JPH04306570A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH04306570A
JPH04306570A JP3068426A JP6842691A JPH04306570A JP H04306570 A JPH04306570 A JP H04306570A JP 3068426 A JP3068426 A JP 3068426A JP 6842691 A JP6842691 A JP 6842691A JP H04306570 A JPH04306570 A JP H04306570A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
separators
short
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3068426A
Other languages
Japanese (ja)
Other versions
JP2612781B2 (en
Inventor
Satoshi Kuroe
黒江 聡
Hideo Okada
秀夫 岡田
Shigenori Mitsushima
重徳 光島
Yoshio Iwase
岩瀬 嘉男
Kazuo Iwamoto
岩本 一男
Masahito Takeuchi
将人 竹内
Shigeoki Nishimura
西村 成興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3068426A priority Critical patent/JP2612781B2/en
Publication of JPH04306570A publication Critical patent/JPH04306570A/en
Application granted granted Critical
Publication of JP2612781B2 publication Critical patent/JP2612781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a structure suitable for supplying electrolyte as well as to provide a structure suitable for removing cells whose performances are worsened. CONSTITUTION:A fuel cell is constituted of plural number of layered cell units provided with an anode separator 1, an electrolyte preserving layer 3 and an cathode separator 2, and at least two or more anodes or cathodes of the separators in the respective cell units are connected mutually in parallel so as to form a short circuit, and one of the electrolyte preserving layers 3 mentioned above is made to serve also as an insulating member against electronic conductivity between the respective cell units.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、燃料電池における  
セパレータの積層構造、並びに電池内部への電解液の補
給または液量の調節方法、並びに性能の劣化した単位セ
ルを全体から切り離す方法に関する。
[Industrial Application Field] The present invention is applicable to fuel cells.
The present invention relates to a laminated structure of a separator, a method for replenishing electrolyte inside a battery or adjusting the amount of the electrolyte, and a method for separating a unit cell whose performance has deteriorated from the whole.

【0002】0002

【従来の技術】従来燃料電池への電解液の補給または貯
蔵は、■電池内部に電解液を貯蔵するスペースを作り、
その場から電極あるいは電解質板に移行させる方法を用
いたり、■セルの横方向から電解液を流し込んだり、■
積層セルを貫通する穴を作り、その穴を通して外部から
電解液を流入させる方法が提供されている。特開平1−
89150号公報や特開平1−29308号公報は、セ
ル内部に設けた穴や他のスペースに電解液を過剰に貯蔵
しておき、電池運転中の液量の減少にともなって電池内
部へ染み込んでいくような構造をとっている。特開昭6
2−154573号公報は、単セルにおいて電解液層の
横方向に電解液補給用のパイプを接続して液を流し込む
構造を提供している。特開昭63−241868号公報
及び特開平1−307172号公報は、積層セルにおい
て、積層方向に貫通口をあけておき、その穴に外部から
電解液を流し込む構造を提供している。特開平2−27
670号公報は渡りリードを介して単セル相互を電気的
に接続した燃料電池を提供している。
[Prior Art] Conventionally, replenishing or storing electrolyte in a fuel cell involves: 1) creating a space to store the electrolyte inside the battery;
Using a method of transferring the electrolyte from the spot to the electrode or electrolyte plate, ■ Pouring the electrolyte from the side of the cell, ■
A method has been proposed in which a hole is formed through the laminated cell and an electrolytic solution is allowed to flow in from the outside through the hole. JP-A-1-
89150 and JP-A-1-29308, excessive electrolyte is stored in holes or other spaces provided inside the cell, and as the amount of electrolyte decreases during battery operation, the electrolyte may seep into the battery. It has a similar structure. Tokukai Showa 6
Publication No. 2-154573 provides a structure in which a pipe for replenishing electrolyte is connected in the lateral direction of an electrolyte layer in a single cell, and the liquid is poured into the cell. JP-A-63-241868 and JP-A-1-307172 provide a structure in which a through hole is opened in the stacking direction in a stacked cell, and an electrolytic solution is poured into the hole from the outside. Japanese Patent Publication No. 2-27
No. 670 provides a fuel cell in which single cells are electrically connected to each other via a crossover lead.

