JPH04304614A - X-ray mask structure and manufacture thereof - Google Patents

X-ray mask structure and manufacture thereof

Info

Publication number
JPH04304614A
JPH04304614A JP3092649A JP9264991A JPH04304614A JP H04304614 A JPH04304614 A JP H04304614A JP 3092649 A JP3092649 A JP 3092649A JP 9264991 A JP9264991 A JP 9264991A JP H04304614 A JPH04304614 A JP H04304614A
Authority
JP
Japan
Prior art keywords
ray
absorber
pattern
mask structure
ray mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3092649A
Other languages
Japanese (ja)
Other versions
JP3009068B2 (en
Inventor
Hiroshi Maehara
前原 広
Akira Miyake
明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9264991A priority Critical patent/JP3009068B2/en
Publication of JPH04304614A publication Critical patent/JPH04304614A/en
Application granted granted Critical
Publication of JP3009068B2 publication Critical patent/JP3009068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide by an easy process an X-ray mask structure which has an X-ray absorber pattern of an optional shape having an irregular cross section. CONSTITUTION:In a X-ray mask structure, which contains an X-ray absorber 3 having a desired pattern and an X-ray transmitting film 2 holding the absorber 3, the X-ray mask structure is characterized by the above X-ray absorber 3 pattern whose sidewall has an irregular shape.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は大規模集積回路(LSI
)やマイクロマシン等の微細パターンをX線露光により
ウェーハ等に焼き付ける際に用いるX線マスク構造体及
びその製造方法に関するものである。
[Industrial Application Field] The present invention relates to large-scale integrated circuits (LSI).
The present invention relates to an X-ray mask structure used when printing fine patterns such as those of ) or micromachines onto a wafer or the like by X-ray exposure, and a method of manufacturing the same.

【0002】0002

【従来の技術】DRAMに代表される大規模集積回路は
今や4MDRAMの量産期にあり、しかも16MDRA
Mから64MDRAMへと急速に技術的に進歩している
。これに伴いデバイスに要求される最小線幅も、ハーフ
ミクロンからクォーターミクロンへと縮小している。 これらの半導体デバイスは近紫外光若しくは遠紫外光を
利用してマスクから半導体基板へと転写されるが、これ
らの光の波長では加工出来るデバイスの線幅も限界に近
付きつつある。又、微細化に伴う焦点深度の低下も免れ
ない。そこで、X線によるリソグラフィー技術は上記の
問題を同時に解決するものとして期待が大きい。
[Prior Art] Large-scale integrated circuits represented by DRAM are currently in the mass production period of 4M DRAM, and even 16M DRAM.
Technology is rapidly progressing from M to 64M DRAM. Along with this, the minimum line width required for devices has also been reduced from half a micron to a quarter micron. These semiconductor devices are transferred from a mask to a semiconductor substrate using near-ultraviolet light or far-ultraviolet light, but the line width of devices that can be processed using these wavelengths of light is approaching its limit. Further, the depth of focus inevitably decreases with miniaturization. Therefore, lithography technology using X-rays has high expectations as a solution to the above problems at the same time.

【0003】X線露光に使用するマスク構造体では、一
般的に、図1に示す様に適当な支持枠1上に形成された
X線透過膜2上に更にX線吸収体の微細パターン3が形
成された構造を有する。X線吸収体として使用される材
料は重金属、特にAu、W、Ta等が発表されている。 更に、これらのX線吸収体のパターンを支持固定するX
線透過膜には、SiN、SiC等のシリコン化合物が発
表されている。このX線吸収体パターンの形成方法には
、レジストによる“め型パターン”に対するメッキ法、
重金属吸収体の薄膜を反応性イオンエッチング等のドラ
イプロセスでパターンニングする方法、又は適当なエッ
チング液を用いてウェットプロセスでパターンニングす
る方法等がある。
In a mask structure used for X-ray exposure, generally, as shown in FIG. 1, a fine pattern 3 of an X-ray absorber is further formed on an X-ray transmitting film 2 formed on a suitable support frame 1. It has a structure in which Materials used as X-ray absorbers include heavy metals, particularly Au, W, and Ta. Furthermore, the X-ray absorber pattern is supported and fixed.
Silicon compounds such as SiN and SiC have been announced for the light-transmitting film. Methods for forming this X-ray absorber pattern include a plating method for a "shaped pattern" using a resist,
There are methods of patterning a thin film of heavy metal absorber using a dry process such as reactive ion etching, or a method of patterning a thin film of a heavy metal absorber using a wet process using an appropriate etching solution.

【0004】一方、吸収体の形状に関しては、マスクに
入射するX線のフレネル回折を考えた場合、その吸収体
パターンの側壁の断面形状に凹凸を有していることが、
レジストへのパターン転写に対して望ましいことが提案
されている(特開平2−52416号公報参照)。更に
吸収体の側壁に凹凸を有させることによって、マスクに
入射したX線が吸収体の側面で反射して、レジスト上で
のX線強度のコントラストが低下し、解像度低下をもた
らすという問題を解消することが出来る。このことにつ
いて詳細に述べる。
On the other hand, regarding the shape of the absorber, when considering Fresnel diffraction of X-rays incident on the mask, the uneven cross-sectional shape of the side wall of the absorber pattern is
It has been proposed that it is desirable for pattern transfer to resist (see Japanese Patent Laid-Open No. 2-52416). Furthermore, by providing unevenness on the side walls of the absorber, the problem of X-rays incident on the mask being reflected on the sides of the absorber, reducing the contrast of the X-ray intensity on the resist and causing a decrease in resolution, is resolved. You can. This will be discussed in detail.

【0005】X線露光用マスクを用いてレジスト上にパ
ターン転写を行う場合、マスクの破損を防ぐ為に、図2
に示す様にマスク(2、3)はレジスト4から数十μm
離して置かれる。そうしてX線5をマスクを通して照射
して吸収体のパターン3をレジスト上に転写する。この
場合、照射するX線が必ずしも平行でなく、更に吸収体
側面が製造プロセスによって必ずしも垂直でない等の理
由で、照射X線5の一部は吸収体3の側面にすれすれの
角度で入射する。これらのX線5の一部は吸収体3の側
面で反射され、照射X線5とは異なった方向に進むので
、本来吸収体3に遮られてX線5が到達しない部分のレ
ジスト4を感光させてしまい、その結果、転写パターン
の解像度が低下するという問題が生じる。この問題は吸
収体3の側壁に凹凸をもたせることによって解決出来る
When transferring a pattern onto a resist using an X-ray exposure mask, in order to prevent damage to the mask,
As shown in the figure, the masks (2, 3) are several tens of μm away from the resist 4.
placed apart. Then, X-rays 5 are irradiated through the mask to transfer the absorber pattern 3 onto the resist. In this case, some of the irradiated X-rays 5 are incident on the side surface of the absorber 3 at a grazing angle because the irradiated X-rays are not necessarily parallel and the side surface of the absorber is not necessarily perpendicular due to the manufacturing process. A part of these X-rays 5 is reflected by the side surface of the absorber 3 and travels in a direction different from that of the irradiated X-rays 5, so that the portions of the resist 4 that would otherwise be blocked by the absorber 3 and where the X-rays 5 would not reach are As a result, a problem arises in that the resolution of the transferred pattern is reduced. This problem can be solved by making the side wall of the absorbent body 3 uneven.

【0006】物質にX線が入射した場合の反射率は入射
角に依存している。X線を物質の面にすれすれの角度で
入射した場合、即ち、入射角が90°に近い場合には全
反射が起こり反射率は100%に近いが、入射角が90
°から小さくなるに従って反射率は急激に低下する。図
3に、金表面に波長1nmのX線を入射した場合の反射
率の入射角依存性を示す。入射角90〜88°では反射
率50%以上であるが入射角が小さくなるに従って反射
率は急激に低下し、85°以下では反射率は1%以下で
ある。X線マスク吸収体の側面が凹凸のない滑らかな面
であればX線は吸収体の面にすれすれの角度で入射する
ので反射率が高い。
[0006] When X-rays are incident on a substance, the reflectance depends on the angle of incidence. When X-rays are incident on the surface of a material at a grazing angle, that is, when the angle of incidence is close to 90°, total internal reflection occurs and the reflectance is close to 100%;
The reflectance decreases rapidly as the value decreases from . FIG. 3 shows the dependence of the reflectance on the incident angle when X-rays with a wavelength of 1 nm are incident on the gold surface. At an incident angle of 90 to 88 degrees, the reflectance is 50% or more, but as the incident angle becomes smaller, the reflectance decreases rapidly, and at an incident angle of 85 degrees or less, the reflectance is 1% or less. If the side surface of the X-ray mask absorber is smooth with no irregularities, the X-rays will be incident on the absorber's surface at a grazing angle, resulting in a high reflectance.

【0007】ところが図4に示す様に、吸収体3の側壁
に凹凸をもたせてあれば、吸収体近傍のX線は吸収体3
の面に対し小さな角度で入射するので反射率は非常に低
くなる。つまり、吸収体3の側壁に5°以上の傾きを有
する凹凸を形成しておけば、X線5の反射率は1%以下
となるので、不要な反射X線がレジスト4を感光させて
転写パターンの解像度が低下するという問題は解消出来
る。しかしながら、この様な任意の断面形状を有するX
線吸収体パターンを作成しようとすると、複雑なプロセ
スが必要で高精度なX線マスクの提供が困難であった。 従って、本発明の目的は、任意の凹凸断面形状を有する
X線吸収体パターンを有するX線マスク構造体を簡単な
プロセスで提供することにある。
However, as shown in FIG. 4, if the side wall of the absorber 3 is uneven, the X-rays near the absorber will be absorbed by the absorber 3.
Since the light is incident on the surface at a small angle, the reflectance is very low. In other words, if unevenness with an inclination of 5° or more is formed on the side wall of the absorber 3, the reflectance of the X-rays 5 will be 1% or less, so unnecessary reflected X-rays will expose the resist 4 and transfer it. The problem of reduced pattern resolution can be solved. However, X with such an arbitrary cross-sectional shape
Creating a radiation absorber pattern requires a complicated process, making it difficult to provide a highly accurate X-ray mask. Therefore, an object of the present invention is to provide an X-ray mask structure having an X-ray absorber pattern having an arbitrary uneven cross-sectional shape through a simple process.

【0008】[0008]

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、所望のパターン
のX線吸収体と該吸収体を保持するX線透過膜とを含む
X線マスク構造体において、上記X線吸収体パターンが
、その側壁が凹凸形状を有する積層構造体であることを
特徴とするX線マスク構造体、及びX線吸収体パターン
を保持すべきX線透過膜上に、任意のエッチング条件に
おいてエッチング速度が異なる少なくとも2種以上のX
線吸収体パターン材料を交互に積層し、しかる後任意の
エッチング条件で吸収体パターンをエッチングすること
を特徴とする上記のX線マスク構造体の製造方法である
[Means for Solving the Problems] The above object is achieved by the following present invention. That is, the present invention provides an X-ray mask structure including an X-ray absorber having a desired pattern and an X-ray transparent film holding the absorber, wherein the X-ray absorber pattern has an uneven side wall. An X-ray mask structure characterized by being a laminated structure, and an X-ray transparent film that is to hold an X-ray absorber pattern are provided with at least two types of X-rays having different etching rates under arbitrary etching conditions.
The method for manufacturing the above-mentioned X-ray mask structure is characterized in that radiation absorber pattern materials are alternately laminated and then the absorber patterns are etched under arbitrary etching conditions.

【0009】[0009]

【作用】前記従来技術の問題に鑑み、本発明者らが鋭意
研究を重ねた結果、X線吸収体パターン材料を任意のエ
ッチング条件に対してエッチング速度が異なる2つ以上
の材料の積層構造とし、この後任意のエッチング条件で
吸収体パターンをエッチングすることによって側壁の断
面形状に凹凸を有する吸収体パターン形状を得ることが
出来るという結論を得本発明に至った。
[Operation] In view of the above-mentioned problems of the prior art, the inventors of the present invention have conducted extensive research and have developed an X-ray absorber pattern material with a laminated structure of two or more materials having different etching rates under arbitrary etching conditions. The inventors have come to the conclusion that by etching the absorber pattern under arbitrary etching conditions, it is possible to obtain an absorber pattern having irregularities in the cross-sectional shape of the sidewall, leading to the present invention.

【0010】0010

【好ましい実施態様】本発明のX線マスク構造体は、図
1に図解的に示す様に、マスク支持枠としてのシリコン
ウェーハ1とX線透過膜2とX線吸収体パターン3とか
らなり、円中に描いた拡大図に示す様に、上記X線吸収
体パターン3が、その側壁が凹凸形状を有する積層構造
体であることを特徴としている。又、これらの材料の他
にもX線吸収体の保護膜や導電膜も使用してもよい。X
線透過膜としては、1〜10μmの厚みのSi、SiO
2 、SiC、SiN、BN、BNC等の無機類、ポリ
イミド等の耐放射線性有機膜等の公知の材料を使用する
ことが出来る。又、この他にX線透過膜として使用出来
るものであれば使用しても構わない。これらの膜の成膜
方法は各種のスパッタ法、化学気相成長法等の方法を用
いることが出来る。又、X線吸収体パターンはめっき法
によって形成することが好ましく、X線吸収体パターン
材料としては、Au、Ni、Cu等の公知の材料を使用
することが出来る。本発明の基本プロセスであるX線吸
収体の側壁の断面を凹凸形状制御する方法としては、任
意のエッチングに対してエッチング速度の異なる材料を
交互にめっきを行い、吸収体パターン形成後に任意のエ
ッチング処理を施すことによって目的の構造を得ること
が出来る。
[Preferred Embodiment] The X-ray mask structure of the present invention, as schematically shown in FIG. As shown in the enlarged view drawn in a circle, the X-ray absorber pattern 3 is characterized by being a laminated structure whose side walls have an uneven shape. In addition to these materials, a protective film or a conductive film for an X-ray absorber may also be used. X
As a line-transmitting film, Si or SiO with a thickness of 1 to 10 μm is used.
2. Known materials such as inorganic materials such as SiC, SiN, BN, and BNC, and radiation-resistant organic films such as polyimide can be used. In addition, any other material that can be used as an X-ray transparent membrane may be used. Various sputtering methods, chemical vapor deposition methods, and other methods can be used to form these films. Further, the X-ray absorber pattern is preferably formed by a plating method, and known materials such as Au, Ni, and Cu can be used as the X-ray absorber pattern material. The basic process of the present invention, which is a method for controlling the uneven shape of the sidewall cross section of the X-ray absorber, is to alternately plate materials with different etching rates for arbitrary etching, and then perform arbitrary etching after forming the absorber pattern. The desired structure can be obtained by processing.

【0011】[0011]

【実施例】次に図面に示す実施例を参照して本発明を更
に詳しく説明する。尚、本発明はこれらの実施例のみに
限られないことはいうまでもない。実施例1シリコンウ
ェーハ上に化学気相成長法によって形成された2μm厚
のSiN膜を有する基板を実験用の基板とした。この基
板上にめっき用の電極として、Cr及びAuを夫々50
オングストローム及び500オングストロームの厚みに
EB蒸着によって形成した。この上に電子線レジストで
あるPMMAを1.3μmの厚みでスピンコートし、加
速電圧20kVでEB描画を行い、現像後0.25μm
のめっき用ステンシルパターンを形成した。この後、亜
硫酸系のAuめっき液を用いてX線吸収体であるAuを
0.1μmの厚みにめっきした。次いで、Niめっき液
を用いて、Au層上にNiを0.1μmの厚みにめっき
した。この2種のめっき操作を夫々5回繰り返すことに
よって1.0μmの厚みを有するX線吸収体パターンを
形成した。この基板をヨウ化カリの水溶液に浸漬しAu
の部分のみを短時間選択的にエッチングした。更に、め
っきに使用した基板上の電極をスパッタ法によって除去
した。又、常法に従ってSi基板をバックエッチして、
最後にこのマスク基板をパイレックスのフレームに装着
して本発明のX線マスクとした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in more detail with reference to embodiments shown in the drawings. It goes without saying that the present invention is not limited to these examples. Example 1 A substrate having a 2 μm thick SiN film formed on a silicon wafer by chemical vapor deposition was used as an experimental substrate. 50% each of Cr and Au were placed on this substrate as plating electrodes.
It was formed by EB deposition to a thickness of 500 angstroms. On top of this, PMMA, which is an electron beam resist, was spin-coated to a thickness of 1.3 μm, and EB drawing was performed at an accelerating voltage of 20 kV, and after development, the thickness was 0.25 μm.
A stencil pattern for plating was formed. Thereafter, Au, which is an X-ray absorber, was plated to a thickness of 0.1 μm using a sulfite-based Au plating solution. Next, using a Ni plating solution, Ni was plated on the Au layer to a thickness of 0.1 μm. By repeating these two types of plating operations five times each, an X-ray absorber pattern having a thickness of 1.0 μm was formed. This substrate was immersed in an aqueous solution of potassium iodide, and Au
Only the portions were selectively etched for a short period of time. Furthermore, the electrodes on the substrate used for plating were removed by sputtering. Also, back-etch the Si substrate according to the usual method,
Finally, this mask substrate was mounted on a Pyrex frame to form an X-ray mask of the present invention.

【0012】実施例2 実施例1におけるNiめっきに代えて、Cuめっきを使
用した他は全て実施例1と同様の操作を行って、本発明
のX線マスク構造体とした。実施例3 実施例1及び実施例2で得られたX線吸収体パターンの
断面形状をSEMを用いて評価した。両実施例ともAu
の層が選択的にエッチングされ、吸収体側壁に周期的な
凹凸形状を有する形状が確認された。この周期は各めっ
き層の厚みの周期と同等で0.2μm、凹凸の深さは約
200オングストロームであった。
Example 2 An X-ray mask structure of the present invention was obtained by performing the same operations as in Example 1 except that Cu plating was used instead of Ni plating in Example 1. Example 3 The cross-sectional shapes of the X-ray absorber patterns obtained in Examples 1 and 2 were evaluated using a SEM. Both examples are made of Au
layer was selectively etched, and a periodic uneven shape was confirmed on the side wall of the absorber. This period was equivalent to the period of the thickness of each plating layer, 0.2 μm, and the depth of the unevenness was about 200 angstroms.

【0013】[0013]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のX線マスクを図解的に示す断面図。FIG. 1 is a sectional view schematically showing an X-ray mask of the present invention.

【図2】X線マスクを用いたパターン転写の模式図。FIG. 2 is a schematic diagram of pattern transfer using an X-ray mask.

【図3】金表面に波長1nmのX線を入射した場合の反
射率の入射角依存性を示す図。
FIG. 3 is a diagram showing the dependence of reflectance on the angle of incidence when X-rays with a wavelength of 1 nm are incident on a gold surface.

【図4】吸収体の側壁に凹凸をもたせたX線マスクにお
けるX線照射の模式図。
FIG. 4 is a schematic diagram of X-ray irradiation using an X-ray mask with an uneven side wall of an absorber.

【符合の説明】1:支持枠 2:透過膜 3:X線吸収体 4:レジスト 5:X線[Explanation of symbols] 1: Support frame 2: Permeable membrane 3: X-ray absorber 4: Resist 5: X-ray

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  所望のパターンのX線吸収体と該吸収
体を保持するX線透過膜とを含むX線マスク構造体にお
いて、上記X線吸収体パターンが、その側壁が凹凸形状
を有する積層構造体であることを特徴とするX線マスク
構造体。
1. An X-ray mask structure comprising an X-ray absorber having a desired pattern and an X-ray transparent film holding the absorber, wherein the X-ray absorber pattern is a laminated layer whose sidewalls have an uneven shape. An X-ray mask structure characterized by being a structure.
【請求項2】  吸収体パターンが少なくとも2種類の
材料からなる積層構造体である請求項1に記載のX線マ
スク構造体。
2. The X-ray mask structure according to claim 1, wherein the absorber pattern is a laminated structure made of at least two types of materials.
【請求項3】  X線透過膜上に、任意のエッチング条
件においてエッチング速度が異なる少なくとも2種以上
のX線吸収体パターン材料を交互に積層し、しかる後任
意のエッチング条件で吸収体パターンをエッチングする
ことを特徴とする請求項1に記載のX線マスク構造体の
製造方法。
3. At least two or more types of X-ray absorber pattern materials having different etching rates under arbitrary etching conditions are alternately laminated on the X-ray transparent film, and then the absorber pattern is etched under arbitrary etching conditions. The method for manufacturing an X-ray mask structure according to claim 1, characterized in that:
JP9264991A 1991-04-01 1991-04-01 X-ray mask structure and method of manufacturing the same Expired - Fee Related JP3009068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9264991A JP3009068B2 (en) 1991-04-01 1991-04-01 X-ray mask structure and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9264991A JP3009068B2 (en) 1991-04-01 1991-04-01 X-ray mask structure and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04304614A true JPH04304614A (en) 1992-10-28
JP3009068B2 JP3009068B2 (en) 2000-02-14

Family

ID=14060309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9264991A Expired - Fee Related JP3009068B2 (en) 1991-04-01 1991-04-01 X-ray mask structure and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3009068B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035529A (en) * 2013-08-09 2015-02-19 凸版印刷株式会社 Reflective mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015035529A (en) * 2013-08-09 2015-02-19 凸版印刷株式会社 Reflective mask

Also Published As

Publication number Publication date
JP3009068B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
JP5239762B2 (en) Reflective mask and reflective mask manufacturing method
TWI815847B (en) Mask blank, phase shift mask and method of manufacturing a semiconductor device
TWI753273B (en) Mask for euv lithography and method of manufacturing the same
TWI803344B (en) A Lithography Method Based on Double Layer Photoresist
JP2011176127A (en) Reflection type mask and method of manufacturing the same
JPH0689848A (en) X-ray mask structure, method of forming x-ray mask structure, and device having x-ray mask structure
US5030549A (en) Fine pattern forming method
JP2000058449A (en) Semiconductor device forming method and mask by use of lithography mask
JP3210143B2 (en) X-ray mask structure, method for manufacturing the same, X-ray exposure method using the X-ray mask structure, and device manufacturing method using the X-ray mask structure
US5567551A (en) Method for preparation of mask for ion beam lithography
JPH04304614A (en) X-ray mask structure and manufacture thereof
JP2004525506A (en) Method for producing metal / semiconductor compound structure by X-ray / EUV projection lithography
US5178975A (en) High resolution X-ray mask having high aspect ratio absorber patterns
JP6944255B2 (en) Manufacturing method of transfer mask and manufacturing method of semiconductor device
WO2005015308A2 (en) Fabrication process for high resolution lithography masks using evaporated or plasma assisted electron sensitive resists with plating image reversal
US6428939B1 (en) Enhanced bright peak clear phase shifting mask and method of use
JP2684994B2 (en) Fine pattern forming method
KR100205345B1 (en) Manufacturing method of x-ray mask
JPH05136026A (en) Pattern forming method
JPH0312452B2 (en)
KR20230011836A (en) Pellicle for Extreme Ultraviolet(EUV) Lithography and Method for Fabricating of the same
JPH04315417A (en) Mask for long wavelength x-ray aligner and manufacture thereof
JPH05121298A (en) Mask for x-ray exposure and manufacture thereof
JPH01302350A (en) Resist pattern forming method
JPH05102013A (en) X-ray mask structure body, its manufacture and x-ray exposure method using the same x-ray mask structure body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees