JPH04305340A - Casting mold for continuous casting and casting method by using the mold - Google Patents

Casting mold for continuous casting and casting method by using the mold

Info

Publication number
JPH04305340A
JPH04305340A JP9351191A JP9351191A JPH04305340A JP H04305340 A JPH04305340 A JP H04305340A JP 9351191 A JP9351191 A JP 9351191A JP 9351191 A JP9351191 A JP 9351191A JP H04305340 A JPH04305340 A JP H04305340A
Authority
JP
Japan
Prior art keywords
mold
ceramic
casting
copper
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9351191A
Other languages
Japanese (ja)
Inventor
Kozo Ota
晃三 太田
Ryoji Baba
良治 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9351191A priority Critical patent/JPH04305340A/en
Publication of JPH04305340A publication Critical patent/JPH04305340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To speedily and stably cast continuously cast billet of small lot or small section while effectively preventing the generation of the drawing mark and to reduce the manufacturing cost. CONSTITUTION:A water cooling casting mold 11 has a straight inner circumferential surface, at whose inner circumferential surface the step is set and a ceramic casting mold 12 is inserted in the above stepped part with shrinkage fitting. And the relation of the heat conductivity (a) and the length of casting mold L1 of the ceramics mold 12 is made to the next integrally in the case that the length of the copper casting mold 11 is L2. If a <=0.006 : (-3.05a+0.386) L2<=L1<=L2, if a>0.06:(-0.124a+0.221) L2<=L1<=L2, here L2<=1000 (mm).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鋼及びNi基合金の表
面欠陥のない小ロット連続鋳造鋳片、または小断面ニア
ネットシェイプ鋳片を製造するのに適した連続鋳造用鋳
型及びこの鋳型を用いた連続鋳造方法に関するものであ
る。
[Industrial Application Field] The present invention relates to a continuous casting mold suitable for producing small-lot continuous casting slabs of steel and Ni-based alloys without surface defects, or small-section near-net-shape slabs, and this mold. This relates to a continuous casting method using.

【0002】0002

【従来の技術】金属の鋳造工程において、省工程、省エ
ネルギーを目的に連続鋳造化が図られている。しかし、
小断面鋳片を鋳造する場合、浸漬ノズルを用いた連続鋳
造法では、ノズル詰まりを起こして鋳造不可能となる。 そこで、図10に示すように、タンディッシュ4と鋳型
1を直結した連続鋳造法が考案された。
BACKGROUND OF THE INVENTION Continuous casting has been attempted in the metal casting process for the purpose of saving process and energy. but,
When casting small-section slabs, continuous casting using a submerged nozzle clogs the nozzle, making casting impossible. Therefore, as shown in FIG. 10, a continuous casting method was devised in which the tundish 4 and the mold 1 were directly connected.

【0003】このタンディッシュ−鋳型直結式連続鋳造
法は、パウダーの巻き込みがなく、清浄な鋳片が得られ
、小ロットの連続鋳造鋳片の製造にも適している。しか
し、水冷銅鋳型(以下単に「銅鋳型」という)1と接続
リング2の接点で凝固シェルが生成し、引抜マークM(
図11参照)という鋳片欠陥となる。この欠陥はそのま
ま製品欠陥となるので、切削除去する必要がある。なお
、図10及び図11中の3は溶湯供給耐火物、5は溶湯
、6は鋳片、7は鋳片引抜装置、8は凝固シェルを示す
[0003] This tundish-mold direct connection type continuous casting method does not involve powder and produces clean slabs, and is suitable for producing small lots of continuously cast slabs. However, a solidified shell is generated at the contact point between the water-cooled copper mold (hereinafter simply referred to as "copper mold") 1 and the connecting ring 2, and the pull-out mark M (
This results in a slab defect (see Fig. 11). Since this defect directly becomes a product defect, it is necessary to remove it. In addition, in FIGS. 10 and 11, 3 indicates a molten metal supply refractory, 5 indicates a molten metal, 6 indicates a slab, 7 indicates a slab drawing device, and 8 indicates a solidified shell.

【0004】タンディッシュ−鋳型直結式連続鋳造の引
抜マーク発生防止策の1つとして、セラミックス鋳型を
銅鋳型に内挿する方法が採用されている。例えば、特開
昭52−50929号公報には耐火物と黒鉛管を内挿し
た鋳型、また特開昭58−151939号公報には耐熱
、潤滑、耐食性サーメット導管−鋳型で鋼の鋳造が可能
であることが示されている。更に、特開昭64−277
43号公報にはセラミックスの耐熱衝撃性を向上させる
ために焼き嵌め等の方法で内挿セラミックス材に圧縮応
力を加える方法が、特開平1−286967号公報には
熱衝撃抵抗性、熱応力抵抗性に優れた銅鋳型に内挿する
セラミックス鋳型の製造方法が記載されている。
[0004] As one measure to prevent the occurrence of pull-out marks in tundish-mold direct connection type continuous casting, a method has been adopted in which a ceramic mold is inserted into a copper mold. For example, JP-A-52-50929 discloses a mold with a refractory and graphite tube inserted therein, and JP-A-58-151,939 discloses a heat-resistant, lubricating, and corrosion-resistant cermet conduit mold that can be used to cast steel. It has been shown that there is. Furthermore, JP-A-64-277
Publication No. 43 describes a method of applying compressive stress to an inserted ceramic material by a method such as shrink fitting in order to improve the thermal shock resistance of ceramics, and JP-A-1-286967 discloses a method of applying compressive stress to an inserted ceramic material in order to improve the thermal shock resistance of ceramics. A method for manufacturing a ceramic mold that is inserted into a copper mold with excellent properties is described.