【0003】0003

【発明が解決しようとする課題】上記従来技術は、電池
内に含浸する電解液の量や、含浸が必要となる運転経過
時間について配慮がなされておらず、電解液含浸工程を
管理制御できない問題点があった。また上記従来技術は
、単セルの厚みが薄いことや実電池においては多数のセ
ルを積層することを考慮すると、個々のセルの電解液層
に補給パイプを作ることは容易ではない。また上記従来
技術は、貫通項を通して電解液を流し込んだ際に各セル
が電解液によって液短絡してしまうことについて考慮が
なされていない。従来セルにおいて電位の異なるセル間
で液短絡が生じると、電解液が一方のセルへ泳動してし
まうために電池特性を悪化してしまう危険性が回避でき
ない問題がある。また特開平2−27670号公報に記
載された従来例は、絶縁性の枠体を介して各セルを積層
しているため、部品点数が多くなると共に積層高さを低
下させにくい欠点を有していた。
[Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into account the amount of electrolyte to be impregnated into the battery or the elapsed operation time during which impregnation is required, and the problem is that the electrolyte impregnation process cannot be managed and controlled. There was a point. Further, in the above-mentioned conventional technology, it is not easy to create a replenishment pipe in the electrolyte layer of each cell, considering that the thickness of a single cell is thin and that a large number of cells are stacked in an actual battery. Moreover, the above-mentioned prior art does not take into consideration the possibility that each cell may be short-circuited by the electrolyte when the electrolyte is poured through the through hole. In conventional cells, when a liquid short circuit occurs between cells having different potentials, there is an unavoidable risk that the electrolyte migrates to one cell, resulting in deterioration of battery characteristics. Furthermore, in the conventional example described in JP-A-2-27670, each cell is stacked via an insulating frame, which has the disadvantage that the number of parts increases and it is difficult to reduce the stacking height. was.

【0004】本発明の目的の一つは、積層したセパレー
タ間の電解液保持層を液短絡可能な構造にすることによ
って、セル間の液短絡による電解液移動の影響を抑制す
ることや、積層セル内の電解液量を積層ブロック全体で
管理可能にすることにある。さらに、電解液量の管理の
ために、容易に電解液を補給したり、取り除いたりする
ことを可能にすることにある。
One of the objects of the present invention is to suppress the influence of electrolyte movement due to a liquid short circuit between cells, and to suppress the influence of electrolyte movement caused by a liquid short circuit between cells by making the electrolyte holding layer between laminated separators have a structure that allows liquid short circuit. The purpose is to make it possible to manage the amount of electrolyte in the cell throughout the laminated block. Furthermore, it is possible to easily replenish or remove the electrolytic solution in order to manage the amount of the electrolytic solution.

【0005】また本発明の他の目的は、従来のセルとは
異なる新規の構造を提案し、セル面積あたりの出力密度
を大きくすることや、特定セルを全体から取り除く方法
やセル構造の簡略化をする目的がある。具体的には、一
枚の大面積セルのセパレータを同一形状の小さなセパレ
ータに分割し、同一極性のセパレータ間を並列に短絡し
た積層型にすることによって、大面積セルと同量の出力
をその何分の一かのセル面積にて得ようというものであ
る。
Another object of the present invention is to propose a new structure different from conventional cells, to increase the output density per cell area, to develop a method for removing specific cells from the whole, and to simplify the cell structure. There is a purpose to Specifically, the separator of one large area cell is divided into smaller separators of the same shape, and the separators of the same polarity are short-circuited in parallel to create a stacked structure, which produces the same amount of output as the large area cell. The idea is to achieve this with a fraction of the cell area.

【0006】また本発明の他の目的は、一枚の大面積セ
ルのセパレータを同一形状の小さなセパレータに分割し
、同一極性のセパレータ間を並列に短絡した積層型にす
ることによって、特性の悪い単位セルを短絡状態から開
放し全体からの切り離しを可能にすることにある。
Another object of the present invention is to divide the separator of one large-area cell into small separators of the same shape and create a laminated type in which the separators of the same polarity are short-circuited in parallel. The purpose is to release the unit cell from a short-circuited state and to enable it to be separated from the whole.

【0007】また本発明の他の目的は、フリーボリュー
ムの電解液溜め中にアノードセパレータ及びカソードセ
パレータを浸す型にすることによって構造の簡便である
電解槽型の燃料電池構造を提供することにある。
Another object of the present invention is to provide an electrolytic tank type fuel cell structure which is simple in structure by immersing an anode separator and a cathode separator in a free volume electrolyte reservoir. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、アノードセパレータ、電解液保持層、カ
ソードセパレータ、電解液保持層、アノードセパレータ
の順に積層されてアノードセパレータ、電解液保持層及
びカソードセパレータを有して構成されるセルユニット
が複数積層されて成り、前記各セルユニット中のセパレ
ータの少なくとも2個以上のアノード同士及び/又はカ
ソード同士を並列に短絡させると共に、前記1つの電解
液保持層は各セルユニット間の電子伝導性に対する絶縁
部材を兼ねさせたことを特徴とする燃料電池である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a structure in which an anode separator, an electrolyte holding layer, a cathode separator, an electrolyte holding layer, and an anode separator are laminated in this order. A plurality of cell units each having a layer and a cathode separator are stacked, and at least two or more anodes and/or cathodes of the separators in each cell unit are short-circuited in parallel, and the one The fuel cell is characterized in that the electrolyte holding layer also serves as an insulating member for electron conductivity between each cell unit.

