JPH04304417A - Magnetooptic element for magnetic field sensor - Google Patents

Magnetooptic element for magnetic field sensor

Info

Publication number
JPH04304417A
JPH04304417A JP3094850A JP9485091A JPH04304417A JP H04304417 A JPH04304417 A JP H04304417A JP 3094850 A JP3094850 A JP 3094850A JP 9485091 A JP9485091 A JP 9485091A JP H04304417 A JPH04304417 A JP H04304417A
Authority
JP
Japan
Prior art keywords
magnetic field
magneto
field sensor
elements
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3094850A
Other languages
Japanese (ja)
Other versions
JP3044084B2 (en
Inventor
Shinji Iwatsuka
信治 岩塚
Kazuto Yamazawa
和人 山沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3094850A priority Critical patent/JP3044084B2/en
Publication of JPH04304417A publication Critical patent/JPH04304417A/en
Application granted granted Critical
Publication of JP3044084B2 publication Critical patent/JP3044084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To reduce the diffraction loss of the magnetooptic element for the magnetic field sensor which uses perpendicularly magnetizing elements. CONSTITUTION:The magnetooptic element for the magnetic sensor has (n) magnetooptic elements put one over another (n;>=2, n: integer); and the total of the Faraday rotation angles of the (n) magnetooptic elements in a saturated magnetic field is >=15 deg., the easy magnetization axis of the magnetooptic element is parallel to the traveling direction of light, and the magnetic layers of respective magnetooptic elements do not contact one another. Consequently, the magnetic field sensor which has low loss and high sensitivity is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、複数枚の磁気光学素子
を互いに隔離して配置した低損失且つ高感度の磁界セン
サ用磁気光学素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-loss, high-sensitivity magneto-optical element for a magnetic field sensor in which a plurality of magneto-optical elements are arranged in isolation from each other.

【0002】0002

【従来技術】磁界センサ用磁気光学素子は、ファラデー
効果を利用した磁界強度を測定するための光学素子であ
る。ファラデー回転角をθF 、磁界をHとして両者の
関係を第1図に示す。図中、HS は飽和磁界、θFS
は飽和ファラデー回転角を表し、磁界センサの感度はθ
FS/HS で表される。従って、かかる素子の感度を
増大するには、HS を小さくするかあるいはθfsを
大きくすればよい。HS を小さくすることは材料組成
を変化することにより実現できるが、測定可能な磁界範
囲が制限されてしまうため磁界センサとしては好ましく
ない(測定範囲は−HS <H<HS である)。一方
、θfsは、ファラデー効果の関係式θf =V×L×
Hで与えられるので(式中、Vはベルデ定数、Lは光路
長、Hは磁界である)、θfsを大きくするには素子の
厚さLを厚くすれば実現できる。単位厚さ当たりのファ
ラデー回転角を表すファラデー回転能(θfs/厚さ)
が大きいものしてビスマス置換希土類鉄ガーネットが知
られている。
2. Description of the Related Art A magneto-optical element for a magnetic field sensor is an optical element for measuring magnetic field strength using the Faraday effect. FIG. 1 shows the relationship between the Faraday rotation angle θF and the magnetic field H. In the figure, HS is the saturation magnetic field, θFS
represents the saturated Faraday rotation angle, and the sensitivity of the magnetic field sensor is θ
It is expressed as FS/HS. Therefore, to increase the sensitivity of such an element, either HS can be decreased or θfs can be increased. Although it is possible to reduce HS by changing the material composition, this is not preferable as a magnetic field sensor because the measurable magnetic field range is limited (the measurement range is -HS < H < HS). On the other hand, θfs is the Faraday effect relational expression θf = V×L×
Since it is given by H (in the formula, V is the Verdet constant, L is the optical path length, and H is the magnetic field), θfs can be increased by increasing the thickness L of the element. Faraday rotation ability (θfs/thickness), which represents the Faraday rotation angle per unit thickness
Bismuth-substituted rare earth iron garnet is known to have a large effect.

【0003】しかしながら、ビスマス置換希土類鉄ガー
ネットを量産性に適したLPE法により製造すると、通
常は第2図のように垂直磁化膜となり、磁区構造は多磁
区構造となる。飽和磁場未満では、かかる多磁区構造は
回折格子として作用して、光が透過する際に入射光の一
部の回折損失をもたらす。従って、素子を透過した信号
強度が低下するという問題点があった。
However, when bismuth-substituted rare earth iron garnet is manufactured by the LPE method, which is suitable for mass production, it usually becomes a perpendicularly magnetized film as shown in FIG. 2, and the magnetic domain structure becomes a multi-domain structure. Below the saturation magnetic field, such a multi-domain structure acts as a diffraction grating, resulting in a diffraction loss of a portion of the incident light as the light passes through it. Therefore, there is a problem in that the intensity of the signal transmitted through the element is reduced.

【0004】そこで、本発明の目的は、磁化容易軸が光
の進行方向と平行である光磁界センサー用光学素子にお
いて、素子による回折が少ない高感度磁界センサー用磁
気光学素子を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a highly sensitive magneto-optical element for a magnetic field sensor in which the axis of easy magnetization is parallel to the direction of propagation of light, and in which the diffraction caused by the element is small. .

【0005】[0005]

【課題を解決するための手段】本発明者は上記課題を解
決するために鋭意検討した結果、複数の磁気光学素子を
互いに隔離して配置することにより、それらの素子の厚
さの総和に相当する厚さを持つ単独の素子に比べて回折
損失がより少ない透過光を検出することができることを
見出した。
[Means for Solving the Problems] As a result of intensive studies in order to solve the above problems, the inventors of the present invention have found that by arranging a plurality of magneto-optical elements in isolation from each other, the We have found that it is possible to detect transmitted light with less diffraction loss than a single element with a thickness of

【0006】すなわち、本発明は、磁気光学素子をn枚
重ね合せた磁界センサ用磁気光学素子において(n≧2
、n:整数)、飽和磁場におけるn枚の磁気光学素子の
ファラデー回転角の合計が15度以上であり、磁気光学
素子の磁化容易軸が光の進行方向と平行であり、各々の
磁気光学素子の磁性層が互いに接触してないことを特徴
とする磁界センサ用磁気光学素子を提供するものである
That is, the present invention provides a magneto-optical element for a magnetic field sensor in which n magneto-optical elements are stacked (n≧2).
, n: an integer), the total Faraday rotation angle of the n magneto-optical elements in a saturated magnetic field is 15 degrees or more, the axis of easy magnetization of the magneto-optical element is parallel to the traveling direction of light, and each magneto-optic element The present invention provides a magneto-optical element for a magnetic field sensor, characterized in that the magnetic layers of the magnetic layers are not in contact with each other.

【0007】さらに、本発明は、上記磁気光学素子を備
える磁界センサをも提供するものである。
Furthermore, the present invention also provides a magnetic field sensor equipped with the above magneto-optical element.

【0008】本願発明で用いる磁気光学素子は、磁界が
印加されていないときに、第2図に示したような磁気光
学素子の磁化容易軸が入射光の進行方向と平行である素
子材料を用いる。このような素子材料として、例えば、
希土類鉄ガーネット、ビスマス置換した希土類鉄ガーネ
ット、オルソフェライト等を挙げ得る。かかる材料は、
飽和磁場未満では、通常、上記のような多磁区構造に基
づく回折による透過損失を生じており、本願発明を用い
てかかる回折損失は有効に低減される。
The magneto-optical element used in the present invention uses an element material in which the axis of easy magnetization of the magneto-optical element is parallel to the traveling direction of incident light as shown in FIG. 2 when no magnetic field is applied. . Examples of such element materials include:
Examples include rare earth iron garnet, bismuth-substituted rare earth iron garnet, orthoferrite, and the like. Such materials are
Below the saturation magnetic field, transmission loss usually occurs due to diffraction due to the multi-domain structure as described above, and the present invention can effectively reduce such diffraction loss.

【0009】本発明ではかかる材料素子を2枚以上用い
、それらを互いに隔離して用いる。第3図のように互い
に密着して使用すると、その多磁区構造は図のように二
つの素子で同一になるために、後述するように、単一の
素子を用いた場合と同様に光の透過損失が大きくなるた
め好ましくない。従って、本発明では第4図のように、
例えば、非磁性基板を用いて上記の磁気光学素子を隔離
して用いなければならない。
[0009] In the present invention, two or more such material elements are used and are used in isolation from each other. When used in close contact with each other as shown in Figure 3, the multi-domain structure is the same in the two elements as shown in the figure, so as will be described later, the optical This is not preferable because the transmission loss increases. Therefore, in the present invention, as shown in FIG.
For example, the above-mentioned magneto-optical element must be used in isolation using a non-magnetic substrate.

【0010】更に本発明では上記の素子をn枚を隔離配
置して、素子に磁界を印加して飽和磁化にせしめた場合
に、ファラデー回転角がn枚の合計で15度以上になる
必要がある。これを以下に説明する。次式は、第4図の
ような複数の垂直磁化素子に光が入射した場合の透過率
Tを求める計算式である。ただし、素子には磁界は印加
されていない。
Furthermore, in the present invention, when n pieces of the above elements are arranged in isolation and a magnetic field is applied to the elements to make them saturated magnetize, the Faraday rotation angle of the n pieces must be 15 degrees or more in total. be. This will be explained below. The following equation is a calculation equation for calculating the transmittance T when light is incident on a plurality of perpendicularly magnetized elements as shown in FIG. However, no magnetic field is applied to the element.

【0011】[0011]

【数1】 T=[COS2 (θfs/n)]n   ×(tR 
)nn:素子の枚数 tR :1枚の素子の反射及び吸収損失を考慮した透過
率COS2 (θfs/n):回折損失の項
[Formula 1] T = [COS2 (θfs/n)]n × (tR
) nn: Number of elements tR: Transmittance considering reflection and absorption loss of one element COS2 (θfs/n): Diffraction loss term

【0012
】上式において、tR =0.98として、n=1〜3
の場合の透過率を算出して透過損失を種々の飽和ファラ
デー回転角θfsに対して表したのが第5図である。同
図から飽和ファラデー回転角が大きくなると透過損失が
増大することがわかる。例えば、単独の素子では、θf
s=26度のときの損失は1dBである。しかしθfs
=13度の素子2枚から構成した場合には損失は約0.
6dBであり、大幅に損失を低減することができる。ま
たθfs=8.7度の素子を3枚にしたときにはその効
果は更に大きくなる。しかしながら、複数枚の素子を用
いてこのような透過損失低減の効果が現れるのは同図か
ら明らかなようにθfs≧15度の場合である。このた
め本願発明ではn枚の磁気光学素子のファラデー回転角
の合計が15度以上であることが要求される。上記計算
は磁界が印加されていない場合の結果であるが、飽和磁
界未満の磁界を検出するために用いる本願発明の磁界セ
ンサ−用磁気光学素子の場合にも当てはまる。すなわち
、飽和磁界未満の磁界では、前記のような多磁区構造に
基づく回折損失が生じているからである。
0012
] In the above formula, tR = 0.98, n = 1 to 3
FIG. 5 shows the calculated transmittance and the transmission loss for various saturated Faraday rotation angles θfs. It can be seen from the figure that the transmission loss increases as the saturated Faraday rotation angle increases. For example, in a single element, θf
The loss when s=26 degrees is 1 dB. However, θfs
= 13 degrees, the loss is approximately 0.
6 dB, which can significantly reduce loss. Moreover, when the number of elements with θfs=8.7 degrees is reduced to three, the effect becomes even greater. However, as is clear from the figure, the effect of reducing transmission loss using a plurality of elements appears when θfs≧15 degrees. Therefore, in the present invention, the total Faraday rotation angle of the n magneto-optical elements is required to be 15 degrees or more. Although the above calculation is the result when no magnetic field is applied, it also applies to the magneto-optical element for a magnetic field sensor of the present invention used to detect a magnetic field below the saturation magnetic field. That is, in a magnetic field less than the saturation magnetic field, diffraction loss occurs due to the multi-domain structure as described above.

【0013】本発明の別の態様として、上記の磁気光学
素子を備える磁界センサは、例えば、第6図のように構
成することができる。同図は、上記磁気光学素子を備え
る本発明の磁界センサの一例を示したもので、光送信機
1、光受信機2、光ファイバ3a,3b、屈折率分布型
レンズ4a,4b、偏光子5、磁界センサ−用磁気光学
素子6、検光子7から構成されている。光送信機1から
の光は、光ファイバ3aにより光センサ部に導かれる。 光センサ部では、光ファイバ3aからの光を屈折率分布
型レンズ4aでコリメートした後、偏光子5で直線偏光
に変換し、磁界センサ−用磁気光学素子6に導く。ここ
で、磁界センサ−用磁気光学素子6に平行に磁界が印加
されたとすると、素子6を通過する直線偏光の偏光面が
磁界の強度に比例して回転する。この回転の程度を、偏
光子5と光軸が45°だけ傾いた検光子7によって光強
度に変換し、その光を屈折率分布型レンズ4bで絞り、
光フェイバ3bを経て光受信機2に導く。光受信機2で
は、光信号を電気信号に変換し、光センサ部に印加され
た磁界強度を求める動作が行われる。磁界強度を測定さ
れると、直ちに電流の大きさが求められる。偏光子5、
検光子7としては、グラントムソンプリズムや偏光ビー
ムスプリッタを用いた。
As another aspect of the present invention, a magnetic field sensor including the above magneto-optical element can be constructed as shown in FIG. 6, for example. The figure shows an example of a magnetic field sensor of the present invention including the above magneto-optical element, including an optical transmitter 1, an optical receiver 2, optical fibers 3a and 3b, gradient index lenses 4a and 4b, and a polarizer. 5, a magneto-optical element 6 for a magnetic field sensor, and an analyzer 7. Light from the optical transmitter 1 is guided to the optical sensor section by an optical fiber 3a. In the optical sensor section, the light from the optical fiber 3a is collimated by a gradient index lens 4a, then converted into linearly polarized light by a polarizer 5, and guided to a magneto-optical element 6 for a magnetic field sensor. Here, if a magnetic field is applied in parallel to the magneto-optical element 6 for a magnetic field sensor, the polarization plane of the linearly polarized light passing through the element 6 rotates in proportion to the intensity of the magnetic field. The degree of rotation is converted into light intensity by a polarizer 5 and an analyzer 7 whose optical axis is tilted by 45 degrees, and the light is narrowed down by a gradient index lens 4b.
It is guided to the optical receiver 2 via the optical fiber 3b. The optical receiver 2 performs an operation of converting an optical signal into an electrical signal and determining the strength of the magnetic field applied to the optical sensor section. When the magnetic field strength is measured, the magnitude of the current is immediately determined. polarizer 5,
As the analyzer 7, a Glan-Thompson prism or a polarizing beam splitter was used.

【0014】以下に本発明を実施例により詳細に説明す
るが、本発明はこれらに何等限定されない。
[0014] The present invention will be explained in detail with reference to Examples below, but the present invention is not limited thereto in any way.

【0015】[0015]

【実施例】本発明の磁界センサ用磁気光学素子の製造方
法を以下に記載する。 実施例1 LPE法により、高格子定数GGG基板上にBi1.4
 Ho1.6 Fe5 O12の組成の膜を作製し、膜
厚が70μmとなるように研磨した。この材料を2枚、
第4図のように互いに隔離して配置した。こうして構成
した磁気光学素子に磁界を印加してその特性を試験した
ところ、飽和ファラデー回転角は28°で、感度は0.
04度/Oeと大きく、また、印加磁界がゼロのときの
損失は0.8dBであった。
EXAMPLES A method of manufacturing a magneto-optical element for a magnetic field sensor according to the present invention will be described below. Example 1 Bi1.4 was deposited on a high lattice constant GGG substrate by LPE method.
A film having a composition of Ho1.6 Fe5 O12 was prepared and polished to a film thickness of 70 μm. Two pieces of this material
They were placed isolated from each other as shown in Figure 4. When a magnetic field was applied to the magneto-optical element constructed in this way and its characteristics were tested, the saturation Faraday rotation angle was 28° and the sensitivity was 0.
The loss was as large as 0.04 degrees/Oe, and the loss when the applied magnetic field was zero was 0.8 dB.

【0016】比較例1 実施例1の組成材料の膜厚を140μmとし、1枚だけ
を用いて特性を観測した。結果は、損失が1.5dBと
大きく、実施例1の損失の約2倍であった。
Comparative Example 1 The film thickness of the composition material of Example 1 was 140 μm, and the characteristics were observed using only one film. As a result, the loss was as large as 1.5 dB, which was about twice the loss of Example 1.

【0017】実施例2 実施例1と同様の方法で、Bi1.5 Y1.5 Fe
5 O12の材料を、膜厚が60μmとなるようにし、
この材料を互いに接しないように3枚重ねて配置した。 こうして構成した磁気光学素子に磁界を印加してその特
性を試験したところ、飽和ファラデー回転角は40°、
感度は0.06度/Oe、損失は1.1dBであった。
Example 2 By the same method as in Example 1, Bi1.5 Y1.5 Fe
5 O12 material was made to have a film thickness of 60 μm,
Three sheets of this material were placed one on top of the other so that they did not touch each other. When a magnetic field was applied to the magneto-optical element constructed in this way and its characteristics were tested, the saturation Faraday rotation angle was 40°.
The sensitivity was 0.06 degrees/Oe and the loss was 1.1 dB.

【0018】比較例2 実施例2の材料を用いて膜厚を180μmとし、1枚だ
けを用いて特性を観測した。結果は、損失が2.6dB
と大きかった。
Comparative Example 2 Using the material of Example 2, the film thickness was set to 180 μm, and the characteristics were observed using only one film. The result is a loss of 2.6dB.
It was big.

【0019】[0019]

【発明の効果】本発明の磁界センサ用磁気光学素子を用
いることにより、垂直磁化素子による光ビームの回折損
失が低減されるため好感度の磁界センサが得られる。
Effects of the Invention By using the magneto-optical element for a magnetic field sensor of the present invention, a magnetic field sensor with good sensitivity can be obtained because the diffraction loss of the light beam due to the perpendicular magnetization element is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  磁界センサ用磁気光学素子における磁界と
ファラデー回転角の関係を表すグラフである。
FIG. 1 is a graph showing the relationship between a magnetic field and a Faraday rotation angle in a magneto-optical element for a magnetic field sensor.

【図2】  ビスマス置換希土類鉄ガーネット垂直磁化
素子の多磁区構造を表す。
FIG. 2 represents the multi-domain structure of a bismuth-substituted rare earth iron garnet perpendicular magnetization element.

【図3】  図2の垂直磁化素子を2枚接して配置した
場合の磁区構造を表す。
FIG. 3 represents a magnetic domain structure when two perpendicular magnetization elements of FIG. 2 are arranged in contact with each other.

【図4】図2の垂直磁化素子を互いに非磁性基板により
隔離して配置した場合の磁区構造を表す。
FIG. 4 shows a magnetic domain structure when the perpendicular magnetization elements of FIG. 2 are arranged so as to be separated from each other by a nonmagnetic substrate.

【図5】  tR =0.98として、n=1〜3の場
合の垂直磁化膜の透過率を算出し、透過損失を飽和ファ
ラデー回転角θfsに対して表したグラフである。
FIG. 5 is a graph in which the transmittance of a perpendicularly magnetized film is calculated when tR = 0.98 and n = 1 to 3, and the transmission loss is expressed versus the saturation Faraday rotation angle θfs.

【図6】  本発明の磁気光学素子を備える磁界センサ
の一具体例である。
FIG. 6 is a specific example of a magnetic field sensor including the magneto-optical element of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  磁気光学素子をn枚重ね合せた磁界セ
ンサ用磁気光学素子において(n≧2、n:整数)、飽
和磁場におけるn枚の磁気光学素子のファラデー回転角
の合計が15度以上であり、磁気光学素子の磁化容易軸
が光の進行方向と平行であり、各々の磁気光学素子の磁
性層が互いに接触してないことを特徴とする磁界センサ
用磁気光学素子。
Claim 1: In a magneto-optical element for a magnetic field sensor in which n magneto-optical elements are superimposed (n≧2, n: an integer), the total Faraday rotation angle of the n magneto-optical elements in a saturated magnetic field is 15 degrees or more. A magneto-optical element for a magnetic field sensor, characterized in that the axis of easy magnetization of the magneto-optic element is parallel to the traveling direction of light, and the magnetic layers of each magneto-optic element are not in contact with each other.
【請求項2】  請求項1の磁気光学素子を備える磁界
センサ。
2. A magnetic field sensor comprising the magneto-optical element according to claim 1.
JP3094850A 1991-04-02 1991-04-02 Magneto-optical element for magnetic field sensor Expired - Fee Related JP3044084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3094850A JP3044084B2 (en) 1991-04-02 1991-04-02 Magneto-optical element for magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3094850A JP3044084B2 (en) 1991-04-02 1991-04-02 Magneto-optical element for magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH04304417A true JPH04304417A (en) 1992-10-27
JP3044084B2 JP3044084B2 (en) 2000-05-22

Family

ID=14121509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3094850A Expired - Fee Related JP3044084B2 (en) 1991-04-02 1991-04-02 Magneto-optical element for magnetic field sensor

Country Status (1)

Country Link
JP (1) JP3044084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577114A2 (en) * 1992-07-01 1994-01-05 Mitsubishi Gas Chemical Company, Inc. Reflection type magneto-optic sensor head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577114A2 (en) * 1992-07-01 1994-01-05 Mitsubishi Gas Chemical Company, Inc. Reflection type magneto-optic sensor head
EP0577114A3 (en) * 1992-07-01 1994-06-15 Mitsubishi Gas Chemical Co Reflection type magneto-optic sensor head

Also Published As

Publication number Publication date
JP3044084B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
US5736856A (en) Method and apparatus for performing magnetic field measurements using magneto-optic Kerr effect sensors
EP1176427B1 (en) Optical magnetic field sensor
US7254286B2 (en) Magneto-optical resonant waveguide sensors
US5483161A (en) Faraday effect continuous circuit flux concentrating magnetic field sensor
EP0935141B1 (en) Optical magnetic field sensor using magneto-optical element
US4952014A (en) Optical systems with thin film polarization rotators and method for fabricating such rotators
Itoh et al. Optical magnetic field sensors with high linearity using Bi-substituted rare earth iron garnets
US4886332A (en) Optical systems with thin film polarization rotators and method for fabricating such rotators
JP3144928B2 (en) Optical sensor
Levy et al. Permanent magnet film magneto‐optic waveguide isolator
JPH04304417A (en) Magnetooptic element for magnetic field sensor
JPH0731232B2 (en) Magnetic field measuring device
Wolfe et al. Fiber optic magnetic field sensor based on domain wall motion in garnet film waveguides
EP0785454A1 (en) Faraday rotator for magneto-optic sensors
JPH0137697B2 (en)
JPS58140716A (en) Magnetic field-light transducer
JPS59107273A (en) Photocurrent and magnetic field sensor
JP3065142B2 (en) Optical magnetic field sensor
JP3008721B2 (en) Magneto-optical element and magnetic field measuring device
JPS61212773A (en) Photosensor
JPS62150185A (en) Magnetic field measuring apparatus
JPH05834Y2 (en)
JP3521366B2 (en) Branch interference optical waveguide type magnetic field sensor
Sohlstrom et al. Waveguide-based fiber optic magnetic field sensor with directional sensitivity
EP0521527A2 (en) Magnetic garnet single crystal for measuring magnetic field intensity and optical type magnetic field intensity measuring apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000215

LAPS Cancellation because of no payment of annual fees