JPH0481248A - Mold for continuous casting and continuous casting method using this mold - Google Patents
Mold for continuous casting and continuous casting method using this moldInfo
- Publication number
- JPH0481248A JPH0481248A JP2195485A JP19548590A JPH0481248A JP H0481248 A JPH0481248 A JP H0481248A JP 2195485 A JP2195485 A JP 2195485A JP 19548590 A JP19548590 A JP 19548590A JP H0481248 A JPH0481248 A JP H0481248A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- ceramic
- continuous casting
- copper
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009749 continuous casting Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000000919 ceramic Substances 0.000 claims abstract description 66
- 239000010949 copper Substances 0.000 claims abstract description 50
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229910052802 copper Inorganic materials 0.000 claims abstract description 48
- 238000005266 casting Methods 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 229910000831 Steel Inorganic materials 0.000 abstract description 8
- 239000010959 steel Substances 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract description 7
- 229910045601 alloy Inorganic materials 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910001208 Crucible steel Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、鋼及びNi基合金の表面欠陥のない小ロツト
連続鋳造鋳片、または小断面ニアネットシェイブ鋳片を
製造するに適した連続鋳造用鋳型及びこの鋳型を用いた
連続鋳造方法に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention is a continuous cast slab of steel and Ni-based alloy suitable for producing small-lot continuous cast slabs without surface defects or small cross-section near net shave slabs. This invention relates to a casting mold and a continuous casting method using this mold.
(従来の技術)
金属の鋳造工程において、省工程、省エネルギーを目的
に連続鋳造化が図られている。しかし、小断面鋳片を鋳
造する場合、浸漬ノズルを用いた連続鋳造法では、ノズ
ル詰まりを起こして鋳造不可能となる。そこで、第5図
に示すように、タンディツシュ4と鋳型1を直結した連
続鋳造法が考案された。このタンディツシュ−鋳型直結
式連続鋳造法は、パウダーの巻き込みがなく、清浄な鋳
片が得られ、小ロットの連続鋳造鋳片の製造にも適する
。しかし、水冷銅鋳型(以下単に「銅鋳型」という)1
と接続リング2の接点で凝固シェルが生成し、引抜マー
クM(第6図参照)という鋳片欠陥となる。この欠陥は
そのまま製品欠陥となるので、切削除去する必要がある
。なお、第5図及び第6図中の3は溶湯供給耐火物、5
は溶湯、6は鋳片、7は鋳片引抜装置、8は凝固シェル
を示す。(Prior Art) In the metal casting process, continuous casting has been attempted for the purpose of saving process and energy. However, when casting small cross-section slabs, continuous casting using a submerged nozzle clogs the nozzle, making casting impossible. Therefore, as shown in FIG. 5, a continuous casting method was devised in which the tundish 4 and the mold 1 were directly connected. This tanditshu-mold direct connection continuous casting method does not involve powder and produces clean slabs, and is suitable for producing small lots of continuously cast slabs. However, water-cooled copper mold (hereinafter simply referred to as "copper mold") 1
A solidified shell is generated at the contact point between the connecting ring 2 and the connecting ring 2, resulting in a slab defect called a pull-out mark M (see FIG. 6). Since this defect directly becomes a product defect, it is necessary to remove it. In addition, 3 in FIG. 5 and FIG. 6 is a molten metal supply refractory, and 5
6 is a molten metal, 6 is a slab, 7 is a slab drawing device, and 8 is a solidified shell.
タンディツシュ−鋳型直結式連続鋳造の引抜マーク発生
防止策の1つとして、セラミックス鋳型を銅鋳型に内挿
する方法が採用されている。例えば、特開昭52−50
929号公報には耐火物と黒鉛管を内挿した鋳型、また
特開昭58−151939号公報には耐熱、潤滑、耐食
性サーメット導管−鋳型で鋼の鋳造が可能であることが
示されている。更に、特開昭64−27743号公報に
はセラミックスの耐熱衝撃性を向上させるために焼き嵌
め等の方法で内挿セラミックス材に圧縮応力を加える方
法が、特開平1−286967号公報には熱衝撃抵抗性
、熱応力抵抗性に優れた銅鋳型に内挿するセラミックス
鋳型の製造方法が記載されている。As one of the measures to prevent the occurrence of pull-out marks in tanditshu-mold direct continuous casting, a method has been adopted in which a ceramic mold is inserted into a copper mold. For example, JP-A-52-50
No. 929 discloses that it is possible to cast steel using a mold with a refractory and graphite pipe inserted therein, and JP-A-58-151939 discloses that it is possible to cast steel using a heat-resistant, lubricating, and corrosion-resistant cermet conduit mold. . Furthermore, JP-A No. 64-27743 discloses a method of applying compressive stress to an inserted ceramic material by a method such as shrink fitting in order to improve the thermal shock resistance of ceramics; A method for manufacturing a ceramic mold inserted into a copper mold with excellent impact resistance and thermal stress resistance is described.