【0005】セラミックス鋳型を使用する理由は、冷却
を緩和してセラミックス鋳型内で凝固シェルを生成させ
ることであり、その効果として三菱製鋼技報Vol.1
9 No.1.2(1985)に記載されているように
、引抜マークが軽減する。
The reason for using a ceramic mold is to moderate cooling and generate a solidified shell within the ceramic mold, and this effect is described in Mitsubishi Steel Technical Report Vol. 1
9 No. 1.2 (1985), the pull-out marks are reduced.

【0006】[0006]

【発明が解決しようとする課題】上記したように、タン
ディッシュと鋳型を直結する鋼あるいはNi基合金の連
続鋳造法において、鋳片の表面欠陥を防止する為、例え
ば図12に示すように銅鋳型1に内挿したセラミックス
鋳型1’を使用し、セラミックス鋳型1’内で凝固シェ
ルを生成させることが提案されている。ここで、セラミ
ックス鋳型1’を銅鋳型1に内挿するのは、凝固時の顕
熱と潜熱を同時に奪う必要があるからである。
[Problems to be Solved by the Invention] As mentioned above, in the continuous casting method of steel or Ni-based alloy in which the tundish and the mold are directly connected, in order to prevent surface defects of the slab, for example, as shown in FIG. It has been proposed to use a ceramic mold 1' inserted into the mold 1 and to generate a solidified shell within the ceramic mold 1'. Here, the reason why the ceramic mold 1' is inserted into the copper mold 1 is that it is necessary to simultaneously remove sensible heat and latent heat during solidification.

【0007】しかし、従来からあった図13に示すよう
な銅鋳型1の全長にわたってセラミックス鋳型1’を内
挿した構造の鋳型では、 ■  セラミックス鋳型1’にかかるコストが高い。 ■  セラミックスは一般に熱伝導率が低いため、鋳造
速度を上げることができない。 ■  鋳造中に銅鋳型1の膨張に伴い、セラミックス鋳
型1’が沈下する。等の問題点が挙げられる。
However, in a conventional mold having a structure in which a ceramic mold 1' is inserted over the entire length of a copper mold 1 as shown in FIG. 13, (1) the cost of the ceramic mold 1' is high. ■ Ceramics generally have low thermal conductivity, so casting speeds cannot be increased. (2) As the copper mold 1 expands during casting, the ceramic mold 1' sinks. There are problems such as:

【0008】そこで上記の問題点を解決するために、図
14に示す如く、銅鋳型1の内周面に段差を設けてこの
段差にセラミックス鋳型1’を載せ、セラミックス鋳型
長を短縮することが考えられる。この構造を用いれば、
セラミックス鋳型1’にかかるコストの削減は勿論のこ
と、セラミックスの下側の銅鋳型1で凝固シェルが補強
できるため鋳造速度を上げることができる。更にセラミ
ック鋳型1’が銅鋳型1内に沈下することもない。
In order to solve the above problem, it is possible to shorten the length of the ceramic mold by providing a step on the inner peripheral surface of the copper mold 1 and placing the ceramic mold 1' on the step, as shown in FIG. Conceivable. Using this structure,
Not only can the cost of the ceramic mold 1' be reduced, but also the casting speed can be increased because the solidified shell can be reinforced by the copper mold 1 below the ceramic. Furthermore, the ceramic mold 1' does not sink into the copper mold 1.

【0009】しかし、このような構造では、■  鋳造
速度が高すぎると凝固シェルの生成位置が下降し、セラ
ミックス鋳型1’と銅鋳型1の接点(図14にAで示す
)で凝固シェルが生成してこの接続段差がそのまま製品
欠陥として残るため、これを切削除去する必要が生じる
。 従って、セラミックス鋳型長を短縮しすぎると図13に
示す構造の鋳型よりも鋳造速度を上げることができなく
なる。また鋳造速度が低すぎると、セラミックス鋳型1
’と接続リング2の接点(図14にBで示す)で凝固シ
ェルが生成し、やはり鋳片の切削手入が必要となる。 ■  銅鋳型1の方がセラミックス鋳型1’よりも熱膨
張が大きい為、鋳造中に銅−セラミックス間に隙間が生
じて熱伝導が悪くなり、凝固速度が小さくなるため、鋳
造速度を上げることができなくなる。等の問題点が挙げ
られる。
However, in such a structure, (1) If the casting speed is too high, the position where the solidified shell is generated will fall, and the solidified shell will be generated at the contact point between the ceramic mold 1' and the copper mold 1 (indicated by A in FIG. 14). Since this connection step remains as it is as a product defect, it becomes necessary to cut and remove it. Therefore, if the length of the ceramic mold is too short, it becomes impossible to increase the casting speed compared to the mold having the structure shown in FIG. Also, if the casting speed is too low, the ceramic mold 1
A solidified shell is generated at the contact point between ' and the connecting ring 2 (indicated by B in FIG. 14), and cutting of the slab is still required. ■ Copper mold 1 has a larger thermal expansion than ceramic mold 1', so a gap is created between the copper and ceramics during casting, resulting in poor heat conduction and a slow solidification rate, making it difficult to increase the casting speed. become unable. There are problems such as:

【0010】従って、上記課題に対処するためには、セ
ラミックス鋳型の材質(熱伝導率)及びその長さと鋳造
速度の関係を明らかにし、かつ、銅−セラミックス間の
隙間を防止する必要があり、かかる観点から、本出願人
は特願平2−412494号に記載の発明を提案した。
[0010] Therefore, in order to deal with the above problems, it is necessary to clarify the relationship between the material (thermal conductivity) of the ceramic mold, its length, and casting speed, and to prevent gaps between copper and ceramics. From this viewpoint, the present applicant proposed the invention described in Japanese Patent Application No. 2-412494.