【0009】前記の燃料電池において、並列に短絡した
セパレータ間にある電解液保持層同志を電解液にて短絡
させたものがよい。また、積層方向の電解液保持層に接
した面あるいは液短絡した面等の電解液と接触する面に
、少なくとも1個以上のガス拡散型電極を設けたものが
よい。また、液絡した電解液保持層に一定量の電解液を
加えたり、又は取り除く電解液量調節機構を設けたもの
がよい。また、液絡した電解液保持層内を一定量の電解
液が還流する還流機構を設けたものがよい。また、セパ
レータ間を並列短絡する端子の取外し又は組替えが可能
で任意のセパレータを全体から切離し可能に形成したも
のがよい。また、同一極同志を並列に短絡したセパレー
タ群を1ブロックとし、そのブロックを複数個直列に積
層して大容量化したものがよい。
[0009] In the above-mentioned fuel cell, it is preferable that the electrolyte holding layers between the separators short-circuited in parallel are short-circuited with each other by an electrolyte. Further, it is preferable that at least one gas diffusion type electrode is provided on a surface in contact with the electrolyte, such as a surface in contact with the electrolyte holding layer in the stacking direction or a surface short-circuited with the electrolyte. Further, it is preferable that an electrolytic solution amount adjusting mechanism is provided for adding or removing a certain amount of electrolytic solution to the electrolytic solution holding layer in liquid contact. Further, it is preferable that a reflux mechanism is provided in which a certain amount of the electrolyte is refluxed within the electrolyte holding layer which is connected to the liquid. Further, it is preferable that the terminals that short-circuit the separators in parallel can be removed or rearranged, and any separators can be separated from the whole. Further, it is preferable that a separator group in which the same poles are short-circuited in parallel is used as one block, and a plurality of the blocks are stacked in series to increase the capacity.

【0010】また本発明は、1個の溶融した電解液溜め
の中に一定の間隙を保って並べた少なくとも1個以上の
アノードセパレータ及びカソードセパレータを浸し、そ
のセパレータの少なくとも2個以上のアノード同志また
はカソード同志を並列に短絡させた構造を有する電解槽
層型の燃料電池である。ここで、セパレータ間を並列短
絡する端子の取外しまたは組替えが可能で、任意のセパ
レータを全体から切離し可能に形成したものがよい。ま
て、1個の電解液溜めの中の並列に短絡したセパレータ
群を1ブロックとし、そのブロックを複数個直列に接続
して大容量化したものがよい。また、複数の電解液溜め
にわたり端子を直列結合させたものがよい。
The present invention also provides a method of immersing at least one or more anode separators and cathode separators arranged with a constant gap in one molten electrolyte reservoir, and at least two or more anodes of the separators Alternatively, it is an electrolytic cell layer type fuel cell having a structure in which cathodes are short-circuited in parallel. Here, it is preferable that the terminals that short-circuit the separators in parallel can be removed or rearranged, and that any separator can be separated from the whole. It is preferable that a group of parallel short-circuited separators in one electrolytic solution reservoir be used as one block, and a plurality of the blocks may be connected in series to increase the capacity. Also, it is preferable to have terminals connected in series across a plurality of electrolyte reservoirs.

【0011】[0011]

【作用】積層セパレータを貫通し、各々セルの電解液層
を液絡可能にした構造は、従来の積層電池で問題とされ
ている液短絡による電流リークが全く生じないことにな
る。また、全セルの液絡を設けることで、電池全体のバ
ランスを考慮して電解液の添加や取り除きができるので
、電池内の電解液量を最適に保つことができる。これに
より電池の性能を高く保もて、かつ長寿命化がなされる
[Operation] The structure in which the electrolyte layer of each cell can be connected to each other by penetrating the laminated separator eliminates any current leakage due to liquid short circuit, which is a problem in conventional laminated batteries. Furthermore, by providing liquid junctions for all cells, the electrolyte can be added or removed while taking into account the overall balance of the battery, so the amount of electrolyte in the battery can be maintained at an optimum level. This allows the battery to maintain high performance and extend its life.

【0012】一枚の大面積セパレータを何分の一かの大
きさの同一形状の小セパレータに分割し、かつ同一極性
のセパレータ間を並列に短絡した積層構造にすることに
よって、直列積層構造でありながら同一極性のセパレー
タを並列接続した燃料電池構造を可能にした。これは、
セルの占有する面積を従来よりの縮小しながら大容量の
電池を構成できる大きな利点がある。
[0012] By dividing one large-area separator into small separators of the same shape that are a fraction of the size, and creating a laminated structure in which separators of the same polarity are short-circuited in parallel, a series laminated structure can be created. This enables a fuel cell structure in which separators of the same polarity are connected in parallel. this is,
This has the great advantage of being able to construct a large capacity battery while reducing the area occupied by the cell compared to the conventional one.

【0013】また、同一極性のセパレータ間は並列接続
であるため、接続した端子を開放するだけで任意のセル
を全体からきりはなすことができる。それによって一部
のセルの特性不良等が生じた際に全体の電池特性を損な
ったり、寿命を制限したりすることがない。
Furthermore, since the separators of the same polarity are connected in parallel, any cell can be separated from the whole by simply opening the connected terminals. As a result, even if some of the cells have defective characteristics, the overall battery characteristics will not be impaired or the lifespan will be limited.