セラミックス鋳型を使用する理由は、冷却を緩和するこ
とであり、その効果として三菱製鋼技報Vo1.19
Nα1.2(1985)に記載されているように、引
抜マークが軽減する。The reason for using ceramic molds is to ease cooling, and its effect is shown in Mitsubishi Steel Technical Report Vol. 1.19.
As described in Nα1.2 (1985), the pull-out marks are reduced.
(発明が解決しようとする課題)
上記したように、タンディツシュと鋳型を直結する鋼あ
るいはNi基合金の連続鋳造法において、鋳片表面欠陥
を防止する為、例えば第7図に示すように銅鋳型lに内
挿したセラミックス鋳型1′を使用することが提案され
ているが、銅鋳型の方がセラミックス鋳型よりも熱膨張
が大きい為、銅セラミックス間に隙間が生じ、セラミッ
クス鋳型1′が銅鋳型l内に沈下し、第8図に示すよう
にタンディツシュ−鋳型接続部へのパリ差し及びタンデ
ィツシュ−鋳型接続部からのブレークアウト等のトラブ
ルが起こる危険がある。(Problems to be Solved by the Invention) As mentioned above, in the continuous casting method of steel or Ni-based alloy in which the tundish and the mold are directly connected, in order to prevent surface defects of the slab, for example, as shown in FIG. It has been proposed to use a ceramic mold 1' inserted into the copper mold, but since the thermal expansion of the copper mold is larger than that of the ceramic mold, a gap is created between the copper ceramics, and the ceramic mold 1' is inserted into the copper mold. 1, and there is a risk that troubles such as a flashing in the tundish-mold connection part and a breakout from the tundish-mold connection part may occur as shown in FIG.
一方、第9図に示す如く銅鋳型lの内周面に段差を設け
、この段差にセラミックス鋳型1′を載せるというよう
に、機械的にセラミックス鋳型1′の沈下を防止した場
合、熱伝導が悪くなり凝固速度か小さくなる為、凝固シ
ェルが生成しないか極めて薄くなり、鋳片引抜ができな
くなるという問題がある。On the other hand, if the sinking of the ceramic mold 1' is mechanically prevented, such as by providing a step on the inner peripheral surface of the copper mold l and placing the ceramic mold 1' on this step, as shown in FIG. As a result, the solidification rate decreases, resulting in a solidified shell that either does not form or becomes extremely thin, making it impossible to draw the cast slab.
本発明は、以上のような操業上のトラブルを解決し、か
つ鋳片表面欠陥のない鋼あるいはNi基合金の鋳片を製
造可能なタンディツシュ−鋳型直結式連続鋳造用鋳型及
びこの鋳型を用いた連続鋳造方法を提供することを目的
としている。The present invention solves the above-mentioned operational troubles and is capable of manufacturing steel or Ni-based alloy slabs with no surface defects in the slab, and a continuous casting mold that is directly connected to the tanditshu mold, and a continuous casting mold using this mold. The purpose is to provide a continuous casting method.
(課題を解決するための手段)
セラミックス鋳型を用いて鋳片を連続鋳造する為には凝
固時の顕熱と潜熱を同時に奪う必要があり、セラミック
ス鋳型を銅鋳型に内挿せねばならない。この際、セラミ
ックス鋳型とバックアップの銅鋳型との間の接触を良く
する為には、セラミックス鋳型を銅鋳型に押し込むこと
が必要で、特に鋳造中は銅鋳型が膨張し内径が拡大する
ので、この時にも十分な接触を保つためには、常時セラ
ミックス鋳型を押さえておかなければならない。(Means for solving the problem) In order to continuously cast slabs using a ceramic mold, it is necessary to simultaneously remove sensible heat and latent heat during solidification, and the ceramic mold must be inserted into a copper mold. At this time, in order to improve the contact between the ceramic mold and the backup copper mold, it is necessary to push the ceramic mold into the copper mold.Especially during casting, the copper mold expands and its inner diameter expands, so this is necessary. To maintain good contact, the ceramic mold must be held down at all times.
