JPH04305024A - Method for heating and working fluoride glass - Google Patents

Method for heating and working fluoride glass

Info

Publication number
JPH04305024A
JPH04305024A JP6854091A JP6854091A JPH04305024A JP H04305024 A JPH04305024 A JP H04305024A JP 6854091 A JP6854091 A JP 6854091A JP 6854091 A JP6854091 A JP 6854091A JP H04305024 A JPH04305024 A JP H04305024A
Authority
JP
Japan
Prior art keywords
heating
fluoride glass
atmosphere
base material
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6854091A
Other languages
Japanese (ja)
Inventor
Shigeki Sakaguchi
茂樹 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6854091A priority Critical patent/JPH04305024A/en
Publication of JPH04305024A publication Critical patent/JPH04305024A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/80Non-oxide glasses or glass-type compositions
    • C03B2201/82Fluoride glasses, e.g. ZBLAN glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/62Heating means for drawing
    • C03B2205/66Microwave or similar electromagnetic wave heating, e.g. resonant cavity type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To heat and work a fluoride glass preform 4 without causing local crystallization on its surface. CONSTITUTION:A dry inert gas 9 is introduced into an applicator 3 to cover a fluoride glass preform 4 with the inert gas, a microwave is emitted from a microwave oscillator 1, and the part of the preform 4 to be worked is heated in the atmosphere. The heated preform 4 is drawn to obtain a fiber 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フッ化物光ファイバの
製造過程等において必要とされるフッ化物ガラスの加熱
加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating fluoride glass, which is necessary in the manufacturing process of fluoride optical fibers.

【0002】0002

【従来の技術】ZrF4 を主成分とするフッ化物光フ
ァイバは、石英系光ファイバにまさる0.01dB/k
mの低損失性を有するとの期待からその開発が進められ
ている。通常、この種のフッ化物光ファイバは、所定の
ガラス組成となるように調合されたガラス原料混合物を
るつぼで加熱溶融し、それを適当な金属製鋳型に流し込
んで急冷ガラス化して母材を形成し、この母材を加熱延
伸することにより得られる。
[Prior Art] A fluoride optical fiber containing ZrF4 as a main component has a power efficiency of 0.01 dB/k, which is higher than a silica optical fiber.
Its development is progressing with the expectation that it will have a low loss property of m. Normally, this type of fluoride optical fiber is made by heating and melting a glass raw material mixture prepared to have a predetermined glass composition in a crucible, pouring it into a suitable metal mold, and rapidly cooling it to vitrify it to form a base material. It is obtained by heating and stretching this base material.

【0003】このようなフッ化物光ファイバの製造工程
において、母材形成から光ファイバに至る過程において
は種々の加熱加工が不可欠である。
[0003] In the manufacturing process of such fluoride optical fibers, various heating processes are indispensable in the process from forming the base material to producing the optical fiber.

【0004】しかしながら、フッ化物ガラスは、表面吸
着水分や雰囲気中の水分の存在によって、加熱工程にお
いて容易に表面が結晶化する。
However, the surface of fluoride glass easily crystallizes during the heating process due to the presence of moisture adsorbed on the surface or moisture in the atmosphere.

【0005】これを防止するためには、加熱雰囲気を乾
燥不活性ガス雰囲気もしくはこれにフッ素化合物ガスを
含有させた雰囲気とするのが一般的である。
[0005] In order to prevent this, the heating atmosphere is generally a dry inert gas atmosphere or an atmosphere containing a fluorine compound gas.

【0006】母材の表面処理や延伸などの熱加工には管
状炉等が用いられるが、加熱雰囲気としてフッ素化合物
ガスを含有させた雰囲気を採用する場合には、管状炉等
の材料として、強い腐食性を有するフッ素化合物ガスに
耐える材料を用いなければならない。その材料としては
、アルミニウム、ニッケル、モネル合金などが用いられ
る。
Tubular furnaces and the like are used for heat processing such as surface treatment and stretching of the base material, but when an atmosphere containing fluorine compound gas is used as the heating atmosphere, strong Materials that can withstand corrosive fluorine compound gases must be used. As the material, aluminum, nickel, Monel alloy, etc. are used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、フッ化
物ガラスの通常の加工温度は300〜400℃であり、
アルミニウムの耐えられる温度は400℃であることか
ら非常に厳しい状態にある。また、ニッケルやモネル合
金は、600℃程度まで耐えられるが、ガラスと汚染し
た場合にはアルミニウムと異なり、損失を生じさせるお
それがある。
[Problems to be Solved by the Invention] However, the normal processing temperature for fluoride glass is 300 to 400°C;
Since the temperature that aluminum can withstand is 400°C, it is in a very severe condition. Nickel and Monel alloys can withstand temperatures up to about 600°C, but unlike aluminum, there is a risk of loss if they are contaminated with glass.

【0008】また、加熱雰囲気を乾燥雰囲気とするには
多数の乾燥ガスを流入させる必要があり、このような条
件下で管状炉を用いて安定しかつ高精度の加熱を行うに
は、加熱長を拡大して管状炉長手方向の温度勾配を極力
小さくしなければならない。したがって、母材のジャケ
ット加工あるいは延伸、さらに線引きのように局部的加
熱を必要とするような場合にははなはだ不都合であり、
炉の大型化も避けられない。
[0008] Furthermore, in order to make the heating atmosphere a dry atmosphere, it is necessary to introduce a large amount of drying gas, and in order to perform stable and highly accurate heating using a tube furnace under such conditions, it is necessary to increase the heating length. The temperature gradient in the longitudinal direction of the tube furnace must be made as small as possible by enlarging the tube furnace. Therefore, it is very inconvenient in cases where local heating is required, such as jacketing or stretching of the base material, or wire drawing.
Increasing the size of the furnace is also unavoidable.

【0009】さらに、フッ化物ガラスは温度の変化に対
して粘性が急激に変化する。したがって、精度よく加工
するためには、局部的に加熱できる精度のよい熱源が必
要となる。
Furthermore, the viscosity of fluoride glass changes rapidly with changes in temperature. Therefore, in order to perform accurate processing, a highly accurate heat source that can locally heat the material is required.

【0010】0010

【課題を解決するための手段】本発明は上記のような技
術的状況にかんがみ、フッ化物ガラスの加熱加工に必要
な高精度な局所加熱を可能としつつ表面結晶化の防止も
同時に達成すべくなされたもので、その構成は、フッ化
物ガラスの加工部位の雰囲気を乾燥不活性ガス雰囲気も
しくはフッ素化合物を含む乾燥不活性ガス雰囲気とし、
かつ加工部位にマイクロ波を供給して加熱し、加工を施
すことを特徴とする。
[Means for Solving the Problems] In view of the above-mentioned technical situation, the present invention aims to enable highly accurate local heating necessary for heating processing of fluoride glass, and at the same time achieve prevention of surface crystallization. The structure is such that the atmosphere in the processing area of the fluoride glass is a dry inert gas atmosphere or a dry inert gas atmosphere containing a fluorine compound,
It is also characterized by supplying microwaves to the processing area to heat it and perform processing.

【0011】[0011]

【作用】上記方法において、加熱はマイクロ波により加
工部位に対し局所的になされる。また、その周囲が乾燥
不活性ガス雰囲気等とされるので、結晶化の防止も図ら
れる。
[Operation] In the above method, heating is performed locally on the processing area using microwaves. Further, since the surrounding area is a dry inert gas atmosphere, crystallization is also prevented.

【0012】0012

【実施例】図1には本発明に係るフッ化物ガラスの加熱
方法の一実施例を概略的に示してある。この実施例は、
フッ化物ファイバの線引きに適用したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows an embodiment of the method for heating fluoride glass according to the present invention. This example is
This is applied to drawing fluoride fiber.

【0013】1はマイクロ波の発振機、2は発振機1に
つながり、マイクロ波を導く導波管、3は導波管2に結
合されたアプリケータで、その上部にはフッ化物ガラス
母材4が取付けられ、あるいは供給される。アプリケー
タ3の下部側面には雰囲気ガスの導入口5が設けられて
おり、アプリケータ3の上部側面には雰囲気ガスの排気
口6が設けられている。なお、図中7は導波管2に接続
されたチューナである。
1 is a microwave oscillator, 2 is a waveguide connected to the oscillator 1 and guides the microwave, 3 is an applicator coupled to the waveguide 2, and on the top thereof is a fluoride glass base material. 4 is installed or supplied. An atmospheric gas inlet 5 is provided on the lower side of the applicator 3, and an atmospheric gas exhaust port 6 is provided on the upper side of the applicator 3. Note that 7 in the figure is a tuner connected to the waveguide 2.

【0014】この方法を実施するには、まずフッ化物ガ
ラス母材4をアプリケータ3の上部に導入する。続いて
、雰囲気ガス導入口5よりアプリケータ3内に不活性ガ
スあるいはフッ素化合物を含む乾燥不活性ガス9を流入
させると共に雰囲気ガス排出口6より排出してフッ化物
ガラス母材4の周囲に所定の雰囲気を形成する。
To carry out this method, first the fluoride glass matrix 4 is introduced into the upper part of the applicator 3. Next, an inert gas or a dry inert gas 9 containing a fluorine compound is introduced into the applicator 3 through the atmospheric gas inlet 5 and discharged through the atmospheric gas outlet 6 to a predetermined area around the fluoride glass base material 4. form an atmosphere.

【0015】次に、発振機1よりマイクロ波(本実施例
では、2.45GHZ を使用)を供給し、フッ化物ガ
ラス母材4を加熱する。加熱状態その他により発振機1
方向への反射パワが変化するので、これを最小とするよ
うにチューナ7を調節する。母材4は、温度上昇に伴い
粘性が低下し、やがてくびれて先端が落下する。これを
所定の速度で引き取り、また母材4を連続的に供給する
ことでファイバ8に線引きされる。
Next, microwaves (2.45 GHZ are used in this embodiment) are supplied from the oscillator 1 to heat the fluoride glass base material 4. Oscillator 1 depending on the heating condition etc.
Since the reflected power in the direction changes, the tuner 7 is adjusted to minimize this. The viscosity of the base material 4 decreases as the temperature rises, and the base material 4 eventually becomes constricted and the tip falls off. The fiber 8 is drawn by drawing the fiber at a predetermined speed and continuously supplying the base material 4.

【0016】<実施例1>上記方法により、実際にフッ
化物ガラス母材として外径15mmのZrF4 −Ba
F2 −LaF3 −YF3 −AlF3 −LIF(
もしくはNaF)系ガラス(Kanamori and
 Sakaguchi, Japanese Jour
nal of Applied Physics, V
ol.25, No.6,1986, ppL468−
L470 )を用い、これを引き取り速度15m/分で
線引きを行い、外径125μmのファイバを作製した。 雰囲気ガスとしては、液化アルゴンより取り出した乾燥
ガスにNF3 を混合させて流入させた。流量比は95
:5とした。このとき、アプリケータ内の露点(測定時
にはNF3 を流入せず)は−72℃となった。また、
所要電力は374Wであった。
<Example 1> According to the above method, ZrF4-Ba with an outer diameter of 15 mm was actually prepared as a fluoride glass base material.
F2 -LaF3 -YF3 -AlF3 -LIF(
or NaF) type glass (Kanamori and
Sakaguchi, Japanese Jour
nal of Applied Physics, V
ol. 25, No. 6, 1986, ppL468-
L470), this was drawn at a drawing speed of 15 m/min to produce a fiber with an outer diameter of 125 μm. As the atmospheric gas, NF3 was mixed with dry gas extracted from liquefied argon, and the mixture was introduced. The flow rate ratio is 95
:5. At this time, the dew point inside the applicator (NF3 was not introduced during measurement) was -72°C. Also,
The required power was 374W.

【0017】得られたファイバは、外径変動が125μ
mに対し±1μmであった。外径のオンライン測定チャ
ートには表面結晶化に起因するパルス状の径変動は全く
存在せず、引取り速度も±1.5 m/分程度で安定し
ていた。また、母材表面には結晶化の根跡は目視では認
められなかった。なお、アプリケータはアルミニウム製
とし、全体を約200℃に保温したが、腐食などの損傷
は認められなかった。
The obtained fiber had an outer diameter variation of 125μ.
It was ±1 μm with respect to m. In the online measurement chart of the outer diameter, there were no pulse-like diameter fluctuations caused by surface crystallization, and the take-up speed was stable at about ±1.5 m/min. Further, no traces of crystallization were visually observed on the surface of the base material. The applicator was made of aluminum and was kept at a temperature of about 200° C., but no damage such as corrosion was observed.

【0018】<実施例2>上記方法により、上記と同じ
材料の母材を7mm径の母材に延伸した。所要電力は3
65Wであった。雰囲気も上記と同様にして行った。延
伸後の母材表面には目視で結晶化は認められなかった。
<Example 2> By the method described above, a base material made of the same material as above was stretched into a base material having a diameter of 7 mm. The power required is 3
It was 65W. The atmosphere was the same as above. No crystallization was visually observed on the surface of the base material after stretching.

【0019】<実施例3>上記母材と同じ組成に調合し
たガラス原料粉末の焼結体(外径20mm,焼結温度4
60℃,2時間)のゾーン溶融面に上記加熱方法を適用
した。所要電力は512Wであった。溶融面は極めて水
平に近く、内部加熱が局所的に極めて有効になされてい
ることが明確に示された。
<Example 3> A sintered body of glass raw material powder prepared to have the same composition as the base material (outer diameter 20 mm, sintering temperature 4
The above heating method was applied to the zone melting surface at 60° C. for 2 hours. The required power was 512W. The melting surface was extremely horizontal, clearly indicating that internal heating was localized and extremely effective.

【0020】[0020]

【発明の効果】本発明に係るフッ化物ガラスの加熱加工
方法によれば、マイクロ波加熱によってガラス自体を直
接内部的にまた局所的に加熱することによって極めて安
定して加圧部位を加熱することができ、同時に加熱を乾
燥不活性ガス雰囲気で行うため、ガラス表面の結晶化を
防止できる。
[Effects of the Invention] According to the heating processing method for fluoride glass according to the present invention, the pressurized area can be heated extremely stably by directly heating the glass itself internally and locally using microwave heating. At the same time, since heating is performed in a dry inert gas atmosphere, crystallization of the glass surface can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】一実施例を示す概略図である。FIG. 1 is a schematic diagram showing one embodiment.

【符号の説明】[Explanation of symbols]

1  マイクロ波発振機 2  導波管 3  アプリケータ 4  フッ化物ガラス母材 5  雰囲気ガス導入口 6  雰囲気ガス排気口 7  チューナ 8  ファイバ 1 Microwave oscillator 2 Waveguide 3 Applicator 4 Fluoride glass base material 5 Atmosphere gas inlet 6 Atmosphere gas exhaust port 7 Tuner 8 Fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  フッ化物ガラスの加工部位の雰囲気を
乾燥不活性ガス雰囲気もしくはフッ素化合物を含む乾燥
不活性ガス雰囲気とし、かつ加工部位にマクロ波を供給
して加熱し、加工を施すことを特徴とするフッ化物ガラ
スの加熱加工方法。
Claim 1: A feature of the present invention is that the atmosphere of the processing area of the fluoride glass is a dry inert gas atmosphere or a dry inert gas atmosphere containing a fluorine compound, and the processing is performed by supplying macro waves to the processing area and heating it. A heating processing method for fluoride glass.
JP6854091A 1991-04-01 1991-04-01 Method for heating and working fluoride glass Withdrawn JPH04305024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6854091A JPH04305024A (en) 1991-04-01 1991-04-01 Method for heating and working fluoride glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6854091A JPH04305024A (en) 1991-04-01 1991-04-01 Method for heating and working fluoride glass

Publications (1)

Publication Number Publication Date
JPH04305024A true JPH04305024A (en) 1992-10-28

Family

ID=13376681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6854091A Withdrawn JPH04305024A (en) 1991-04-01 1991-04-01 Method for heating and working fluoride glass

Country Status (1)

Country Link
JP (1) JPH04305024A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214946A (en) * 1988-04-22 1990-01-18 Trw Inc Method and device for testing air-bag constraint system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214946A (en) * 1988-04-22 1990-01-18 Trw Inc Method and device for testing air-bag constraint system

Similar Documents

Publication Publication Date Title
KR950014101B1 (en) Heating furnace for glass materials for optical fiber and method of manufacturing same
JPS5997537A (en) Elongated body continuous manufacture and apparatus
US11485666B2 (en) Continuous production of hollow ingots
US4295869A (en) Process for producing optical transmission fiber
US4165152A (en) Process for producing optical transmission fiber
US6080954A (en) Heat treatment method and apparatus using thermal plasma, and heat treated substance produced thereby
JPS62132739A (en) Optical fiber preform manufacturing method
WO1998009184A2 (en) Multi-cylinder apparatus for making optical fibers, process and product
US7734135B2 (en) Method and device for manufacturing optical preforms, as well as the optical fibres obtained therewith
JPH04305024A (en) Method for heating and working fluoride glass
JP4176468B2 (en) Optical fiber preform manufacturing apparatus and method
JP3258175B2 (en) Method for producing non-doped or doped silica glass body
JPH0436100B2 (en)
JPH0442341B2 (en)
JPS6065742A (en) Production of porous glass base material for optical fiber by vad method
JPS6351978B2 (en)
JPS63206323A (en) Production of preform for optical fiber of fluoride glass
JP3489630B2 (en) Method and apparatus for producing hermetic coated fiber
JPS60215515A (en) Preparation of synthetic quartz mass and device therefor
SU1066944A1 (en) Method for making pipes from quartz glass
JP2001521871A (en) Apparatus and method for drawing waveguide fiber
Wallenberger Continuous melt spinning processes
JPS61101429A (en) Production of glass tube
JPS63185830A (en) Production of fluoride glass
JPS62162646A (en) Production of glass fine particle deposit

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711