【0014】[0014]

【実施例】実施例1 図1に本発明の一実施例を占めす。電解液保持層3を挾
んでなる1対のアノードセパレータ1及びカソードセパ
レータ2を単位セルとしたブロックを、他のセルの電解
液保持層3を介して複数個積層してある。ここで各セパ
レータ1,2はSUS310より成り、電解液層3はL
iAlO2を基体とした多孔質板中に溶融炭酸塩を含浸
したものである。その積層体において、同一の極性を持
つセパレータ間を並列端子8、9にて短絡してある。図
は積層電池の縦断面図であり、各々の電極に反応ガスを
供給するマニホールドを省略してある。図において、4
はアノードガス供給炉、5はカソードガス供給炉を示す
。 酸化ガス、還元ガスは、それぞれアノード6、カソード
7共通のマニホールドを通して供給されるものとする。 ここで、アノード6はNi基体の多項質板、カソード7
はNiO基体の多項質板よりなる。該積層セルの各セパ
レータに接続された端子は、短絡用のターミナル11を
有し任意のセパレータを切り離すことができる。
EXAMPLES Example 1 FIG. 1 shows an example of the present invention. A plurality of blocks each having a pair of anode separator 1 and cathode separator 2 sandwiching an electrolyte holding layer 3 as a unit cell are stacked with the electrolyte holding layer 3 of another cell interposed therebetween. Here, each separator 1, 2 is made of SUS310, and the electrolyte layer 3 is L
A porous plate made of iAlO2 as a base material is impregnated with molten carbonate. In the laminated body, the separators having the same polarity are short-circuited by parallel terminals 8 and 9. The figure is a longitudinal cross-sectional view of a stacked battery, and the manifold that supplies reactive gas to each electrode is omitted. In the figure, 4
5 represents an anode gas supply furnace, and 5 represents a cathode gas supply furnace. It is assumed that the oxidizing gas and the reducing gas are supplied through a common manifold to the anode 6 and cathode 7, respectively. Here, the anode 6 is a Ni-based polygonal plate, and the cathode 7 is
is composed of a NiO-based multilayer plate. The terminals connected to each separator of the laminated cell have terminals 11 for short circuiting, and any separator can be separated.

【0015】本実施例によれば、従来概念では用いられ
ていない積層電池の並列接続が可能になった。たとえば
、単位セルあたりの電池特性をaアンペア(A)、bボ
ルト(V)とすると、n個の積層体で取り出せる電流値
はa×n(A)、セル電圧はb(V)になる。従って、
出力は(a×n)×b=n・a・b(W)になる。これ
に対して、単位セルのセパレータ間を絶縁しない直列積
層構造の従来型セルでは、電流値a(A)、セル電圧b
×n(V)で出力a×(b×n)=n・a・b(W)で
ある。従って、並列接続により電池出力を損なうことは
ない。ここで、図の電池において1個のターミナルを流
れる電流はa(A)である。これに対して、従来の直列
積層セルにて特定セルを短絡して取り除くとすると、直
列接続ゆえに電池の前電流n・a(A)を流すための短
絡端子が必要になることから、端子の大形化が懸念され
る。従って本構造による、短絡用のターミナル11を切
り離すことによって特性の悪化したセルを簡便に取り除
くことのできる効果は大きいと言える。
According to this embodiment, it has become possible to connect stacked batteries in parallel, which was not used in the conventional concept. For example, if the battery characteristics per unit cell are a ampere (A) and b volts (V), the current value that can be taken out by n stacks is a×n (A) and the cell voltage is b (V). Therefore,
The output is (a×n)×b=n・a・b(W). On the other hand, in a conventional cell with a series stacked structure in which the separators of unit cells are not insulated, the current value a (A) and the cell voltage b
×n(V) and output a×(b×n)=na·a·b(W). Therefore, parallel connection does not impair battery output. Here, in the illustrated battery, the current flowing through one terminal is a(A). On the other hand, if a specific cell is short-circuited and removed in a conventional series stacked cell, a short-circuit terminal is required to flow the battery's pre-current n・a (A) due to the series connection, so the terminal There is a concern that it will become larger. Therefore, it can be said that this structure has a great effect in that cells whose characteristics have deteriorated can be easily removed by cutting off the short-circuiting terminal 11.

【0016】また、従来型のセルの問題点として、電解
液層から電解液が漏れ出して隣接する単位セルブロック
と液短を生じ電池特性を損なうことがあったが、本方法
を用いれば、たとえセル間の液短絡があったとしても電
池特性を損なうことは全くない。
In addition, a problem with conventional cells is that the electrolyte leaks from the electrolyte layer, causing short circuits with adjacent unit cell blocks and impairing battery characteristics, but with this method, Even if there is a liquid short circuit between cells, the battery characteristics will not be impaired at all.