【0011】しかし、セラミックス鋳型の材質には、同
じ熱伝導率でも密度や比熱の異なるものが存在し、熱伝
導率のみを考慮したのでは十分でないことがその後の研
究で明らかとなった。
[0011] However, there are materials for ceramic molds that have the same thermal conductivity but different densities and specific heats, and subsequent research has revealed that considering only thermal conductivity is not sufficient.

【0012】本発明は、熱伝導率に代えて温度伝導率を
考慮することにより、タンディッシュと直結した鋳型を
用いて鋼あるいはNi基合金を連続鋳造するに際し、高
速で表面欠陥のない鋳片の鋳造と、鋳型材料コストの低
減を可能とする連続鋳造用鋳型及びこの鋳型を用いた連
続鋳造方法を提供することを目的としている。
By considering temperature conductivity instead of thermal conductivity, the present invention enables continuous casting of steel or Ni-based alloy using a mold directly connected to a tundish at high speed and without surface defects. The object of the present invention is to provide a continuous casting mold that enables casting of the present invention and reduction of mold material costs, and a continuous casting method using this mold.

【0013】[0013]

【課題を解決するための手段】本発明者らは、銅鋳型の
内周面に段差を設け、この段差にセラミックス鋳型を載
せた図14に示す構造の鋳型において、セラミックス鋳
型材質(温度伝導率)とその長さ及び鋳造速度を種々変
更させて引抜マークの生成の有無と引抜に耐えられる凝
固シェル厚さの確保の可否を調査した。また鋳造速度は
鋳型径及び鋳型長に大きく左右されるため、図13に示
す構造の鋳型で、鋳型長L及び鋳型径dを種々変更させ
て凝固シェル厚が薄くなって鋳片の引抜ができなくなる
限界鋳造速度Vcma を調査した。
[Means for Solving the Problems] The present inventors have developed a mold having the structure shown in FIG. 14, in which a step is provided on the inner circumferential surface of a copper mold and a ceramic mold is placed on the step. ), its length and casting speed were varied to investigate whether or not pull-out marks were generated and whether a solidified shell thickness capable of withstanding pull-out could be secured. In addition, since the casting speed is greatly affected by the mold diameter and mold length, with a mold having the structure shown in Fig. 13, by variously changing the mold length L and mold diameter d, the solidified shell thickness becomes thinner and the slab can be drawn. The critical casting speed Vcma at which it disappears was investigated.

【0014】その結果、種々のセラミックス材質(温度
伝導率a)において、セラミックス鋳型長L1 (mm
)と銅鋳型長L2 (mm)(図14参照)の比L1 
/L2 と、鋳造速度Vcと図13の構造の鋳型におけ
る限界鋳造速度Vcma の比Vc/Vcma の間に
は引抜マークレスとなる領域があり、また、ある程度ま
でセラミックス鋳型長を短縮した方が引抜マークレスと
なる限界鋳造速度VClimは上昇することが判明した
As a result, for various ceramic materials (temperature conductivity a), the ceramic mold length L1 (mm
) and copper mold length L2 (mm) (see Figure 14) ratio L1
/L2 and the ratio Vc/Vcma of the casting speed Vc and the critical casting speed Vcma of the mold with the structure shown in FIG. It was found that the critical casting speed VClim at which marklessness occurs increases.

【0015】以下に本発明の考え方をセラミックス鋳型
にSi3N4 鋳型、BN鋳型、グラファイト鋳型を用
いた場合を例にして述べる。図2〜図4はそれぞれ図1
3に示す構造の鋳型で、Si3N4 鋳型(a=0.0
48 m2 /hr)、BN鋳型(a=0.297 )
、グラファイト鋳型(a=0.490 )(但し、aは
0℃の時の値)を使用した時の鋳型長L及び鋳型径dと
限界鋳造速度Vcma の関係である。これによればど
の鋳型においても鋳型長が長くなるに従い、また鋳型径
が小さくなるに従い、限界鋳造速度Vcma は増加す
ることがわかる。このように各セラミックス鋳型材質(
温度伝導率)、鋳型径、鋳型長における限界鋳造速度V
cma を限定することができる。
The concept of the present invention will be described below using examples in which a Si3N4 mold, a BN mold, and a graphite mold are used as ceramic molds. Figures 2 to 4 are Figure 1, respectively.
3, the Si3N4 mold (a=0.0
48 m2/hr), BN mold (a=0.297)
, is the relationship between the mold length L, the mold diameter d, and the limit casting speed Vcma when a graphite mold (a=0.490) (a is the value at 0° C.) is used. According to this, it can be seen that in any mold, as the mold length becomes longer and as the mold diameter becomes smaller, the critical casting speed Vcma increases. In this way, each ceramic mold material (
temperature conductivity), mold diameter, and critical casting speed V at mold length
cma can be limited.

