrel used in its production.

【図3】第3図はFRP製パイプの軸方向の断面図。FIG. 3 is an axial cross-sectional view of an FRP pipe.

【図4】第4図はFRP製パイプの軸方向を見た側面図
FIG. 4 is a side view of the FRP pipe viewed in the axial direction.

【図5】第5図は継手要素の斜視図である。FIG. 5 is a perspective view of the coupling element.

【符号の説明】[Explanation of symbols]

1.FRP製駆動力伝達用シャフト 2.同接合部 3.継手要素 4.マンドレル 5.マンドレルのリング 6.チャッキング用軸 7.継手要素の接合部 8.FRP製パイプ 1. FRP drive force transmission shaft 2. same joint 3. fitting element 4. mandrel 5. mandrel ring 6. Chucking shaft 7. Joints of fitting elements 8. FRP pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】継手要素と繊維強化樹脂製パイプを接合し
てなる繊維強化樹脂製駆動力伝達用シャフトであって、
継手要素の接合部の外面と繊維強化樹脂製パイプの接合
部の内面は正多角形状であり、繊維強化樹脂製パイプの
接合部の内面の正多角形状の部分とパイプ内面の直管部
分を結ぶ部分は、正多角形状の角の頂部からパイプ直管
部に至るまで傾斜角10°以下のテーパー状に形成され
ていることを特徴とする繊維強化樹脂製駆動力伝達用シ
ャフト。
1. A fiber-reinforced resin driving force transmission shaft formed by joining a joint element and a fiber-reinforced resin pipe, the shaft comprising:
The outer surface of the joint of the coupling element and the inner surface of the joint of the fiber-reinforced resin pipe have a regular polygonal shape, and connect the regular polygonal portion of the inner surface of the joint of the fiber-reinforced resin pipe to the straight pipe portion of the inner surface of the pipe. A driving force transmission shaft made of fiber reinforced resin, characterized in that the portion is formed in a tapered shape with an inclination angle of 10° or less from the top of the corner of a regular polygon to the straight pipe portion.
JP7305291A 1991-04-05 1991-04-05 Shaft for transmitting driving force made of fiber-reinforced resin Pending JPH04307225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7305291A JPH04307225A (en) 1991-04-05 1991-04-05 Shaft for transmitting driving force made of fiber-reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7305291A JPH04307225A (en) 1991-04-05 1991-04-05 Shaft for transmitting driving force made of fiber-reinforced resin

Publications (1)

Publication Number Publication Date
JPH04307225A true JPH04307225A (en) 1992-10-29

Family

ID=13507211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7305291A Pending JPH04307225A (en) 1991-04-05 1991-04-05 Shaft for transmitting driving force made of fiber-reinforced resin

Country Status (1)

Country Link
JP (1) JPH04307225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280969B2 (en) * 2015-04-16 2019-05-07 Airbus Helicopters Deutchland GmbH Hybrid metal-composite drive shaft unit and method of manufacturing same
KR20200022625A (en) * 2018-08-23 2020-03-04 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280969B2 (en) * 2015-04-16 2019-05-07 Airbus Helicopters Deutchland GmbH Hybrid metal-composite drive shaft unit and method of manufacturing same
KR20200022625A (en) * 2018-08-23 2020-03-04 효림산업 주식회사 Manufacturing method of carbon fiber reinforced plastic drive shaft for vehicle

Similar Documents

Publication Publication Date Title
US5601493A (en) Drive shaft made of fiber reinforced plastics, and method for connecting pipe made of fire-reinforced plastics
CA1130594A (en) Power transmission shaft
JP3495553B2 (en) Drive shaft with a reinforced plastic tube and a joint coupling vertically connected to it so as not to rotate.
GB2058292A (en) Fiber-reinforced composite shafts with metallic connector sleeves
GB2124735A (en) Drive shaft
JP2008230031A (en) Device of manufacturing fiber-reinforced plastic made shaft and torque transmission shaft
JPH07507129A (en) flywheel device
JPH0610940A (en) Driving shaft made of composite material
JP2620607B2 (en) Drive shaft made of fiber reinforced resin and method of manufacturing the same
JPH04307225A (en) Shaft for transmitting driving force made of fiber-reinforced resin
JP2007271079A (en) Torque transmission shaft
JPH05106629A (en) Load transmitting shaft made of fiber reinforced plastics
JPH04301437A (en) Shaft made of fiber-reinforced resin for transmitting driving force
CA2035292A1 (en) Drive shaft made of fiber reinforced plastics
JP5699657B2 (en) Propeller shaft and manufacturing method thereof
JPH08103965A (en) Frp cylinder and manufacture thereof
JPH04201244A (en) Pipe structure made of fiber reinforced composite material
JPS6091008A (en) Transmission shaft made of fiber reinforced plastics
JPH05139170A (en) Manufacture of propeller shaft
JPS6014980Y2 (en) FRP propeller shaft
JPH03254926A (en) Driving force transmission shaft made of fiber-reinforced resin
JPH03223513A (en) Propeller shaft for vehicle
JPS5825883B2 (en) connecting rod
JP2000346044A (en) Propeller shaft
JP4261982B2 (en) Manufacturing method of drive transmission shaft