【0017】また、上記実施例では一枚のセパレータの
上下両側にガス拡散型の電極を配し、かつ単位セルのブ
ロックを電解液層3を挾んで積層した構造を有する。従
って、本実施例によれば、絶縁板を介して積層下従来構
造に比して2倍の電流を取り出すことが可能である。ま
た本実施例は、電池積層構造を簡略化し、電池の体積出
力密度を向上させるのに大きな効果がある。
Further, the above embodiment has a structure in which gas diffusion type electrodes are arranged on both the upper and lower sides of one separator, and unit cell blocks are stacked with the electrolyte layer 3 sandwiched therebetween. Therefore, according to this embodiment, it is possible to extract twice as much current through the insulating plate as compared to the conventional laminated structure. Further, this embodiment has a great effect in simplifying the battery stack structure and improving the volumetric output density of the battery.

【0018】実施例2 本発明の第2実施例を図2に示す。本実施例は、上記実
施例1において、積層セルのセパレータ1,2縦方向に
電解液層液絡口12を設け、各単位セルの電解液保持層
3を液短絡した構造を有する。本実施例によれば各単位
セルの電解液量がバランスし合い、電池運転中の各電解
液保持層3の電解液量を常に一定レベルに保つことがで
きる。例えば、ある特定の単位セルブロックにて、電解
液の不足が生じたとしても他のセルブロックより電解液
を補える効果があり、長期にわたり電池特性を高く保ち
、かつ電池寿命を向上させる効果がある。更に電解液層
液絡口12は電解液を還流するために循環ポンプ21に
連設されている。
Embodiment 2 A second embodiment of the present invention is shown in FIG. This embodiment has a structure in which the electrolytic solution layer junction 12 is provided in the longitudinal direction of the separators 1 and 2 of the laminated cell in the above-mentioned embodiment 1, and the electrolytic solution holding layer 3 of each unit cell is short-circuited. According to this embodiment, the amount of electrolyte in each unit cell is balanced, and the amount of electrolyte in each electrolyte holding layer 3 can always be kept at a constant level during battery operation. For example, even if a certain unit cell block runs out of electrolyte, it is more effective at replenishing the electrolyte than other cell blocks, maintaining high battery characteristics over a long period of time, and improving battery life. . Furthermore, the electrolyte layer liquid junction 12 is connected to a circulation pump 21 for refluxing the electrolyte.

【0019】実施例3 本発明の第3実施例を図3に示す。本実施例は上記実施
例2と同様に積層セルのセパレータ1,2縦方向に電解
液層液絡口12を設け各単位セルの電解液保持層3を液
短絡した構造を有している。それに加え、電解液で満た
された前記液絡口21は電池外部の電解液補給タンク1
3と連通している。電池運転中に電池の特性が悪化して
きた場合や、電解液層の抵抗が上昇した場合に、電解液
補給タンク13より電解液の補給を行い電池全体に行き
渡らせる。これにより電池特性を回復したり、電解液層
の抵抗を低減させる効果がある。
Embodiment 3 A third embodiment of the present invention is shown in FIG. This embodiment has a structure in which electrolyte layer junction ports 12 are provided in the longitudinal direction of the separators 1 and 2 of the laminated cell, and the electrolyte holding layer 3 of each unit cell is short-circuited, similar to the above-mentioned embodiment 2. In addition, the liquid junction 21 filled with electrolyte is connected to the electrolyte supply tank 1 outside the battery.
It communicates with 3. When the characteristics of the battery deteriorate during battery operation or when the resistance of the electrolyte layer increases, the electrolyte is replenished from the electrolyte replenishment tank 13 and distributed throughout the battery. This has the effect of restoring battery characteristics and reducing the resistance of the electrolyte layer.

【0020】本実施例では電池を貫通する穴にて電解液
の液絡をとったが、液絡をガス供給のマニホールド内に
共用させればさらに構造の簡略化がなされる。また、電
池の側壁に多孔質のウイックを貼り付けるような電池外
部での液絡構造も考えられる。いずれにしても、各単位
セル間に液絡を設けた構造であればよい。
In this embodiment, a liquid junction for the electrolytic solution is established through a hole penetrating the battery, but the structure can be further simplified if the liquid junction is shared within the gas supply manifold. A liquid junction structure outside the battery, such as a porous wick attached to the side wall of the battery, is also considered. In any case, any structure may be used as long as a liquid junction is provided between each unit cell.

【0021】実施例4 本発明の第4実施例を図4に示す。本実施例は上記実施
例1の並列接続型積層セル(以下並列セルと称す)を直
列に積層した構造を持つ。本実施例は並列セル16,1
7,18を3個積層した例である。個々の並列セルの間
に絶縁層を設けることなく積層してある。直列の積層を
するために各並列セルにおいては上端のセパレータ14
がアノード、下端のセパレータ15がカソードの組合せ
になっており、全体の負荷は上下のセパレータ14,1
5から取り出す。
Embodiment 4 A fourth embodiment of the present invention is shown in FIG. This embodiment has a structure in which the parallel-connected stacked cells (hereinafter referred to as parallel cells) of the first embodiment are stacked in series. In this embodiment, parallel cells 16, 1
This is an example in which three pieces of 7 and 18 are stacked. The individual parallel cells are stacked without providing an insulating layer between them. For serial stacking, each parallel cell has a separator 14 at the upper end.
is the anode, and the separator 15 at the lower end is the cathode, and the entire load is applied to the upper and lower separators 14, 1.
Take it out from 5.

【0022】本実施例は、並列セル16,17,18の
積層化によって大容量化を図ったものである。このよう
に、各並列セルの積層には特別の端子等を設ける必要が
なく従来の積層型電池と同様にスタック化が容易に行え
る。またこのような並列セルの積層構造にすれば、並列
セルを1単位として交換等のメンテナンスを行うことが
できる。
In this embodiment, the capacity is increased by stacking parallel cells 16, 17, and 18. In this way, there is no need to provide special terminals or the like in the stacking of each parallel cell, and stacking can be easily performed in the same way as a conventional stacked battery. In addition, with such a stacked structure of parallel cells, maintenance such as replacement can be performed using the parallel cells as one unit.

【0023】実施例5 本発明の第5実施例を図5に示す。本実施例は上記実施
例1の並列セルにおいて、各単位セル間に短絡防止のた
めの多孔質絶縁板19を配し、並列セル全体を電解液溜
め20に浸した構造を持つ。多孔質絶縁板19は液溜め
20中の電解液を十分吸収し、これまでの実施例1〜4
の電解液層と同様の機能を果たす。ただし、電極中に電
解液が過剰に浸透してしまうことが懸念されるので、ガ
ス拡散性の電極においては供給する反応ガスに一定の圧
力をかけておき、一定量以上の電解液の侵入を防ぐのが
よい。  本実施例は、実施例4と同様に電池全体に電
解液の補給を行う効果があるので、電池運転中に電池の
特性が悪化や、電解液層の抵抗が上昇を防止することが
できる
Embodiment 5 A fifth embodiment of the present invention is shown in FIG. This embodiment has a structure in which a porous insulating plate 19 is arranged between each unit cell to prevent a short circuit in the parallel cell of the first embodiment, and the entire parallel cell is immersed in an electrolyte reservoir 20. The porous insulating plate 19 sufficiently absorbs the electrolyte in the liquid reservoir 20, and the
It performs the same function as the electrolyte layer. However, there is a concern that the electrolyte may excessively permeate into the electrode, so for gas-diffusive electrodes, a certain pressure is applied to the reactant gas to prevent the electrolyte from penetrating beyond a certain amount. It is better to prevent it. This example has the effect of replenishing the electrolyte to the entire battery as in Example 4, so it is possible to prevent the characteristics of the battery from deteriorating and the resistance of the electrolyte layer from increasing during battery operation.

【0024】[0024]

【発明の効果】本発明によれば、大面積のセパレータと
同容量の電池をその何分の一かの面積のセパレータにて
構成できるので、セル面積あたりの出力密度を大きくす
る効果がある。
According to the present invention, a battery having the same capacity as a separator with a large area can be constructed using a separator with a fraction of the area of the separator, which has the effect of increasing the output density per cell area.

【0025】また、本発明は積層したセパレータ間の電
解液保持層を液短絡可能な構造になっているので、セル
間の液短絡による電流リークの影響を抑制することや、
積層セル内の電解液量を積層ブロック全体で管理可能に
することに効果がある。さらに、電解液量の管理のため
に、容易に電解液を補給したり、取り除いたりする機構
を付加することで、電池運転中に電池の特性が悪化して
きた場合や、電解液層の抵抗が上昇した場合に、電池特
性を回復したり、電解液層の抵抗を低減させる効果があ
る。
Furthermore, since the present invention has a structure in which the electrolyte holding layer between the laminated separators can be short-circuited, it is possible to suppress the influence of current leakage due to a liquid short-circuit between cells.
This is effective in making it possible to manage the amount of electrolyte in the laminated cells throughout the laminated block. Furthermore, in order to manage the amount of electrolyte, we added a mechanism to easily replenish or remove the electrolyte, so if the battery characteristics deteriorate during battery operation or if the resistance of the electrolyte layer increases. When it rises, it has the effect of restoring battery characteristics and reducing the resistance of the electrolyte layer.

【0026】また本発明は、フリーボリュームの電解液
溜め中にアノードセパレータ及びカソードセパレータを
浸すことによって、電池の全体構成を簡略化できる効果
がある。
Furthermore, the present invention has the effect of simplifying the overall structure of the battery by immersing the anode separator and cathode separator in a free volume electrolyte reservoir.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す断面図である。FIG. 2 is a sectional view showing another embodiment of the present invention.

【図3】本発明の他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.

【図4】本発明の他の実施例を示す断面図である。FIG. 4 is a sectional view showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す断面図である。FIG. 5 is a sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  アノードセパレータ 2  カソードセパレータ 3  電解液保持層 4  アノードガス供給路 5  カソードガス供給路 6  アノード 7  カソード 8  アノード並列端子 9  カソード並列端子 11  短絡用ターミナル 12  電解液層液絡口 13  電解液補給用タンク 14  アノードセパレータ端板 15  カソードセパレータ端板 16  並列セル第1ブロック 17  並列セル第2ブロック 18  並列セル第3ブロック 19  多孔質絶縁板 20  電解液溜め 1 Anode separator 2 Cathode separator 3 Electrolyte holding layer 4 Anode gas supply path 5 Cathode gas supply path 6 Anode 7 Cathode 8 Anode parallel terminal 9 Cathode parallel terminal 11 Short circuit terminal 12 Electrolyte layer liquid junction 13 Electrolyte replenishment tank 14 Anode separator end plate 15 Cathode separator end plate 16 Parallel cell first block 17 Parallel cell second block 18 Parallel cell 3rd block 19 Porous insulation board 20 Electrolyte reservoir

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】  アノードセパレータ、電解液保持層、
カソードセパレータ、電解液保持層、アノードセパレー
タの順に積層されてアノードセパレータ、電解液保持層
及びカソードセパレータを有して構成されるセルユニッ
トが複数積層されて成り、前記各セルユニット中のセパ
レータの少なくとも2個以上のアノード同士及び/又は
カソード同士を並列に短絡させると共に、前記1つの電
解液保持層は各セルユニット間の電子伝導性に対する絶
縁部材を兼ねさせたことを特徴とする燃料電池。
Claim 1: An anode separator, an electrolyte holding layer,
A cathode separator, an electrolyte holding layer, and an anode separator are stacked in this order, and a plurality of cell units each having an anode separator, an electrolyte holding layer, and a cathode separator are stacked, and at least one of the separators in each cell unit is stacked. A fuel cell characterized in that two or more anodes and/or cathodes are short-circuited in parallel, and the one electrolyte holding layer also serves as an insulating member for electron conductivity between each cell unit.
【請求項2】  請求項1の燃料電池において、並列に
短絡したセパレータ間にある電解液保持層同志を電解液
にて短絡させたことを特徴とする燃料電池。
2. The fuel cell according to claim 1, wherein the electrolyte holding layers between the separators short-circuited in parallel are short-circuited with each other by an electrolyte.
【請求項3】  請求項1又は2の燃料電池において、
積層方向の電解液保持層に接した面あるいは液短絡した
面等の電解液と接触する面に、少なくとも1個以上のガ
ス拡散型電極を設けたことを特徴とする燃料電池。
[Claim 3] The fuel cell according to Claim 1 or 2,
A fuel cell characterized in that at least one gas diffusion type electrode is provided on a surface in contact with an electrolyte, such as a surface in contact with an electrolyte holding layer in a stacking direction or a surface that is short-circuited.
【請求項4】  請求項2の燃料電池において、液絡し
た電解液保持層に一定量の電解液を加えたり、又は取り
除く電解液量調節機構を設けたことを特徴とする燃料電
池。
4. The fuel cell according to claim 2, further comprising an electrolyte amount adjustment mechanism for adding or removing a certain amount of electrolyte from the electrolyte holding layer connected to the liquid junction.
【請求項5】  請求項2の燃料電池において、液絡し
た電解液保持層内を一定量の電解液が還流する還流機構
を設けたことを特徴とする燃料電池。
5. The fuel cell according to claim 2, further comprising a reflux mechanism for refluxing a certain amount of the electrolyte within the electrolyte holding layer which is in liquid junction.
【請求項6】  請求項1の燃料電池において、セパレ
ータ間を並列短絡する端子の取外し又は組替えが可能で
任意のセパレータを全体から切離し可能に形成したこと
を特徴とする燃料電池。
6. The fuel cell according to claim 1, wherein the terminals for short-circuiting the separators in parallel can be removed or rearranged, and any separator can be separated from the whole.
【請求項7】  請求項1〜6の燃料電池において、同
一極同志を並列に短絡したセパレータ群を1ブロックと
し、そのブロックを複数個直列に積層して大容量化した
ことを特徴とする燃料電池。
7. The fuel cell according to claim 1, wherein one block is a group of separators in which the same poles are short-circuited in parallel, and a plurality of the blocks are stacked in series to increase the capacity. battery.
【請求項8】  1個の溶融した電解液溜めの中に一定
の間隙を保って並べた少なくとも1個以上のアノードセ
パレータ及びカソードセパレータを浸し、そのセパレー
タの少なくとも2個以上のアノード同志またはカソード
同志を並列に短絡させた構造を有する電解槽層型の燃料
電池。
8. At least one or more anode separators and cathode separators arranged with a constant gap are immersed in one molten electrolyte reservoir, and at least two or more anodes or cathodes of the separators are separated from each other. An electrolyzer layer type fuel cell has a structure in which two cells are short-circuited in parallel.
【請求項9】  請求項8の燃料電池において、セパレ
ータ間を並列短絡する端子の取外しまたは組替えが可能
で、任意のセパレータを全体から切離し可能に形成した
ことを特徴とする燃料電池。
9. The fuel cell according to claim 8, wherein the terminals that short-circuit the separators in parallel can be removed or rearranged, and any separator can be separated from the whole.
【請求項10】  請求項8又は9の燃料電池において
、1個の電解液溜めの中の並列に短絡したセパレータ群
を1ブロックとし、そのブロックを複数個直列に接続し
て大容量化したことを特徴とする燃料電池。
[Claim 10] In the fuel cell according to claim 8 or 9, a group of separators short-circuited in parallel in one electrolyte reservoir is used as one block, and a plurality of the blocks are connected in series to increase the capacity. A fuel cell featuring:
【請求項11】  請求項8〜10のいずれかの燃料電
池において、複数の電解液溜めにわたり端子を直列結合
させたことを特徴とする燃料電池。
11. The fuel cell according to claim 8, wherein terminals are connected in series across a plurality of electrolyte reservoirs.
JP3068426A 1991-04-01 1991-04-01 Fuel cell Expired - Fee Related JP2612781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068426A JP2612781B2 (en) 1991-04-01 1991-04-01 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068426A JP2612781B2 (en) 1991-04-01 1991-04-01 Fuel cell