【0016】図5〜図7はそれぞれ、Si3N4 鋳型
(a=0.048 m2 /hr)、BN鋳型(a=0
.297 )、グラファイト鋳型(a=0.490 )
(但し、aは0℃の時の値)使用時のL1 /L2 と
Vc/Vcma (以下「鋳造速度比」と呼ぶ)の関係
を示したものである。ここで、L1 /L2 =1とは
銅鋳型の全長にわたってセラミックス鋳型を内挿する場
合であり、L1 /L2 =0とはセラミックス鋳型を
内挿しない場合である。
[0016] Figures 5 to 7 show the Si3N4 mold (a=0.048 m2/hr) and the BN mold (a=0
.. 297), graphite mold (a=0.490)
(However, a is the value at 0° C.) The relationship between L1/L2 and Vc/Vcma (hereinafter referred to as "casting speed ratio") during use is shown. Here, L1 /L2 = 1 means that the ceramic mold is inserted over the entire length of the copper mold, and L1 /L2 = 0 means that the ceramic mold is not inserted.

【0017】図5〜図7における線■はセラミックス鋳
型と銅鋳型の継目に凝固シェルが生成する限界鋳造速度
比Vcmax1/Vcma を示すものである。この線
■より鋳造速度比が小さい場合には凝固シェルはセラミ
ックス鋳型と銅鋳型の継目より上で生成する。
Line 2 in FIGS. 5 to 7 indicates the critical casting speed ratio Vcmax1/Vcma at which a solidified shell is formed at the joint between the ceramic mold and the copper mold. When the casting speed ratio is smaller than this line (■), a solidified shell is generated above the joint between the ceramic mold and the copper mold.

【0018】図5〜図7の線■はセラミックス鋳型と接
続耐火物の継目に凝固シェルが生成する限界の鋳造速度
比Vcmin /Vcma を示す。この線■より鋳造
速度比が大きい場合には凝固シェルはセラミックス鋳型
と接続耐火物の継目より下で生成する。
Line (2) in FIGS. 5 to 7 indicates the critical casting speed ratio Vcmin/Vcma at which a solidified shell is formed at the joint between the ceramic mold and the connecting refractory. When the casting speed ratio is larger than this line (■), a solidified shell is generated below the joint between the ceramic mold and the connecting refractory.

【0019】図5〜図7の線■は凝固シェル厚が薄くな
り鋳片の引抜ができなくなる限界鋳造速度比Vcmax
2/Vcma を示すものである。この線■より鋳造速
度比が小さい場合には凝固シェルの強度はセラミックス
への固着力よりも大きくなりブレークアウト等のトラブ
ルなく安定して鋳造することができる。なおL1 /L
2 =0の時(セラミックス鋳型を使用しない時)は鋳
造速度比に関係なく引抜マークが生成する。
The line (■) in FIGS. 5 to 7 indicates the critical casting speed ratio Vcmax at which the solidified shell thickness becomes thinner and the slab cannot be pulled out.
2/Vcma. When the casting speed ratio is smaller than this line (2), the strength of the solidified shell is greater than the adhesion force to the ceramic, and stable casting can be performed without troubles such as breakouts. Furthermore, L1/L
When 2 = 0 (when no ceramic mold is used), pull-out marks are generated regardless of the casting speed ratio.

【0020】以上より引抜マークのない鋳片をブレーク
アウト等のトラブルなく鋳造する事ができる領域は図5
〜図7の右上り斜線で示す領域であることが判明した。 またさらにSi3N4 鋳型、BN鋳型、グラファイト
鋳型のいずれの場合もL1 /L2 =1の時の最大鋳
造速度よりも大きい鋳造速度で鋳造することのできるL
1 /L2 の領域(図5〜図7の右下がり斜線で示す
領域、以下「A領域」と呼ぶ)が存在することが判明し
た。
From the above, the area in which slabs without drawing marks can be cast without problems such as breakouts is shown in Figure 5.
It turned out that this was the area indicated by diagonal lines on the upper right side of FIG. Furthermore, in the case of Si3N4 mold, BN mold, and graphite mold, casting can be performed at a casting speed higher than the maximum casting speed when L1 /L2 = 1.
It was found that a region of 1/L2 (the region indicated by diagonal lines downward to the right in FIGS. 5 to 7, hereinafter referred to as "A region") exists.

【0021】図8は種々のセラミックス鋳型材質のA領
域におけるL1 /L2 の最小値とセラミックスの温
度伝導率の関係を示したものであり、図8の線■は下記
の数式3で表される。
FIG. 8 shows the relationship between the minimum value of L1 /L2 in region A of various ceramic mold materials and the temperature conductivity of ceramics, and the line ■ in FIG. 8 is expressed by the following equation 3. .