これらの事実より、セラミックス鋳型は先に述べたよう
に第7図の如くなる。Based on these facts, the ceramic mold becomes as shown in FIG. 7, as described above.
しかし、銅鋳型の方がセラミックス鋳型よりも熱膨張が
大きい為、鋳造中に銅−セラミックス間に隙間が生じセ
ラミックス鋳型が銅鋳型内に沈下し、パリ差し及びブレ
ークアウトの危険か発生する。However, since a copper mold has a larger thermal expansion than a ceramic mold, a gap is created between the copper and the ceramic during casting, and the ceramic mold sinks into the copper mold, creating a risk of flashing and breakout.
従って、本発明者らは鋳造中セラミックス鋳型の銅鋳型
内への沈下を防止する為には、■ セラミックス鋳型外
面と銅鋳型内面にテーパをつけ、そのはめおいて内挿す
ること、■ セラミックス鋳型と銅鋳型に焼き嵌めを施
し、セラミックス鋳型がもうそれ以上性まないような構
造にする事、
が有効であると考え、以下の如き本発明を成立させたの
である。Therefore, in order to prevent the ceramic mold from sinking into the copper mold during casting, the inventors of the present invention should: (1) taper the outer surface of the ceramic mold and the inner surface of the copper mold, and insert the ceramic mold by fitting them together; They believed that it would be effective to apply shrink fitting to a copper mold to create a structure in which the ceramic mold would no longer deteriorate, and they established the following invention.
すなわち、本発明に係る連続鋳造用鋳型は、タンディツ
シュに直結される連続鋳造用鋳型であって、銅鋳型とこ
れに内挿するセラミックス鋳型をテーパ嵌合すると共に
、この嵌合を、
Ty =TCe−((bc、{(bCe/bCu)−T
R、十(1−bo、/bo、) ・TR)但し、TY
:セラミックス鋳型沈下のおこらない焼き嵌め温度(
下限値)
t)Co:銅鋳型の線膨張係数
t)Ca:セラミックス鋳型の線膨張係数Tau:鋳造
中の銅鋳型温度
TCa:鋳造中のセラミックス鋳型温度TRl :初期
鋳型温度
以上の温度で焼き嵌めしたことを要旨とするものである
。That is, the continuous casting mold according to the present invention is a continuous casting mold that is directly connected to a tundish, in which a copper mold and a ceramic mold inserted therein are tapered fitted, and this fitting is performed as follows: Ty = TCe −((bc, {(bCe/bCu)−T
R, ten (1-bo, /bo,) ・TR) However, TY
: Shrink fitting temperature that does not cause ceramic mold subsidence (
Lower limit value) t) Co: Coefficient of linear expansion of copper mold t) Ca: Coefficient of linear expansion of ceramic mold Tau: Copper mold temperature during casting TCa: Ceramic mold temperature during casting TRl: Shrink fitting at a temperature equal to or higher than the initial mold temperature This is a summary of what was done.
また、本発明に係る連続鋳造方法は、前記連続鋳造用鋳
型に、タンディツシュから接続リングを介して溶湯を連
続的に供給することを要旨としているのである。Further, the continuous casting method according to the present invention is characterized in that molten metal is continuously supplied to the continuous casting mold from a tundish via a connecting ring.
本発明において、焼き嵌め温度TYを上記式の如くした
のは以下の理由による。すなわち、セラミックス鋳型沈
下量Sは次式で表される。In the present invention, the reason why the shrink fitting temperature TY is set as shown in the above formula is as follows. That is, the ceramic mold sinkage amount S is expressed by the following equation.
