JP3521366B2 - Branch interference optical waveguide type magnetic field sensor - Google Patents

Branch interference optical waveguide type magnetic field sensor

Info

Publication number
JP3521366B2
JP3521366B2 JP14789595A JP14789595A JP3521366B2 JP 3521366 B2 JP3521366 B2 JP 3521366B2 JP 14789595 A JP14789595 A JP 14789595A JP 14789595 A JP14789595 A JP 14789595A JP 3521366 B2 JP3521366 B2 JP 3521366B2
Authority
JP
Japan
Prior art keywords
magnetic field
optical waveguide
phase shift
field sensor
type magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14789595A
Other languages
Japanese (ja)
Other versions
JPH08338862A (en
Inventor
良二 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP14789595A priority Critical patent/JP3521366B2/en
Publication of JPH08338862A publication Critical patent/JPH08338862A/en
Application granted granted Critical
Publication of JP3521366B2 publication Critical patent/JP3521366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を用いて磁界を検出
する光磁界センサに関し、特に分岐干渉型光導波路を用
いた光磁界センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor for detecting a magnetic field using light, and more particularly to an optical magnetic field sensor using a branch interference type optical waveguide.

【0002】[0002]

【従来の技術】従来、配電線等の電流を測定する方法
は、リング状の磁性体コアとホール素子、磁気抵抗素子
等の磁気検出素子を用い、磁界を検出し、電流値に換算
し出力する方法が一般的であるが、特に高電圧を取り扱
う分野では高い電気絶縁性と各種の電磁誘導性による妨
害を受けない等の要求により磁界センサが用いられるよ
うになっている。この方法は、光の進行方向に磁界が加
わると、光の偏光面が回転するファラデー効果を有する
ファラデー素子を用いて磁界を検出するものである。
2. Description of the Related Art Conventionally, the method of measuring the current of a distribution line or the like uses a ring-shaped magnetic core and a magnetic detection element such as a Hall element or a magnetoresistive element to detect a magnetic field, convert it into a current value, and output it. The method is generally used, but particularly in the field of handling high voltage, magnetic field sensors have come to be used because of their requirements such as high electrical insulation and no interference by various electromagnetic inductive properties. This method detects a magnetic field using a Faraday element having a Faraday effect in which the plane of polarization of light rotates when a magnetic field is applied in the traveling direction of light.

【0003】さらに、微小電流または微小な磁界を高感
度に検出する必要性から、磁気複屈折効果を示す物質を
基板とし、その表面に形成した分岐干渉型導波路によっ
て構成される磁界センサが開発され、使われるに至って
いる。
Further, due to the necessity of detecting a minute current or a minute magnetic field with high sensitivity, a magnetic field sensor has been developed which is composed of a substance having a magnetic birefringence effect as a substrate and a branching interference type waveguide formed on the surface thereof. Has been used and has been used.

【0004】ここで磁界複屈折効果とは光の進行方向に
対し垂直方向に磁界が印加された場合、磁界に平行な偏
光と垂直な偏光との間に位相を生じる効果であり、たと
えば、磁気複屈折効果を有する結晶から成る光導波路の
面内方向で、かつ、光進行方向に垂直に磁界を印加した
場合、TMモードの偏光の位相がシフトすることにな
る。
Here, the magnetic field birefringence effect is an effect of producing a phase between polarized light parallel to the magnetic field and polarized light perpendicular to the magnetic field when a magnetic field is applied in a direction perpendicular to the traveling direction of light. When a magnetic field is applied in the in-plane direction of an optical waveguide made of a crystal having a birefringence effect and perpendicularly to the light traveling direction, the phase of TM-mode polarized light is shifted.

【0005】図5は、磁気複屈折効果を示す物質を基板
とした、従来の分岐干渉光導波路型磁界センサの一例を
示す。基板20に上に、入力光導波路21、そこから分
岐して結合した位相シフト光導波路23および24、お
よび上記2本の位相シフト光導波路が合流して結合した
出力光導波路22が形成されている。入力光導波路21
の入射端には入力光ファイバ26が結合され、出力光導
波路22の出力端には出力光ファイバ27が接続されて
いる。ここで2本の位相シフト光導波路23,24の長
さは、互いに相違させている。
FIG. 5 shows an example of a conventional branched interference optical waveguide type magnetic field sensor in which a substrate having a magnetic birefringence effect is used as a substrate. On a substrate 20, an input optical waveguide 21, phase shift optical waveguides 23 and 24 branched and coupled from the input optical waveguide 21, and an output optical waveguide 22 in which the above two phase shift optical waveguides are joined and coupled are formed. . Input optical waveguide 21
The input optical fiber 26 is coupled to the incident end of the output optical waveguide 22 and the output optical fiber 27 is connected to the output end of the output optical waveguide 22. Here, the lengths of the two phase shift optical waveguides 23 and 24 are different from each other.

【0006】図5において、入力光ファイバ26からの
入射光は、入力光導波路21に入射した後、位相シフト
光導波路23と24にエネルギーが分割される。磁界が
印加されると、その強度に応じて導波路における光の屈
折率が変化する。そのため2本の位相シフト光導波路2
3,24を伝搬する光波間には印加磁界の大きさに応じ
た位相差が生じ、それらが合流する出力光導波路22に
おいて干渉が生じ光強度が変化する。すなわち、出力光
ファイバ27から出射する出力光の強度は、印加磁界強
度に応じて変化することになり、その光強度変化を光検
出器で測定することにより印加磁界の強度を測定でき
る。
In FIG. 5, the incident light from the input optical fiber 26 is incident on the input optical waveguide 21, and then the energy is split into the phase shift optical waveguides 23 and 24. When a magnetic field is applied, the refractive index of light in the waveguide changes according to its strength. Therefore, two phase shift optical waveguides 2
A phase difference corresponding to the magnitude of the applied magnetic field is generated between the light waves propagating through 3, 24, and interference occurs in the output optical waveguide 22 where they join to change the light intensity. That is, the intensity of the output light emitted from the output optical fiber 27 changes according to the applied magnetic field intensity, and the intensity of the applied magnetic field can be measured by measuring the change in the optical intensity with a photodetector.

【0007】[0007]

【発明が解決しようとする課題】印加される磁界強度と
磁界センサの出力光強度との関係を示す特性曲線は、図
1のAに示されるように最大値と最小値をもつ周期関数
として表される。磁界センサは、特性曲線の最大値と最
小値の中点付近で最も感度が高く、かつ、直線性に優れ
るため、磁界強度の測定においてはこの部分を中心とし
て使うことが望ましい。
The characteristic curve showing the relationship between the applied magnetic field intensity and the output light intensity of the magnetic field sensor is expressed as a periodic function having a maximum value and a minimum value as shown in A of FIG. To be done. Since the magnetic field sensor has the highest sensitivity and excellent linearity near the midpoint between the maximum value and the minimum value of the characteristic curve, it is desirable to use this portion as the center for measuring the magnetic field strength.

【0008】しかしながら、現実には、製作された磁界
センサの特性は、それぞれ相違している。光プローブの
製造過程における特性に及ぼす要因が多く、これらを厳
密に制御することが困難なためである。
However, in reality, the characteristics of the manufactured magnetic field sensors are different from each other. This is because there are many factors that affect the characteristics of the optical probe during the manufacturing process, and it is difficult to strictly control these factors.

【0009】以下においては、検出の対象とする磁界を
印加しないときの、特性曲線上の点を動作点、特性曲線
上で光出力の最大値と最小値の中間における磁界をバイ
アス磁界という。
In the following, a point on the characteristic curve when the magnetic field to be detected is not applied is called an operating point, and a magnetic field between the maximum value and the minimum value of the optical output on the characteristic curve is called a bias magnetic field.

【0010】図1に示す特性曲線Aの動作点aは、出力
光強度の最小値に近いところにあり、バイアス磁界はc
である。有限のバイアス磁界がある磁界センサを用いて
磁界を検出するときには、常に計測された結果に補正を
加えない限り信頼できる磁界強度を知ることはできな
い。加えて、aを動作点とした場合、特性曲線の直線性
が低い領域を使って検出することになる。そのため磁界
検出感度が低いのみならず、ダイナミックレンジが狭い
という不利益を余儀なくされる。
The operating point a of the characteristic curve A shown in FIG. 1 is near the minimum value of the output light intensity, and the bias magnetic field is c.
Is. When a magnetic field sensor having a finite bias magnetic field is used to detect a magnetic field, reliable magnetic field strength cannot be known unless the measured result is corrected. In addition, when a is the operating point, detection is performed using a region where the linearity of the characteristic curve is low. Therefore, not only the magnetic field detection sensitivity is low, but also the disadvantage that the dynamic range is narrow is inevitable.

【0011】本発明は、上記問題に鑑み、制御されたバ
イアス磁界を有する特性曲線の分岐干渉光導波路型磁界
センサを提供して、微小な磁界の検出を可能とし、感度
の向上を図るものである。
In view of the above problems, the present invention provides a branch interference optical waveguide type magnetic field sensor having a characteristic curve having a controlled bias magnetic field, enables detection of a minute magnetic field, and improves sensitivity. is there.

【0012】[0012]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、磁界複屈折効果を示す物質に形成された
入力光導波路、入力光導波路より分岐した2本の位相シ
フト光導波路、2本の位相シフト光導波路が合流して入
射する出力光導波路からなる分岐干渉型光導波路におい
て、2本の位相シフト光導波路のいずれか1本の位相シ
フト光導波路の近傍に永久磁石を設けた分岐干渉光導波
路型磁界センサを構成する。
In order to solve the above problems, the present invention provides an input optical waveguide formed of a substance exhibiting a magnetic field birefringence effect, two phase shift optical waveguides branched from the input optical waveguide, In a branching interference type optical waveguide composed of an output optical waveguide into which two phase shift optical waveguides merge and enter, a permanent magnet is provided in the vicinity of any one of the two phase shift optical waveguides. A branch interference optical waveguide type magnetic field sensor is constructed.

【0013】また、本発明は、2本の位相シフト光導波
路の近傍に設置した永久磁石の、材料、形状、大きさ、
位相シフト光導波路との相対位置、または磁化の向きの
少なくとも一つが互いに等しくない分岐干渉光導波路型
磁界センサを構成する。
Further, according to the present invention, the material, shape, size of the permanent magnet installed in the vicinity of the two phase shift optical waveguides,
A branch interference optical waveguide type magnetic field sensor in which at least one of the relative position with respect to the phase shift optical waveguide or the direction of magnetization is not equal to each other is configured.

【0014】[0014]

【作用】本発明の磁界センサは、磁気複屈折効果を示す
物質を基板としその表面に形成した分岐干渉光導波路か
ら成っている。光導波路を導波する光は、その磁界強度
に応じてそれぞれ位相が変化する。
The magnetic field sensor of the present invention comprises a branch interference optical waveguide formed on the surface of a substrate made of a substance exhibiting a magnetic birefringence effect. The phase of the light guided through the optical waveguide changes depending on the strength of the magnetic field.

【0015】二つの導波光の間に有限の位相差が生じれ
ば、これらは合流することにより相互に干渉し、位相差
に応じて強度が変化した光として出射される。しかしな
がら、前述したように、二つの導波光の位相差を制御可
能な分岐干渉型磁界センサの製作は、現状ではきわめて
困難である。
When a finite phase difference occurs between the two guided lights, they merge with each other and interfere with each other, and are emitted as light whose intensity changes according to the phase difference. However, as described above, it is extremely difficult to manufacture a branch interference type magnetic field sensor capable of controlling the phase difference between two guided lights.

【0016】そこで、本発明は、磁界センサを構成する
位相シフト光導波路に、検出対象の磁界とは別の手段で
バイアス磁界を印加し、検出対象の磁界に対して、実質
的に動作点と、特性曲線上で光出力の最大値と最小値の
和の2分の1の点を一致させる。すなわち、図1におい
て特性曲線Aを特性曲線Bまで平行移動させる。その結
果、特性曲線Bにおいて、最大と最小の中間の出力光強
度となる点が動作点bとなる。
Therefore, according to the present invention, a bias magnetic field is applied to the phase shift optical waveguide forming the magnetic field sensor by a means different from the magnetic field to be detected, and the magnetic field to be detected has a substantially operating point. , The point of half of the sum of the maximum value and the minimum value of the optical output is matched on the characteristic curve. That is, in FIG. 1, the characteristic curve A is moved in parallel to the characteristic curve B. As a result, in the characteristic curve B, the point where the output light intensity is between the maximum and the minimum is the operating point b.

【0017】このとき、磁界センサが最も感度が高くか
つ直線性に優れた機能を有することは、前述のとおりで
ある。
At this time, the magnetic field sensor has the highest sensitivity and the excellent linearity, as described above.

【0018】[0018]

【実施例】本発明の実施例について図面を参照して説明
する。
Embodiments of the present invention will be described with reference to the drawings.

【0019】(実施例1)図2は、本発明の実施例1に
おける分岐干渉光導波路型磁界センサ10の概略平面図
である。(111)面を有するガドリニウム・ガリウム
・ガーネット(Gd3 Ca5 12)基板上にLa,Ga
置換イットリウム・アイアン・ガーネット結晶1をエピ
タキシャル成長させ、面内磁化を有する単結晶薄膜を作
製した。
(Embodiment 1) FIG. 2 is a schematic plan view of a branch interference optical waveguide type magnetic field sensor 10 according to Embodiment 1 of the present invention. La, Ga on a gadolinium gallium garnet (Gd 3 Ca 5 O 12 ) substrate having a (111) plane
The substituted yttrium iron garnet crystal 1 was epitaxially grown to prepare a single crystal thin film having in-plane magnetization.

【0020】次に、フォトリソグラフィーにより分岐干
渉光導波路パターン部のフォトレジストを除去し、Ti
をスパッタしリフトオフによりフォトレジストを除去し
て、エッチング用のマスクとしてアルゴンイオンでエッ
チングし、リブ型光導波路である。入力光導波路2、位
相シフト光導波路3,4、出力光導波路5を作製した。
各光導波路の2ないし5の幅は5〜10μm、高さは
0.5〜0.8μmである。
Then, the photoresist in the branch interference optical waveguide pattern portion is removed by photolithography, and Ti is removed.
Is sputtered, the photoresist is removed by lift-off, and the rib type optical waveguide is etched by argon ion as a mask for etching. The input optical waveguide 2, the phase shift optical waveguides 3 and 4, and the output optical waveguide 5 were produced.
The width of each of the optical waveguides 2 to 5 is 5 to 10 μm, and the height is 0.5 to 0.8 μm.

【0021】さらに、バッファー層としてSiO2 膜を
スパッタにより作製し、一方の位相シフト光導波路の近
傍に幅100μm、長さ3mmの永久磁石6となるバリ
ウム・フェライト膜を設け、厚さ方向の直流飽和磁界中
で磁化させた。
Further, a SiO 2 film was formed as a buffer layer by sputtering, and a barium-ferrite film to be a permanent magnet 6 having a width of 100 μm and a length of 3 mm was provided in the vicinity of one of the phase shift optical waveguides, and a direct current in the thickness direction was formed. It was magnetized in a saturated magnetic field.

【0022】これに接続された光検出器の検出した光強
度により磁界測定を行い、0.5Oe の微小な磁界を検
出することができた。
A magnetic field was measured by the light intensity detected by a photodetector connected to this, and a minute magnetic field of 0.5 Oe could be detected.

【0023】(実施例2)図3は、本発明の実施例2に
おける分岐干渉光導波路型磁界センサ10の概略平面図
である。実施例2は、一方の位相シフト光導波路の近傍
に幅100μm、長さ2mmの永久磁石6となるバリウ
ム・フェライト膜を、他の一方の位相シフト光導波路の
近傍に幅100μm、長さ5mmの永久磁石7となるバ
リウム・フェライト膜を設け、厚さ方向の直流飽和磁界
を印加し同一向きに磁化させた。50Hzの電流が流れ
ている導体の近傍にこの分岐干渉光導波路型磁界センサ
10を設置し、これに接続された光検出器の検出した光
強度により磁界測定を行い、前記実施例1と同様に、
0.5Oe の微小な磁界を検出することができた。
(Embodiment 2) FIG. 3 is a schematic plan view of a branch interference optical waveguide type magnetic field sensor 10 according to Embodiment 2 of the present invention. In Example 2, a barium-ferrite film, which is a permanent magnet 6 having a width of 100 μm and a length of 2 mm, is provided near one of the phase shift optical waveguides, and a width of 100 μm and a length of 5 mm are provided near the other phase shift optical waveguide. A barium-ferrite film to be the permanent magnet 7 was provided, and a DC saturation magnetic field in the thickness direction was applied to magnetize in the same direction. The branch interference optical waveguide type magnetic field sensor 10 is installed in the vicinity of a conductor in which a current of 50 Hz is flowing, and the magnetic field is measured by the light intensity detected by a photodetector connected to this branch interference optical waveguide type magnetic field sensor 10, and the same as in the first embodiment. ,
It was possible to detect a minute magnetic field of 0.5 Oe.

【0024】(実施例3)図4は、本発明の実施例3に
おける分岐干渉光導波路型磁界センサ10の概略平面図
である。実施例3は、幅100μm、長さ1.4mm、
厚さ500μmで、厚さ方向に磁化したバリウム・フェ
ライト永久磁石6,7を、各位相シフト光導波路の近傍
に、磁化が互いに逆向きになるように配置した。
(Third Embodiment) FIG. 4 is a schematic plan view of a branch interference optical waveguide type magnetic field sensor 10 according to a third embodiment of the present invention. Example 3 has a width of 100 μm, a length of 1.4 mm,
Barium-ferrite permanent magnets 6 and 7 having a thickness of 500 μm and magnetized in the thickness direction were arranged near the respective phase shift optical waveguides so that the magnetizations were opposite to each other.

【0025】50Hzの電流が流れている導体の近傍に
この分岐干渉光導波路型磁界センサ10を設置し、これ
に接続された光検出器の検出した光強度により磁界測定
を行い、前記実施例1,2と同様に、0.5Oe の微小
な磁界を検出することができた。
The branch interference optical waveguide type magnetic field sensor 10 is installed in the vicinity of a conductor in which a current of 50 Hz is flowing, and the magnetic field is measured by the light intensity detected by a photodetector connected to the branch interference optical waveguide type magnetic field sensor 10. , 2, a minute magnetic field of 0.5 Oe could be detected.

【0026】本発明は、2本の位相シフト光導波路を通
る導波光の間に、制御された位相差を付与するための技
術を開示している。
The present invention discloses a technique for imparting a controlled phase difference between guided light beams passing through two phase shift optical waveguides.

【0027】上述した実施例では磁気複屈折効果を示す
物質としてLa,Ga置換イットリウム・アイアン・ガ
ーネット結晶を用いたものを例として説明したが、本発
明はこれのみに限定されるものではなく、他のイットリ
ウム・アイアン・ガーネット結晶、重フリントガラス等
を用いたものでもよい。
In the above-mentioned embodiments, the substance using the La, Ga-substituted yttrium iron garnet crystal was described as an example of the substance exhibiting the magnetic birefringence effect, but the present invention is not limited to this. Other yttrium / iron / garnet crystals, heavy flint glass or the like may be used.

【0028】また永久磁石して、バリウム・フェライト
以外の材料、たとえばマンガン・ビスマス(MnB
i)、白金鉄(Pt−Fe)などでもよい。
As a permanent magnet, a material other than barium ferrite such as manganese bismuth (MnB) is used.
i), platinum iron (Pt-Fe), etc. may be used.

【0029】さらに、永久磁石の、厚さを含む形状、大
きさ、または永久磁石と位相シフト光導波路との間の位
置は、2本の位相シフト光導波路にかかる磁界強度を相
違させる要因である。ゆえに、これらの各要因を調整す
ることによっても目的を達することができる。
Further, the shape and size of the permanent magnet, including the thickness, or the position between the permanent magnet and the phase shift optical waveguide is a factor that makes the magnetic field strengths applied to the two phase shift optical waveguides different from each other. . Therefore, the objective can also be achieved by adjusting each of these factors.

【0030】[0030]

【発明の効果】以上説明したように、本発明は、検出対
象の磁界に対する動作点と、磁界センサの光出力の最大
値と最小値の和の2分の1の点を実質的に一致させるこ
とによって、バイアス磁界がゼロの状態の動作点bをも
とにした磁界の検出が可能となり、この結実として、微
小な磁界の検出が可能となり、高感度な分岐干渉光導波
路型磁界センサの実現に著しい効果を奏する。
As described above, according to the present invention, the operating point for the magnetic field to be detected and the half of the sum of the maximum value and the minimum value of the optical output of the magnetic field sensor are substantially matched. As a result, it is possible to detect a magnetic field based on the operating point b when the bias magnetic field is zero, and as a result, a minute magnetic field can be detected, realizing a highly sensitive branch interference optical waveguide type magnetic field sensor. Has a remarkable effect on.

【図面の簡単な説明】[Brief description of drawings]

【図1】印加される磁界強度と磁界センサの出力光強度
との関係を示す特性曲線。
FIG. 1 is a characteristic curve showing a relationship between an applied magnetic field intensity and an output light intensity of a magnetic field sensor.

【図2】本発明の実施例1における分岐干渉光導波路型
磁界センサの概略平面図。
FIG. 2 is a schematic plan view of the branch interference optical waveguide type magnetic field sensor according to the first embodiment of the present invention.

【図3】本発明の実施例2における分岐干渉光導波路型
磁界センサの概略平面図。
FIG. 3 is a schematic plan view of a branch interference optical waveguide type magnetic field sensor according to a second embodiment of the present invention.

【図4】本発明の実施例3における分岐干渉光導波路型
磁界センサの概略平面図。
FIG. 4 is a schematic plan view of a branch interference optical waveguide type magnetic field sensor according to a third embodiment of the present invention.

【図5】従来の分岐干渉光導波路型磁界センサの一例の
斜視図。
FIG. 5 is a perspective view of an example of a conventional branch interference optical waveguide type magnetic field sensor.

【符号の説明】[Explanation of symbols]

1 La,Ga置換イットリウム・アイアン・ガーネ
ット結晶 2 入力光導波路 3,4 位相シフト光導波路 5 出力光導波路 6,7 永久磁石 10 分岐干渉光導波路型磁界センサ 20 基板 21 入力光導波路 22 出力光導波路 23,24 位相シフト光導波路 26 入力光ファイバ 27 出力光ファイバ
1 La, Ga Substituted Yttrium Iron Garnet Crystal 2 Input Optical Waveguide 3, 4 Phase Shift Optical Waveguide 5 Output Optical Waveguide 6, 7 Permanent Magnet 10 Branch Interference Optical Waveguide Magnetic Field Sensor 20 Substrate 21 Input Optical Waveguide 22 Output Optical Waveguide 23 , 24 Phase shift optical waveguide 26 Input optical fiber 27 Output optical fiber

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 磁気複屈折効果を示す物質に形成された
入力光導波路、該入力光導波路より分岐した2本の位相
シフト光導波路、該2本の位相シフト光導波路が合流し
て入射する出力光導波路からなる分岐干渉型光導波路に
おいて、前記2本の位相シフト光導波路の少なくとも1
本の位相シフト光導波路の近傍に永久磁石を設置したこ
とを特徴とする分岐干渉光導波路型磁界センサ。
1. An input optical waveguide formed of a substance exhibiting a magnetic birefringence effect, two phase shift optical waveguides branched from the input optical waveguide, and an output where the two phase shift optical waveguides merge and enter. At least one of the two phase shift optical waveguides in a branching interference optical waveguide comprising an optical waveguide
A branch interference optical waveguide type magnetic field sensor, wherein a permanent magnet is installed in the vicinity of the phase shift optical waveguide of the book.
【請求項2】 前記2本の位相シフト光導波路の近傍に
設置した永久磁石の、材料、形状、大きさ、位相シフト
光導波路との相対位置、または磁化の向きの少なくとも
一つが互いに等しくないことを特徴とする請求項1記載
の分岐干渉光導波路型磁界センサ。
2. At least one of the material, shape, size, relative position to the phase shift optical waveguide, or magnetization direction of the permanent magnets installed near the two phase shift optical waveguides is not equal to each other. The branched interference optical waveguide type magnetic field sensor according to claim 1.
JP14789595A 1995-06-14 1995-06-14 Branch interference optical waveguide type magnetic field sensor Expired - Fee Related JP3521366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14789595A JP3521366B2 (en) 1995-06-14 1995-06-14 Branch interference optical waveguide type magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14789595A JP3521366B2 (en) 1995-06-14 1995-06-14 Branch interference optical waveguide type magnetic field sensor

Publications (2)

Publication Number Publication Date
JPH08338862A JPH08338862A (en) 1996-12-24
JP3521366B2 true JP3521366B2 (en) 2004-04-19

Family

ID=15440591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14789595A Expired - Fee Related JP3521366B2 (en) 1995-06-14 1995-06-14 Branch interference optical waveguide type magnetic field sensor

Country Status (1)

Country Link
JP (1) JP3521366B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008172A (en) * 2017-11-17 2018-05-08 东北电力大学 One kind is based on polymer optical wave guide current transformer chip

Also Published As

Publication number Publication date
JPH08338862A (en) 1996-12-24

Similar Documents

Publication Publication Date Title
US7254286B2 (en) Magneto-optical resonant waveguide sensors
US5408565A (en) Thin-film magneto-optic polarization rotator
KR20070087628A (en) Bridge type sensor with tunable characteristic
NL8302585A (en) MAGNETIC HEAD.
JPH02293680A (en) Magnetic field detector
JP3521366B2 (en) Branch interference optical waveguide type magnetic field sensor
Didosyan et al. Magneto-optical current sensor by domain wall motion in orthoferrites
US5564194A (en) Geomagnetic direction sensor
Levy et al. Permanent magnet film magneto‐optic waveguide isolator
JPH0870149A (en) Magnetoresistance element
JP3388373B2 (en) Magnetic field sensor
Deeter et al. Magneto-optic magnetic field sensors based on uniaxial iron garnet films in optical waveguide geometry
JP2004340953A (en) Magnetic field sensing element, manufacturing method therefor, and device using them
Wolfe et al. Fiber optic magnetic field sensor based on domain wall motion in garnet film waveguides
EP0279537B1 (en) Magnetoresistive sensor and process for its manufacture
JPS6227449B2 (en)
JPH07209395A (en) Optical magnetic field sensor
JP3388371B2 (en) Branch interference optical waveguide type magnetic field sensor
EP0785454A1 (en) Faraday rotator for magneto-optic sensors
RU205928U1 (en) Magneto-optical sensor
JPH11298063A (en) Magnetoresistive effect element
JPH05834Y2 (en)
JP2960567B2 (en) Optical isolator
KR960004100B1 (en) Magnetic resistor device
Nomura et al. Characteristics of magneto-resistive films controlled by grating surface of substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040123

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

LAPS Cancellation because of no payment of annual fees