【0022】[0022]

【数3】 a≦0.06の場合:L1 /L2 =−3.05a+
0.386a>0.06の場合:L1 /L2 =−0
.124 a+0.221但し、a:セラミックス鋳型
の温度伝導率(at0℃)(m2 /hr) L1 :セラミックス鋳型長(mm) L2 :銅鋳型長(mm)
[Math. 3] When a≦0.06: L1 /L2 = -3.05a+
If 0.386a>0.06: L1 /L2 = -0
.. 124 a+0.221 However, a: Temperature conductivity of ceramic mold (at0℃) (m2/hr) L1: Ceramic mold length (mm) L2: Copper mold length (mm)

【0023】一方、図14に示す構造の鋳型では、鋳造
中に銅−セラミックスの熱膨張差により、銅−セラミッ
クス間に隙間が生じ、温度伝導が悪くなって凝固速度が
小さくなるため、鋳造速度を上げることができなくなる
。そこでセラミックス鋳型と銅鋳型の嵌合を鋳造中の銅
鋳型加熱温度以上で焼き嵌めを施せば、前記問題点を解
決できることが判明した。
On the other hand, in the mold having the structure shown in FIG. 14, a gap is created between the copper and the ceramics due to the difference in thermal expansion between the copper and the ceramics during casting, which deteriorates temperature conduction and reduces the solidification rate. become unable to raise it. Therefore, it has been found that the above-mentioned problem can be solved by performing shrink fitting between the ceramic mold and the copper mold at a temperature higher than the heating temperature of the copper mold during casting.

【0024】そこで本発明者らはセラミックスの温度伝
導率a(m2 /hr)と鋳造中の銅鋳型加熱温度Tc
u(℃)の関係を調査した。その結果を図9に示す。こ
こで銅鋳型温度はセラミックスの温度伝導率の関数とし
て下記の数式4のように表される。
Therefore, the present inventors determined the temperature conductivity a (m2/hr) of ceramics and the copper mold heating temperature Tc during casting.
The relationship between u (°C) was investigated. The results are shown in FIG. Here, the copper mold temperature is expressed as a function of the temperature conductivity of ceramics as shown in Equation 4 below.

【0025】[0025]

【数4】a≦0.06の場合:Tcu=2554.9a
+42.4a>0.06の場合:Tcu=103.6 
a+179.2
[Formula 4] When a≦0.06: Tcu=2554.9a
+42.4a>0.06: Tcu=103.6
a+179.2

【0026】以上の事実より本発明者ら
は以下に述べる本発明を完成したのである。すなわち、
第1の本発明に係る連続鋳造用鋳型は、タンディッシュ
に直結され、内周面がストレートでかつその内周面に段
差を設けた水冷銅鋳型の前記段差部にセラミックス鋳型
を焼き嵌めにて内挿すると共に、セラミックス鋳型の温
度伝導率a(m2 /hr)とセラミックス鋳型長L1
 (mm)の関係が、銅鋳型長をL2 (mm)とした
場合、下記の数式5を満足することを要旨としているの
である。
Based on the above facts, the present inventors have completed the present invention described below. That is,
The continuous casting mold according to the first aspect of the present invention is a water-cooled copper mold that is directly connected to a tundish and has a straight inner circumferential surface and a step on the inner circumferential surface. In addition to interpolation, the temperature conductivity a (m2/hr) of the ceramic mold and the ceramic mold length L1
(mm), the gist is that the following formula 5 is satisfied when the length of the copper mold is L2 (mm).

【0027】[0027]

【数5】   a≦0.06の場合:(−3.05a+0.386
)L2 ≦L1 ≦L2   a>0.06の場合:(
−0.124 a+0.221)L2 ≦L1 ≦L2
 ただし、L2 ≦1000(mm)
[Math. 5] When a≦0.06: (-3.05a+0.386
) L2 ≦L1 ≦L2 If a>0.06: (
-0.124 a+0.221) L2 ≦L1 ≦L2
However, L2 ≦1000 (mm)

【0028】また、第2の本発明に係る連続鋳造用鋳型
は、前記第1の本発明を構成するセラミックス鋳型と水
冷銅鋳型の嵌合を、下記の数式6を満足する焼き嵌め温
度Ty(℃)で行うことを要旨としているのである。
Furthermore, the continuous casting mold according to the second aspect of the present invention has a shrink-fitting temperature Ty( The gist of this is to conduct the test at a temperature of

【0029】[0029]

【数6】a≦0.06の場合:Ty≧2554.9a+
42.4a>0.06の場合:Ty≧103.6 a+
179.2
[Formula 6] When a≦0.06: Ty≧2554.9a+
42.4a>0.06: Ty≧103.6 a+
179.2

【0030】また、本発明に係る連続鋳造方
法は、前記第1又は2の本発明に係る連続鋳造用鋳型に
、タンディッシュから接続リングを介して溶湯を連続的
に供給することを要旨としているのである。
Further, the continuous casting method according to the present invention is characterized in that molten metal is continuously supplied from the tundish to the continuous casting mold according to the first or second aspect of the present invention via the connecting ring. It is.

【0031】[0031]

【作用】本発明に係る連続鋳造用鋳型によれば、銅鋳型
の段差部にセラミックス鋳型を内挿し、かつこれら両鋳
型を焼嵌めしているため、鋳造中にセラミックス鋳型が
沈むことがなく、引抜マークの発生を効果的に防止しつ
つ鋼あるいはNi基合金を高速で連続的に鋳造すること
ができ、かつセラミックス鋳型にかかるコストを削減す
ることができる。
[Function] According to the continuous casting mold according to the present invention, the ceramic mold is inserted into the stepped portion of the copper mold and both molds are shrink-fitted, so that the ceramic mold does not sink during casting. Steel or Ni-based alloy can be cast continuously at high speed while effectively preventing the occurrence of pull-out marks, and the cost of ceramic molds can be reduced.

【0032】[0032]

【実施例】以下、本発明を図1に示す一実施例に基づい
て説明する。図1は本発明にかかる連続鋳造用鋳型の構
成を示す要部断面図であり、11がストレートな内周面
に段差を付与された銅鋳型、12がこの銅鋳型11と嵌
合するセラミックス鋳型であり、その外周面はストレー
トである。そしてこれら銅鋳型11とセラミックス鋳型
12は連続鋳造時における溶湯熱によっても銅−セラミ
ックス間に隙間が生じることがないように所定の温度以
上で焼き嵌めされている。
[Embodiment] The present invention will be explained below based on an embodiment shown in FIG. FIG. 1 is a cross-sectional view of a main part showing the configuration of a continuous casting mold according to the present invention, in which 11 is a copper mold with a straight inner peripheral surface provided with a step, and 12 is a ceramic mold that fits into this copper mold 11. , and its outer peripheral surface is straight. The copper mold 11 and the ceramic mold 12 are shrink-fitted at a predetermined temperature or higher so that no gap is created between the copper and ceramics even by the heat of the molten metal during continuous casting.

【0033】次にこの図1に示す構成の鋳型を、図12
に示した方法で設置し、連続鋳造した場合について説明
する。なお、比較として銅鋳型の全長にわたってセラミ
ックス鋳型を内挿した構造の鋳型を用いた場合及び銅鋳
型にセラミックス鋳型を焼き嵌めを施さずに内挿した場
合についても併せて説明する。
Next, the mold having the configuration shown in FIG.
We will explain the case of installing and continuous casting using the method shown in . For comparison, a case where a mold having a structure in which a ceramic mold is inserted over the entire length of a copper mold is used, and a case where a ceramic mold is inserted into a copper mold without shrink fitting will also be described.

【0034】セラミックス鋳型12は内径がφ100 
〜300 mmで、肉厚は10mm、銅鋳型11は上端
の肉厚が10mmである。また銅鋳型11の長さは20
0 〜1000mmとし、セラミックス鋳型12の長さ
と銅鋳型11の上端から内周面の段差までの長さは種々
変更した。鋳造金属はSUS304ステンレス鋼とイン
コネル625 であり、タンディッシュ4内の溶湯温度
は液相線温度より40〜50℃高くした。そして引抜サ
イクルは100cpmで間欠引抜として鋳造速度をセラ
ミックス鋳型12の材質に応じて種々変更した。下記表
1には比較例における実施時の条件を、下記表2には比
較例におけるその結果を、下記表3には本発明例におけ
る実施時の条件を、下記表4にはその結果を示す。
[0034] The inner diameter of the ceramic mold 12 is φ100.
~300 mm, and the wall thickness is 10 mm, and the upper end of the copper mold 11 has a wall thickness of 10 mm. Also, the length of the copper mold 11 is 20
The length of the ceramic mold 12 and the length from the upper end of the copper mold 11 to the step on the inner peripheral surface were varied. The cast metals were SUS304 stainless steel and Inconel 625, and the temperature of the molten metal in the tundish 4 was set 40 to 50°C higher than the liquidus temperature. The drawing cycle was 100 cpm with intermittent drawing, and the casting speed was varied depending on the material of the ceramic mold 12. Table 1 below shows the conditions during the implementation in the comparative example, Table 2 below shows the results in the comparative example, Table 3 below shows the conditions during the implementation in the example of the present invention, and Table 4 below shows the results. .

【0035】[0035]

【表1】[Table 1]

【0036】[0036]

【表2】[Table 2]

【0037】[0037]

【表3】[Table 3]

【0038】[0038]

【表4】[Table 4]

【0039】比較例1〜6は銅鋳型の全長にわたってセ
ラミックス鋳型を内挿した構造の鋳型を用いて鋳造した
場合であるが、いずれも鋳造速度が限界鋳造速度Vcm
a 以上であったため凝固シェルの強度が十分でなく、
鋳型下部よりブレークアウトした。
Comparative Examples 1 to 6 are cases in which casting was performed using a mold having a structure in which a ceramic mold was inserted over the entire length of the copper mold, but in all cases, the casting speed was lower than the limit casting speed Vcm.
Since the strength of the solidified shell was not sufficient,
Breakout occurred from the bottom of the mold.

【0040】比較例7〜12及び19、20はセラミッ
クス鋳型長がA領域での最小セラミックス鋳型長よりも
短く、かつ鋳造速度が限界鋳造速度Vcma以上であっ
たため、セラミックス鋳型と銅鋳型の継目で凝固シェル
が生成し、鋳片表面に引抜マークが観察された。
[0040] In Comparative Examples 7 to 12, 19, and 20, the ceramic mold length was shorter than the minimum ceramic mold length in area A, and the casting speed was higher than the critical casting speed Vcma. A solidified shell was formed and pull-out marks were observed on the surface of the slab.

【0041】比較例13〜18は銅−セラミックス鋳型
に焼き嵌めを施さなかったため、銅−セラミックス間に
隙間が生じて熱伝導が悪くなり、かつ鋳造速度が限界鋳
造速度Vcma 以上であったため、凝固シェルの強度
が十分でなく鋳型下部よりブレークアウトした。
In Comparative Examples 13 to 18, the copper-ceramics mold was not shrink-fitted, so a gap was created between the copper and ceramics, resulting in poor heat conduction, and the casting speed was higher than the critical casting speed Vcma, resulting in solidification. The shell was not strong enough and broke out from the bottom of the mold.

【0042】これに対し、本発明例ではいずれも表面性
状の良好な鋳片を限界鋳造速度Vcma 以上の速度で
トラブルなく鋳造することができ、セラミックス鋳型に
かかるコストも大幅に削減することができた。
On the other hand, in all of the examples of the present invention, slabs with good surface properties can be cast without trouble at a speed higher than the critical casting speed Vcma, and the cost of ceramic molds can be significantly reduced. Ta.

【0043】比較例19、20と本発明例27は同じ熱
伝導率でも温度伝導率の違いによって実験結果が異なる
場合であり、この実験結果より、熱伝導率のみの考慮で
はなく、温度伝導率を考慮する必要があることが判る。
Comparative Examples 19 and 20 and Inventive Example 27 have different experimental results due to differences in temperature conductivity even though they have the same thermal conductivity.From these experimental results, it is clear that not only the thermal conductivity was taken into account, but also the temperature conductivity It turns out that it is necessary to take this into consideration.

【0044】[0044]

【発明の効果】以上説明したように本発明によれば、引
抜マークの発生を効果的に防止しつつ鋼あるいはNi基
合金の小ロット連続鋳造鋳片、または小断面の鋳片を高
速で安定して連続鋳造することができ、省工程、省エネ
ルギーによって製造コストの著しい低減が可能となった
As explained above, according to the present invention, small-lot continuously cast slabs of steel or Ni-based alloys or slabs with small cross sections can be stably cast at high speed while effectively preventing the occurrence of pull-out marks. Continuous casting can be carried out, and manufacturing costs can be significantly reduced due to process and energy savings.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明鋳型の要部断面図である。FIG. 1 is a sectional view of essential parts of a mold according to the present invention.

【図2】図13の構造の鋳型において、セラミックス鋳
型としてSi3N4 鋳型を用いた場合の鋳型長、鋳型
径と限界鋳造速度の関係図である。
FIG. 2 is a relationship diagram of the mold length, mold diameter, and limit casting speed when a Si3N4 mold is used as the ceramic mold in the mold having the structure shown in FIG. 13;

【図3】図13の構造の鋳型において、セラミックス鋳
型としてBN鋳型を用いた場合の鋳型長、鋳型径と限界
鋳造速度の関係図である。
3 is a relationship diagram of the mold length, mold diameter, and limit casting speed when a BN mold is used as the ceramic mold in the mold having the structure shown in FIG. 13; FIG.

【図4】図13の構造の鋳型において、セラミックス鋳
型としてグラファイト鋳型を用いた場合の鋳型長、鋳型
径と限界鋳造速度の関係図である。
4 is a relationship diagram of the mold length, mold diameter, and limit casting speed when a graphite mold is used as the ceramic mold in the mold having the structure shown in FIG. 13; FIG.

【図5】図13の構造の鋳型において、セラミックス鋳
型としてSi3N4 鋳型を用いた場合のL1 /L2
 と鋳造速度比の関係図である。
[Fig. 5] L1/L2 when a Si3N4 mold is used as the ceramic mold in the mold having the structure shown in Fig. 13.
FIG.

【図6】図13の構造の鋳型において、セラミックス鋳
型としてBN鋳型を用いた場合のL1 /L2 と鋳造
速度比の関係図である。
6 is a diagram showing the relationship between L1/L2 and casting speed ratio when a BN mold is used as the ceramic mold in the mold having the structure shown in FIG. 13; FIG.

【図7】図13の構造の鋳型において、セラミックス鋳
型としてグラファイト鋳型を用いた場合のL1 /L2
 と鋳造速度比の関係図である。
[Fig. 7] L1/L2 when a graphite mold is used as the ceramic mold in the mold having the structure shown in Fig. 13.
FIG.

【図8】セラミックス温度伝導率と図5〜図7より求め
たA領域におけるセラミックス鋳型長と銅鋳型長の比の
最小値の関係図である。
FIG. 8 is a diagram showing the relationship between ceramic temperature conductivity and the minimum value of the ratio of ceramic mold length to copper mold length in region A determined from FIGS. 5 to 7. FIG.

【図9】セラミックス温度伝導率と鋳造中銅鋳型加熱温
度の関係図である。
FIG. 9 is a diagram showing the relationship between ceramic temperature conductivity and copper mold heating temperature during casting.

【図10】タンディッシュ−鋳型直結式連続鋳造法の説
明図である。
FIG. 10 is an explanatory diagram of a tundish-mold direct connection type continuous casting method.

【図11】引抜マークの説明図である。FIG. 11 is an explanatory diagram of a pull-out mark.

【図12】銅鋳型にセラミックス鋳型を内挿する形式の
鋳型の説明図である。
FIG. 12 is an explanatory diagram of a mold in which a ceramic mold is inserted into a copper mold.

【図13】銅鋳型の全長にわたってセラミックス鋳型を
内挿する形式の鋳型の説明図である。
FIG. 13 is an explanatory view of a mold in which a ceramic mold is inserted over the entire length of a copper mold.

【図14】銅鋳型の内周面に段差を設け、その段差にセ
ラミックス鋳型を載せセラミックス鋳型長を短縮した形
式の鋳型の説明図である。
FIG. 14 is an explanatory view of a mold in which a step is provided on the inner peripheral surface of a copper mold, and a ceramic mold is placed on the step to shorten the length of the ceramic mold.

【符号の説明】[Explanation of symbols]

11  銅鋳型 12  セラミックス鋳型 11 Copper mold 12 Ceramics mold

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  タンディッシュに直結され、内周面が
ストレートでかつその内周面に段差を設けた水冷銅鋳型
の前記段差部にセラミックス鋳型を焼き嵌めにて内挿す
ると共に、セラミックス鋳型の温度伝導率a(m2 /
hr)とセラミックス鋳型長L1 (mm)の関係が、
銅鋳型長をL2 (mm)とした場合、下記の数式1を
満足することを特徴とする連続鋳造用鋳型。 【数1】   a≦0.06の場合:(−3.05a+0.386
)L2 ≦L1 ≦L2   a>0.06の場合:(
−0.124 a+0.221)L2 ≦L1 ≦L2
 ただし、L2 ≦1000(mm)
1. A ceramic mold is inserted by shrink fitting into the stepped portion of a water-cooled copper mold that is directly connected to a tundish and has a straight inner circumferential surface and a step on the inner circumferential surface. Temperature conductivity a(m2/
The relationship between hr) and ceramic mold length L1 (mm) is
A continuous casting mold, characterized in that it satisfies the following formula 1, where the length of the copper mold is L2 (mm). [Math. 1] When a≦0.06: (-3.05a+0.386
) L2 ≦L1 ≦L2 If a>0.06: (
-0.124 a+0.221) L2 ≦L1 ≦L2
However, L2 ≦1000 (mm)
【請求項2】  セラミックス鋳型と水冷銅鋳型の嵌合
を、下記の数式2を満足する焼き嵌め温度Ty(℃)で
行うことを特徴とする請求項1の連続鋳造用鋳型。 【数2】a≦0.06の場合:Ty≧2554.9a+
42.4a>0.06の場合:Ty≧103.6 a+
179.2
2. The continuous casting mold according to claim 1, wherein the ceramic mold and the water-cooled copper mold are fitted at a shrink-fitting temperature Ty (° C.) that satisfies the following formula 2. [Math. 2] When a≦0.06: Ty≧2554.9a+
42.4a>0.06: Ty≧103.6 a+
179.2
【請求項3】  請求項1又は2の連続鋳造
用鋳型に、タンディッシュから接続リングを介して溶湯
を連続的に供給することを特徴とする連続鋳造方法。
3. A continuous casting method, characterized in that molten metal is continuously supplied to the continuous casting mold according to claim 1 or 2 from a tundish via a connecting ring.
JP9351191A 1991-03-30 1991-03-30 Casting mold for continuous casting and casting method by using the mold Pending JPH04305340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9351191A JPH04305340A (en) 1991-03-30 1991-03-30 Casting mold for continuous casting and casting method by using the mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9351191A JPH04305340A (en) 1991-03-30 1991-03-30 Casting mold for continuous casting and casting method by using the mold

Publications (1)

Publication Number Publication Date
JPH04305340A true JPH04305340A (en) 1992-10-28

Family

ID=14084377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9351191A Pending JPH04305340A (en) 1991-03-30 1991-03-30 Casting mold for continuous casting and casting method by using the mold

Country Status (1)

Country Link
JP (1) JPH04305340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8662143B1 (en) * 2012-08-30 2014-03-04 Haynes International, Inc. Mold having ceramic insert

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8662143B1 (en) * 2012-08-30 2014-03-04 Haynes International, Inc. Mold having ceramic insert

Similar Documents

Publication Publication Date Title
JP2005256176A (en) Stave for metallurgical furnace
JPH04305340A (en) Casting mold for continuous casting and casting method by using the mold
JPH04220142A (en) Mold and method for continuous casting
JP3727354B2 (en) Mold for vertical hot top continuous casting of metal
JP3022211B2 (en) Mold for continuous casting of round billet slab and continuous casting method using the mold
JPS5931415B2 (en) Hollow tube manufacturing method and device
JPS63188451A (en) Vertical type continuous casting apparatus
JPH0481248A (en) Mold for continuous casting and continuous casting method using this mold
JP3289118B2 (en) Shrinkage hole reduction device in continuous casting
JPH03234336A (en) Apparatus and method for continuous casting
JPH09164465A (en) Method and device for vertical die cast
JPH0569090A (en) Method and apparatus for horizontal continuous casting
JP7180387B2 (en) Scum weir, twin-roll continuous casting apparatus, and method for producing thin cast slab
JPH0631400A (en) Device for continuous casting
JP2000312952A (en) Dipping nozzle for continuous casting
JP3398608B2 (en) Continuous casting method and mold for continuous casting
JP2000158097A (en) Apparatus for continuously casting solder alloy
JPH08267181A (en) Casting device for continuous casting
JPH09253802A (en) Mold for continuous casting
JPH0117404Y2 (en)
JPH01278944A (en) Heating mold for continuous casting
JPH0139860B2 (en)
JP3068153B2 (en) Continuous casting equipment for hollow slabs
JP2006130552A (en) Mold for continuous casting
JPH11179492A (en) Mold for continuous casting