×L ・・・ 0
但し、S:セラミックス鋳型沈下量(nun )bCu
:銅鋳型の線膨張係数(K−’)bc*:セラミックス
鋳型の線膨張係数(K−’)
TCu:銅鋳型の上部温度(°C)
TCuu:銅鋳型の下部温度(°C)
TCa:セラミックス鋳型の温度(°C)TRl:初期
温度(°C)
R1:上側セラミックス鋳型外面半径
(mm)
R2:下側セラミックス鋳型外面半径
(mm)
L:鋳型長 (mm)
なお、T Cu、TCull、TCaの測定位置につい
ては第2図に示す如くである。×L...0 However, S: Ceramic mold sinkage amount (nun)bCu
: Linear expansion coefficient of copper mold (K-')bc*: Linear expansion coefficient of ceramic mold (K-') TCu: Upper temperature of copper mold (°C) TCuu: Lower temperature of copper mold (°C) TCa: Ceramic mold temperature (°C) TRl: Initial temperature (°C) R1: Upper ceramic mold outer surface radius (mm) R2: Lower ceramic mold outer surface radius (mm) L: Mold length (mm) In addition, T Cu, TCull , TCa measurement positions are as shown in FIG.
ここで、T Cus TCuLI N Tc@はセラミ
ックス鋳型材質の熱伝導率によって実績と計算よりほぼ
予測できる。T Cu、TCuu、とT。、と熱伝導率
の関係を第3図に示す。第4図は上記0式に下記第1表
の値を代入して(BN鋳型使用時)セラミックス鋳型沈
下量Sと銅鋳型上部温度T。、の関係を示したものであ
る。Here, T Cus TCuLI N Tc@ can be almost predicted from actual results and calculations depending on the thermal conductivity of the ceramic mold material. T Cu, T Cuu, and T. The relationship between , and thermal conductivity is shown in Figure 3. Figure 4 shows the ceramic mold sinkage amount S and copper mold upper temperature T by substituting the values in Table 1 below into the above equation 0 (when using a BN mold). , which shows the relationship between .
100°Cで焼き嵌めを施した場合(第4図の曲線■)
、セラミックス鋳型は銅鋳型が185°Cまで上昇して
も沈下しない。また200°Cで焼き嵌めを施した場合
(第4図の曲線■)セラミックス鋳型は銅鋳型が285
°Cまて上昇しても沈下しない。つまりBN鋳型使用時
、TCuは250°Cであるのて165°C以上て焼き
嵌めを行えばセラミックス鋳型は沈下しない。When shrink fitting is performed at 100°C (curve ■ in Figure 4)
, ceramic molds do not sink even when copper molds are heated to 185°C. Furthermore, when shrink fitting is performed at 200°C (curve ■ in Figure 4), the ceramic mold has a copper mold of 285
It will not sink even if the temperature rises. In other words, when using a BN mold, the temperature of TCu is 250°C, so if shrink fitting is performed at 165°C or higher, the ceramic mold will not sink.
ここで曲線■は、
S =350 (1−4542/(Tcu−100+4
457) ) ・・・ ■曲線■は、
5=350 (1−4542/(TCe、−200+4
457) ) ・(iDで表される。上式より85°C
という値は上記0式及び0式の4542と4457の差
であり、これは(b o、/be、)−’rca+ (
1−b、、/bo、)−TRに相当する。以上よりT。Here, the curve ■ is S = 350 (1-4542/(Tcu-100+4
457) ) ... ■Curve ■ is 5=350 (1-4542/(TCe, -200+4
457) ) ・(Represented by iD. From the above formula, 85°C
The value is the difference between 4542 and 4457 in the above formulas 0 and 0, which is (bo, /be,)-'rca+ (
1-b, , /bo, )-TR. From the above, T.
us ’rcuu % TCeを実績及び計算より予測
して、
TY=To、−((bc、/b、。)−TR、+(1b
Cu/bo、) ・TR)以上の温度で焼き嵌めを行
■
セラミックス鋳型は銅鋳型内に沈下しないことがわかっ
た。Us 'rcuu % TCe is predicted from actual results and calculations, and TY=To, -((bc, /b,.)-TR, +(1b
It was found that the ceramic mold did not sink into the copper mold when shrink fitting was performed at a temperature of Cu/bo,) TR) or higher.
(作 用)
本発明に係る連続鋳造用鋳型は、セラミックス鋳型外面
と銅鋳型内面にテーパをつけ、そのはめおいて内挿して
いるため、セラミックス鋳型外面と銅鋳型内面がストレ
ートの場合よりもセラミックス鋳型の沈下量は少なくな
る。またセラミックス鋳型と銅鋳型の焼き嵌めもテーパ
がついていた方が容易である。(Function) In the continuous casting mold according to the present invention, the outer surface of the ceramic mold and the inner surface of the copper mold are tapered, and the inner surface of the copper mold is inserted into the tapered surface. The amount of mold settling is reduced. Also, shrink fitting between a ceramic mold and a copper mold is easier if the mold is tapered.
また本発明鋳型は銅鋳型とセラミックス鋳型を焼き嵌め
しているため、鋳造中の熱によってセラミックス鋳型が
沈むことがない。In addition, since the mold of the present invention shrink-fits the copper mold and the ceramic mold, the ceramic mold will not sink due to the heat during casting.
(実 施 例)
以下、本発明を第1図に示す一実施例に基づいて説明す
る。(Example) The present invention will be described below based on an example shown in FIG.
第1図は本発明に係る連続鋳造用鋳型の構成を示す要部
断面図であり、11が内面の鋳片引抜き側の断面が小径
となるようなテーパを付与された銅鋳型、12がこの銅
鋳型11のテーパと嵌合するテーパをその外面に付与さ
れたセラミックス鋳型である。FIG. 1 is a cross-sectional view of a main part showing the structure of a continuous casting mold according to the present invention, and 11 is a copper mold tapered so that the cross section of the inner surface on the side where the slab is pulled out has a small diameter, and 12 is a copper mold of this type. This is a ceramic mold with a taper on its outer surface that fits with the taper of the copper mold 11.
そして、これら銅鋳型11とセラミックス鋳型12は所
定の温度以上て焼き嵌めされ、この焼き嵌めと前記テー
パとの相乗効果によって連続鋳造時における溶湯熱によ
ってもこのセラミックス鋳型12が沈下することがない
。The copper mold 11 and the ceramic mold 12 are shrink-fitted at a temperature above a predetermined temperature, and the synergistic effect of this shrink-fitting and the taper prevents the ceramic mold 12 from sinking even with the heat of the molten metal during continuous casting.
次にこの第1図に示す構成の鋳型を、第7図に示した方
法で設置し、連続鋳造した場合について説明する。なお
、比較として従来の鋳型を用いて連続鋳造した場合につ
いても併せて説明する。Next, a case will be described in which the mold having the configuration shown in FIG. 1 is installed by the method shown in FIG. 7 and continuous casting is performed. For comparison, a case in which continuous casting was performed using a conventional mold will also be described.
セラミックス鋳型12は内径100 mmφで、テーパ
のあるものは上側肉厚15mm、下側肉厚10mm、テ
ーパのないものは肉厚15mmである。銅鋳型11は内
径130 mmφで、テーパのあるものは上側肉厚15
mm、下側肉厚20mm、テーパのないものは肉厚15
mmである。また鋳型長は共に350mとした。鋳造金
属は5tJS304ステンレス鋼であり、タンディツシ
ュ4内の溶湯温度は液相線温度より40〜50°C高く
した。鋳造速度は1.0m/minであり、引抜サイク
ルは60cpmで間欠引抜である。The ceramic mold 12 has an inner diameter of 100 mm, the tapered one has an upper wall thickness of 15 mm, the lower wall thickness of 10 mm, and the non-tapered one has a wall thickness of 15 mm. The copper mold 11 has an inner diameter of 130 mmφ, and the tapered one has an upper wall thickness of 15 mm.
mm, lower wall thickness 20 mm, wall thickness 15 for those without taper
It is mm. The mold length was 350 m in both cases. The cast metal was 5t JS304 stainless steel, and the temperature of the molten metal in the tundish 4 was 40 to 50°C higher than the liquidus temperature. The casting speed was 1.0 m/min, and the drawing cycle was 60 cpm with intermittent drawing.
下記第2表に、 実施時の条件及びその結果を示 す。In Table 2 below, Indicate the conditions for implementation and the results. vinegar.
■
比較例1の場合テーパがなかった為に、170°C(T
Y=163°C)で焼き嵌めを行ったにもかかわらずセ
ラミックス鋳型が沈下し、セラミックス鋳型と接続リン
グの隙間から溶鋼が漏れた。比較例2.3の場合、焼き
嵌めを行わなかったために、(bo、/b、、)・T
o、+(1−b、、{(bCe/bCu) ・TRよ
りも銅鋳型上部温度T。。が高く、セラミックス鋳型が
沈下した。このうち、比較例2では、セラミックス鋳型
と銅鋳型間に隙間ができ冷却が効かなくなったために、
シェル厚みが薄くなってシェルが破断しブレークアウト
(モールド出側より溶湯が排出)した。また比較例3で
は、鋳型上部と接続リング間にパリが差し引抜抵抗大と
なり、引抜を中止した。一方比較例4の場合、100°
Cて鋳型焼き嵌めを行ったものの、その温度はTR(1
47°C)よりも低かったために、セラミックス鋳型が
沈下しセラミックス鋳型と接続耐火物の隙間から溶鋼が
漏れた。■ In the case of Comparative Example 1, since there was no taper, the temperature was 170°C (T
Even though shrink fitting was performed at Y=163°C), the ceramic mold sank, and molten steel leaked from the gap between the ceramic mold and the connecting ring. In the case of Comparative Example 2.3, since shrink fitting was not performed, (bo, /b,,)・T
o. Because a gap was created and cooling was no longer effective,
The shell thickness became thinner and the shell broke, resulting in a breakout (molten metal was discharged from the exit side of the mold). Further, in Comparative Example 3, the pullout resistance was large due to the presence of a gap between the upper part of the mold and the connecting ring, and the pullout was stopped. On the other hand, in the case of Comparative Example 4, 100°
Although the mold shrink fitting was performed at C, the temperature was TR (1
47°C), the ceramic mold sank and molten steel leaked from the gap between the ceramic mold and the connecting refractory.
これに対し、本発明例ではいずれもセラミックス鋳型は
テーパによるCu鋳型内挿入方式であり、焼き嵌め温度
はTYよりも高かったため、セラミックス鋳型の沈下は
おこらず表面性状の良好な鋳片をパリ差し、ブレークア
ウト等のトラブルなく得ることができた。On the other hand, in all of the examples of the present invention, the ceramic mold was inserted into the Cu mold using a taper, and the shrink fitting temperature was higher than TY, so the ceramic mold did not sink and a slab with good surface quality was inserted. , I was able to obtain it without any troubles such as breakouts.
(発明の効果)
以上説明したように本発明によれば、鋼あるいはNi基
合金の小ロツト連続鋳造鋳片または小断面の鋳片を安定
してトラブルなく連続鋳造することができ、省工程、省
エネルギーにより製造コストの著しい低減が可能となっ
た。(Effects of the Invention) As explained above, according to the present invention, small-lot continuously cast slabs of steel or Ni-based alloys or slabs with a small cross section can be continuously cast stably and trouble-free, reducing process steps and Energy conservation has made it possible to significantly reduce manufacturing costs.
第1図は本発明鋳型の要部断面図、第2図はセラミック
ス鋳型の沈下量を測定する際の測定位置の説明図、第3
図はT Cus TCuu % ’ramと熱伝導率と
の関係図1.第4図はセラミックス鋳型の沈下量と銅鋳
型上部温度との関係図、第5図はタンディツシュ−鋳型
直結式連続鋳造法の説明図、第6図は引抜マークの説明
図、第7図は銅鋳型にセラミックス鋳型を内挿する形式
の鋳型の説明図、第8図は第7図の場合の問題点説明図
、第9図は第7図の他の例を示す説明図である。
11は銅鋳型、12はセラミックス鋳型。Figure 1 is a sectional view of the main part of the mold of the present invention, Figure 2 is an explanatory diagram of the measurement position when measuring the amount of sinkage of a ceramic mold, and Figure 3
Figure 1 shows the relationship between T Cus TCuu % 'ram and thermal conductivity. Figure 4 is a diagram showing the relationship between the sinking amount of the ceramic mold and the temperature at the top of the copper mold, Figure 5 is an illustration of the tanditshu-mold direct connection type continuous casting method, Figure 6 is an illustration of the drawing marks, and Figure 7 is an illustration of the copper mold. An explanatory view of a mold in which a ceramic mold is inserted into the mold, FIG. 8 is an explanatory view of problems in the case of FIG. 7, and FIG. 9 is an explanatory view showing another example of FIG. 7. 11 is a copper mold, 12 is a ceramic mold.
Claims (2)
って、水冷銅鋳型とこれに内挿するセラミックス鋳型を
テーパ嵌合すると共に、この嵌合を、 T_Y=T_C_u−{(b_C_e/b_C_u)・
T_C_e+(1−b_C_e/b_C_u)・T_R
}但し、T_Y:セラミックス鋳型沈下のおこらない焼
き嵌め温度(下限値) b_C_u:水冷銅鋳型の線膨張係数 b_C_e:セラミックス鋳型の線膨張係数T_C_u
:鋳造中の水冷銅鋳型温度 T_C_e:鋳造中のセラミックス鋳型温度T_R:初
期鋳型温度 以上の温度で焼き嵌めしたことを特徴とする連続鋳造用
鋳型。(1) A continuous casting mold that is directly connected to the tundish, in which the water-cooled copper mold and the ceramic mold inserted therein are tapered fitted, and this fitting is performed as follows: T_Y=T_C_u-{(b_C_e/b_C_u)・
T_C_e+(1-b_C_e/b_C_u)・T_R
}However, T_Y: Shrink fitting temperature (lower limit) at which the ceramic mold does not sink b_C_u: Coefficient of linear expansion of water-cooled copper mold b_C_e: Coefficient of linear expansion of ceramic mold T_C_u
: Water-cooled copper mold temperature during casting T_C_e: Ceramic mold temperature during casting T_R: Continuous casting mold characterized by being shrink-fitted at a temperature equal to or higher than the initial mold temperature.
ュから接続リングを介して溶湯を連続的に供給すること
を特徴とする連続鋳造方法。(2) A continuous casting method, characterized in that molten metal is continuously supplied to the continuous casting mold according to claim 1 from a tundish via a connecting ring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2195485A JPH0481248A (en) | 1990-07-24 | 1990-07-24 | Mold for continuous casting and continuous casting method using this mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2195485A JPH0481248A (en) | 1990-07-24 | 1990-07-24 | Mold for continuous casting and continuous casting method using this mold |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0481248A true JPH0481248A (en) | 1992-03-13 |
Family
ID=16341875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2195485A Pending JPH0481248A (en) | 1990-07-24 | 1990-07-24 | Mold for continuous casting and continuous casting method using this mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0481248A (en) |
-
1990
- 1990-07-24 JP JP2195485A patent/JPH0481248A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3746077A (en) | Apparatus for upward casting | |
JPH0481248A (en) | Mold for continuous casting and continuous casting method using this mold | |
JPS6133735A (en) | Method and device for continuous casting of metal | |
JP3727354B2 (en) | Mold for vertical hot top continuous casting of metal | |
JP3022211B2 (en) | Mold for continuous casting of round billet slab and continuous casting method using the mold | |
US4074747A (en) | Continuous casting mold for metals | |
US6176298B1 (en) | Continuous casting mould | |
JPS609553A (en) | Stopping down type continuous casting machine | |
JPH04220142A (en) | Mold and method for continuous casting | |
JP3805708B2 (en) | Horizontal continuous casting method | |
KR960004416B1 (en) | Horizontal continuous casting method and its device | |
JPS5931415B2 (en) | Hollow tube manufacturing method and device | |
JPH04305340A (en) | Casting mold for continuous casting and casting method by using the mold | |
JPH1157972A (en) | Pressure casting device | |
JPS6055211B2 (en) | Horizontal continuous casting method | |
JPH0275445A (en) | Mold and method for continuous casting | |
JPH0638599Y2 (en) | Horizontal continuous casting mold | |
JPH07227653A (en) | Method and device for reducing shrinkage hole in continuous casting | |
JPH04288946A (en) | Mold for continuous casting and continuous casting method using this mold | |
JPH09192786A (en) | Mold for continuously casting steel and continuous casting method | |
JPH03234336A (en) | Apparatus and method for continuous casting | |
JP3398608B2 (en) | Continuous casting method and mold for continuous casting | |
JPH04197555A (en) | Mold for horizontal continuous casting having excellent wear resistance | |
JPH06104266B2 (en) | Method of preventing vertical cracking of slab in high speed casting | |
JPH01278944A (en) | Heating mold for continuous casting |