Publications (2)

Publication Number Publication Date
JPH04306570A true JPH04306570A (en) 1992-10-29
JP2612781B2 JP2612781B2 (en) 1997-05-21

Family

ID=13373356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068426A Expired - Fee Related JP2612781B2 (en) 1991-04-01 1991-04-01 Fuel cell

Country Status (1)

Country Link
JP (1) JP2612781B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210070A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Fuel cell system and state diagnostic method of fuel cell
US7201981B2 (en) 2002-11-18 2007-04-10 Honda Motor Co., Ltd. Fuel cell stack and method of warming up the same
JP2008300215A (en) * 2007-05-31 2008-12-11 Toyota Motor Corp Fuel cell
WO2009017150A1 (en) * 2007-08-02 2009-02-05 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode, and electronic device
WO2010050553A1 (en) * 2008-10-31 2010-05-06 ソニー株式会社 Fuel cell and electrode used therein and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244955A (en) * 1985-08-23 1987-02-26 Hitachi Ltd Laminated fuel cell
JPS6489150A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Molten carbonate fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244955A (en) * 1985-08-23 1987-02-26 Hitachi Ltd Laminated fuel cell
JPS6489150A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Molten carbonate fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201981B2 (en) 2002-11-18 2007-04-10 Honda Motor Co., Ltd. Fuel cell stack and method of warming up the same
JP2006210070A (en) * 2005-01-26 2006-08-10 Toyota Motor Corp Fuel cell system and state diagnostic method of fuel cell
JP2008300215A (en) * 2007-05-31 2008-12-11 Toyota Motor Corp Fuel cell
WO2009017150A1 (en) * 2007-08-02 2009-02-05 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode, and electronic device
US8871403B2 (en) 2007-08-02 2014-10-28 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode and electronic device
WO2010050553A1 (en) * 2008-10-31 2010-05-06 ソニー株式会社 Fuel cell and electrode used therein and electronic device

Also Published As

Publication number Publication date
JP2612781B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
CA1226031A (en) Liquid fuel cell
US4463066A (en) Fuel cell and system for supplying electrolyte thereto
US4565749A (en) Lightweight bipolar metal-gas battery
KR100534677B1 (en) Fuel cell
JP2650800B2 (en) Gasket for molten carbonate fuel cell
CA1202068A (en) Fuel cell and system for supplying electrolyte thereto utilizing cascade feed
US4614025A (en) Method for making a lightweight bipolar metal-gas battery
US9929452B2 (en) Energy conversion cell having an electrochemical conversion unit
JPS61216248A (en) Fuel cell
JPH04306570A (en) Fuel cell
KR970073698A (en) Solid polymer electrolytic module, manufacturing method and dehumidifier using the same
JP2952966B2 (en) Stack of molten carbonate fuel cell
JP2004512631A (en) Fuel cell arrangement with electrolyte storage tank
JP7208309B1 (en) Secondary battery module
JP2504522B2 (en) Molten carbonate fuel cell
JPS6358768A (en) Fuel cell
JP7253072B2 (en) fuel cell stack
JPS59217958A (en) Device for supplying electrolyte for matrix-type fuel cell
JPH0812784B2 (en) Molten carbonate fuel cell stack
JPH05166522A (en) Fuel cell
JPH05242850A (en) Electrochemical gas compressor
JP2792626B2 (en) Fuel cell device and electrolyte replenishing method therefor
JPH08321318A (en) Electrolyte refilling device of fused carbonate type fuel cell
SE460443B (en) Sealed lead acid storage cell useful for low rate applications
JPH077671B2 (en) Fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees