JPH04304349A - Production of hot-dip galvanized steel plate excellent in r-value and deltar-value - Google Patents

Production of hot-dip galvanized steel plate excellent in r-value and deltar-value

Info

Publication number
JPH04304349A
JPH04304349A JP8921091A JP8921091A JPH04304349A JP H04304349 A JPH04304349 A JP H04304349A JP 8921091 A JP8921091 A JP 8921091A JP 8921091 A JP8921091 A JP 8921091A JP H04304349 A JPH04304349 A JP H04304349A
Authority
JP
Japan
Prior art keywords
plating
hot
value
temperature
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8921091A
Other languages
Japanese (ja)
Inventor
Seirou Hiwatari
日渡 惺朗
Toshiyuki Higuchi
敏之 樋口
Koichiro Tanaka
幸一郎 田中
Masami Ogura
小倉 正美
Jiro Yamazaki
山崎 二郎
Hideo Kato
秀夫 加藤
Kazuaki Ezaka
江坂 一彬
Osamu Kono
治 河野
Junji Haji
純治 土師
Kaoru Kawasaki
薫 川崎
Junichi Wakita
淳一 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8921091A priority Critical patent/JPH04304349A/en
Publication of JPH04304349A publication Critical patent/JPH04304349A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a plated hot rolled steel plate excellent in surface characteristics of plating, adhesive strength of plating, r-value, and DELTAr-value by successively subjecting a steel with specific composition to casting, holding, finish rolling, coiling, dry descaling, plate temp. regulation, and hot-dip galvanizing under respectively specified conditions. CONSTITUTION:A steel having a composition consisting of, by weight, 0.10-0.60% Mn, 0.001-0.006% S, and the balance Fe with inevitable impurities is cast and solidified by cooling at <=5 deg.C/min cooling rate at 1400-1200 deg.C. Further, after holding in the temp. region of 1200-1100 deg.C at 5-30 deg.C/min average temp. fall rate, finish rolling is started within 60min from the initiation of solidification in the temp. region not higher than (Ar3 point +100 deg.C) and finished in the isothermal temp. region not lower than the Ar3 point and the resulting plate is coiled at >=350 deg.C. Subsequently, the plate is subjected to dry descaling at >=350 deg.C,' to plate temp. regulation prior to plating up to 400-600 deg.C, and to hot- dip galvanizing. At this time, the atmosphere is regulated to nonoxidizing or reducing atmosphere at least from the completion of dry descaling and thereafter.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は熱延鋼板にZnもしくは
ZnとAlの合金を主成分とする溶融めっきを施した、
▲r▼値とr値の異方性を示す指標であるΔr値の良好
な加工用熱延鋼板を製造する方法に関するものである。 【0002】 【従来の技術】一般にZn系溶融めっき熱延鋼板は熱間
圧延終了後,コイルに巻取られ100℃未満に長時間か
けて自然冷却された後、酸洗ラインにおいて80℃程度
でデスケーリングされ、さらにその後、溶融めっきライ
ンで処理される。なお、Zn系溶融めっき冷延鋼板の場
合は酸洗と溶融めっきの間に冷間圧延が行われる。また
、溶融めっきラインとしては、酸化性雰囲気ガス中で7
00〜800℃程度に加熱し、酸洗工程およびその後の
搬送時に鋼板表面に付着したスマット等と呼ばれる異物
(Fe酸化物、Fe+珪酸塩等)、油脂等の表面汚物を
燃焼除去させ、さらに水素雰囲気ガス中で還元すること
により、めっき密着性に必要な表面清浄性を確保し、そ
の後非酸化性もしくは還元性雰囲気中でめっき浴温近傍
まで冷却して溶融めっきするいわゆるゼンジマー法、あ
るいは水素雰囲気ガス中で700〜800℃程度に加熱
し、スマット、油脂等の表面汚物を除去し、めっき密着
性に必要な表面清浄性を確保し、その後非酸化性もしく
は還元性雰囲気中でめっき浴温近傍まで冷却して溶融め
っきするいわゆる無酸化炉法が採用されている。 【0003】Zn系溶融めっき熱延鋼板の場合、酸洗工
程およびその後の搬送時に鋼板表面に付着したスマット
、油脂等の表面汚物を燃焼、還元により除去し、めっき
密着性に必要な表面清浄性を確保するため、700〜8
00℃程度への加熱が避けられないのである。 【0004】しかるにめっき密着性に必要な表面清浄性
を確保するために、100℃未満の低温から700〜8
00℃程度の高温まで加熱することは膨大なエネルギー
・長大な加熱炉を必要とするため、操業コスト負担が大
きい。さらに、その後、両者の中間的温度であるめっき
浴温(500℃程度)近傍まで冷却することは熱エネル
ギーの多大な損失である。さらに高温の水素雰囲気中で
は鋼板に水素が吸蔵され、めっき後、この水素が鋼板と
めっきの界面に放出され、めっき表面にふくれ状の欠陥
を誘起するという欠点がある。以上の問題を解決する方
法として、例えばめっき前処理としてNiまたはNi系
合金を被覆する方法(特開昭61−44168号公報)
が開示されているが、加熱温度の低減は可能なものの、
前処理温度が150℃以下であるため、一旦コイルを冷
却する必要があり、巻取り後の所要日数を短縮できない
ばかりか、コイルの保有熱を利用することが出来ず、依
然としてエネルギー損失はまぬがれず、さらに前処理工
程数増のため、操業コストが増大する。また、めっき表
面のふくれ状欠陥(外観の劣化のみならず、耐剥離性、
耐食性の劣化につながる)を避けるため、加熱温度を6
00〜720℃に低減する方法(特開昭52−9554
3号公報)が開示されているが、酸による洗浄のため、
鋼板温度は一旦100℃未満に低下するため、巻取り後
の所要日数を短縮できないばかりか、コイルの保有熱を
利用することはできず、600〜720℃の加熱温度で
は依然として膨大なエネルギー・長大な加熱炉を必要と
するため、操業コスト低減効果は小さい。 【0005】一方、熱延鋼板の▲r▼値の向上について
は、特開昭59−226149号公報に記載のごとく、
Tiを用いた極低炭素鋼を油潤滑圧延で製造する方法、
または特開昭62−192539号公報に記載のごとく
、Nb、Ti等の合金を添加して製造する方法がある。 【0006】 【発明が解決しようとする課題】上記の製造方法の問題
点としては、以下の点がある。 【0007】■熱延鋼板にZnめっきを施す工程では、
酸による洗浄のため鋼板温度はいったん室温にまで低下
させねばならないため、巻取後の所要日数を短縮できな
いばかりか、コイルの保有熱を利用できずめっき前の加
熱工程で依然として膨大なエネルギー、長大な加熱炉を
必要とするため操業コストが高い。 【0008】■油潤滑で使用する圧延油は高濃度であり
、必然的に圧延自体がスリップ限界ぎりぎりの条件で行
うことになり、圧延温度、圧延速度、圧延可能なサイズ
等の制約が大きく、生産効率の悪化が否定できない。 【0009】また、ロールに付着した油を取り除く等の
手間が必要になり、作業性、生産効率を悪化させる。 【0010】■Nb、Ti等の合金を使用する場合は、
合金コストが高く経済的でない。 【0011】また、特開昭62−192539号公報の
場合は、Δr値が大きく良好とはいえない。 【0012】本発明は、これらの問題点を伴わず、経済
的に、作業性良く▲r▼値及びΔr値の優れたZn系め
っき鋼板を製造する方法提供を課題とするものである。 【0013】 【課題を解決するための手段】本発明は上記課題を達成
するために、重量%で、Mn:0.10〜0.60%、
S:0.001〜0.006%を含み、その他Fe及び
不可避的成分からなる鋼の1400℃〜1200℃の温
度範囲を≧5.0℃/分の冷却速度で鋳造凝固して鋳片
とし、該鋳片の1200℃〜1100℃の温度範囲を5
℃/分以上、30℃/分以下の平均降温速度で保温した
後、該鋳片の仕上げ圧延を前記鋳造開始から60分以内
にAr3 点+100℃以下の温度域で開始し、該圧延
をAr3 点以上の等温温度域で終了し、350℃以上
で巻取り、その後350℃以上でドライデスケーリング
、400℃〜600℃へのめっき前板温調整、鋼板への
Zn系溶融めっきを連続的に行い、かつ、少なくともド
ライデスケーリング完了以降は非酸化性もしくは還元性
に雰囲気調整することを特徴とする、めっき表面性状お
よびめっき密着性に優れ▲r▼値とΔr値の優れたZn
系溶融めっき熱延鋼板の製造方法を手段とするものであ
る。 【0014】なお、本発明でいう加工用熱延鋼板とは、
加工用熱延鋼板を製造し、使用している分野で、該鋼板
用として通常用いられている鋼、例えば重量%で、C:
0.01%〜0.10%、Mn:0.10%〜0.60
%、Si:0.001〜0.06%およびP:0.00
1%〜0.050%、S:0.001%〜0.006%
を含み、その他Feおよび不可避的成分からなる鋼をさ
す。 【0015】 【作用】本発明者等は上記課題を達成するため種々の実
験検討を行い以下の知見を得た。 【0016】上記成分の鋼の1400℃〜1200℃の
温度域を5℃/分以上の冷却速度で鋳造凝固して鋳片と
し、該鋳片の1200℃〜1100℃の温度範囲を5℃
/分以上、30℃/分以下の平均降温速度で保定保温し
、該鋳片の仕上げ圧延を前記凝固開始から60分以内に
Ar3 点+100 ℃以下の温度で開始し、Ar3 
点以上で等温仕上げ圧延を終了すると、仕上げ圧延時に
MnSとして析出するS量が仕上げ圧延までの間に充分
に固溶状態で確保され、この確保により仕上げ圧延時に
析出量と析出サイズが制御された微細なMnSが析出し
、これによりオーステナイトの再結晶が効果的に制御さ
れ、オーステナイトの圧延集合組織が充分に発達し、こ
の圧延集合組織から変態したフェライトは(112)面
の集積が高くなり、▲r▼値が向上する。この時前記し
た仕上げ圧延により鋼板表層部に大きな剪断歪が働いて
該表層部の集合組織をランダム化するため、Δr値が小
さくなる。 【0017】なお、1200℃から1100℃の温度履
歴であるが、平均降温速度が5℃/分以上、30℃/分
以下になればよく、鋳片の厚みによっては単なる空冷で
もいいし、冷媒を用いた冷却あるいは加熱を用いてもよ
い。また、この間完全な保温が一部含まれていてもよく
、幅や厚みの調整用の圧延が介在してもよい。 【0018】なお、圧延後の巻取り温度の下限は350
℃とする。以下に限定理由について述べる。巻取り温度
が350℃未満では、巻戻し時に腰折れと称される歪模
様が発生し、めっき後の外観品位を害するとともに、コ
イルの保有熱の有効利用ができなくなり、エネルギー損
失を生ずるため、めっき前の400〜600℃への温度
調整に要する設備が長大となり、設備コストの低減効果
を享受できない。 【0019】また、この工程は、後工程のテスケーリン
グ効率を高めるため、スケール厚を薄くする工程条件を
採用することも可能である。例えばAr、N2 等の不
活性雰囲気中での圧延、スケール制御作用を有する溶媒
を含む冷却水での圧延スタンド間、ホットランテーブル
上での冷却、巻取ったコイルのN2 シール雰囲気BO
X内での冷却などの採用が可能である。 【0020】次に、デスケーリング条件であるが、デス
ケーリングは酸液を使用しないドライデスケーリングに
限定される。これにより酸洗工程に起因する鋼板表面に
付着したスマットの発生が避けられるため、異物を加熱
燃焼除去させることなく、めっき密着性に必要な表面清
浄性を確保することが可能となる。具体的なドライデス
ケーリングの方法としては真空アーク(10−1〜10
−6Torr)、プラズマ、反応(還元)、磁性研磨(
数十ミクロン〜数百ミクロンの磁性粉を使用)、シヨッ
トブラスト、サンドブラスト、グリッドブラスト、ワイ
ヤーブラシ、グラインダーなどを単独ないしは組合せて
利用することができる。 【0021】なお、ドライデスケーリングにより得られ
ためっき密着性に必要な表面清浄性を維持するため、少
なくともドライデスケーリング完了後はアルゴン、窒素
等の不活性ガス雰囲気、不活性ガスと水素の混合雰囲気
、水素雰囲気等の非酸化性もしくは還元性雰囲気に維持
する必要がある。非酸化性もしくは還元性雰囲気中でド
ライデスケーリングを実施してもよいことはいうまでも
ない。 【0022】特にSi等を多量に含有する難めっき材に
対しては還元性雰囲気を採用することが望ましい。 【0023】また、ドライデスケーリングは350℃以
上で開始し、350〜600℃で実施終了させなければ
ならない。以下にその限定理由を述べる。 【0024】ドライデスケーリング温度が350℃未満
では通板時の曲げ曲げ戻し等に伴う鋼板の変形により腰
折れと称される歪模様が発生し、外観品位を害する。さ
らに、コイルの保有熱の有効利用ができなくなり、エネ
ルギー損失を生ずるため、400〜600℃へのめっき
前の板温調整に要する設備が長大となり、設備コストの
低減効果を享受できない。 【0025】一方、ドライデスケーリング温度が600
℃を越えると、還元雰囲気中の水素が鋼板中へ吸蔵され
やすくなり、めっき表面のふくれ状欠陥を生じやすくな
る。また、400〜600℃へのめっき前板温調整に要
するエネルギーコスト・設備コストの観点からも600
℃を越えると損失が多大となる。 【0026】ドライデスケーリング後の工程条件として
は、ドライデスケーリングにより得られためっき密着性
に必要な表面清浄性を維持するため、ドライデスケーリ
ング後、連続的に非酸化性もしくは還元性雰囲気中で4
00〜600℃にめっき前板温調整を行い、溶融めっき
を行う。特にSi等を多量に含有する難めっき材に対し
ては還元性雰囲気を採用することが望ましい。以下にめ
っき前板温の限定理由を述べる。400℃未満ではいわ
ゆる「ぬれ性」が確保できず、不めっきないしはめっき
密着性の劣化を生ずる。さらに350℃未満では通板時
の曲げ曲げ戻し等に伴う鋼板の変形により腰折れと称さ
れる歪模様が発生し、外観品位を害する恐れもでてくる
。一方、600℃を越えると、変態組織の焼き戻し、析
出物の再固溶、粒成長等に起因する鋼板材質の劣化、変
動が生ずるとともに、還元雰囲気中の水素が鋼板中へ吸
蔵されやすくなり、めっき表面のふくれ状欠陥を生じや
すくなる。さらにZnとFeの合金化反応が過度に進行
し、Γ相等の脆いめっき層が出現し、めっき密着性を劣
化させる。また、温度調整に要するエネルギーコスト・
設備コストの観点からも600℃を越えると損失が多大
となる。また、本製造法によれば熱間圧延工程にて材質
が造り込まれているため、材質調整のための再結晶焼鈍
の必要がないことはいうまでもない。 【0027】さらにめっき完了後、必要とされる特性・
用途に応じてスキンパス、クロメート処理、ボンデ処理
、塗装などの種々の後処理を適宜選択することが可能で
ある。 【0028】以上の各知見の活用により、本発明は課題
を達成している。 【0029】 【実施例】表1に示す化学成分を有する鋼を表2に示す
熱延条件で製造し、以下に示す条件でドライデスケーリ
ング、溶融めっきを行った。 【0030】 【表1】 【0031】 【表2】 (注)   CCS:鋳造冷却速度             
 降温度条件:■降温速度20℃/分  FTO:仕上
げ圧延開始温度                  
  ■1200℃×10分一定    FTE:仕上げ
圧延終了温度                   
 ■1100℃×10分一定    MST:凝固開始
から                       
   ■降温速度50℃/分            
圧延開始までの時間  CT:巻取温度 【0032】 【実施例1】表1および表2に示した条件で製造された
コイルを用いて、以下の条件で真空アークによるドライ
デスケーリング、溶融めっきを行った。 【0033】 めっき浴温:470℃、めっき前板温:480℃めっき
浴成分:Zn−0.2%Al 雰囲気:80%N2 −20%H2  めっき付着量:190g/m2  ドライデスケーリング温度:350℃ 【0034】その後めっき密着性をDUPONT衝撃試
験機で、めっき表面のふくれ状欠陥および腰折れを目視
で、材質を▲r▼値測定(引張試験)で評価した。なお
、評価はめっき後、30日経過してから実施した。結果
を表3に示す。 【0035】鋼種A〜Fの種々の成分系に対し、優れた
めっき密着性を示し、ふくれ状欠陥・腰折れのない、高
▲r▼値でかつΔrの小さい熱延鋼板が得られた。 【0036】さらに裸耐食性、塗装耐食性を塩水噴霧試
験で、化成処理性を化成皮膜付着量で、塗装密着性をエ
リクセン試験で評価したが、いずれの特性も良好であっ
た。しかし、本発明例に比べ、平均降温条件を満たさな
かった鋼番4、圧延開始温度がAr3 +100℃以下
の条件を満たさなかった鋼番5、凝固時の冷却速度条件
を満たさない鋼番6はいずれも▲r▼値が低く、保温条
件が上限を外れた鋼番7は▲r▼値は良好であるがΔr
が大きく、圧延温度がAr3 未満となった鋼番8は▲
r▼値が低く、Sが含有条件を外れた鋼番9、11、1
3も▲r▼値が低い。また、S含有条件と降温保温条件
を満たさない鋼番10は▲r▼値が低く、S含有条件と
保温条件の外れた鋼番12は▲r▼値は良好であるがΔ
rが大きく、鋳造開始から仕上げ圧延開始までの時間が
長い鋼番14は▲r▼値が低い。 【0037】 【表3】 r=(rC +rL +2・rD )/4Δr=(rC
 +rL )/2−rD 【0038】 【実施例2】表1および表2に示した条件で製造された
コイルを用いて、以下の条件で磁性研磨と還元の併用に
よるドライデスケーリング、溶融めっきを行った。 【0039】 めっき浴温:470℃、めっき浴成分:Zn−0.10
%Al 雰囲気:85%N2 −15%H2 、めっき付着量:
90g/m2  【0040】その後めっき密着性をDUPONT衝撃試
験機で、めっき表面のふくれ状欠陥および腰折れを目視
で、材質劣化を引張試験で評価した。なお、評価はめっ
き後、30日経過してから実施した。 【0041】結果を表4に示す。No.1はドライデス
ケーリング温度が高すぎるため、ふくれ状欠陥が発生し
た。またドライデスケを条件内に揃えてもNo.2のよ
うにめっき前板温が高すぎるとふくれ状欠陥が発生し、
さらにZnとFeの合金化が過度に進行したため、めっ
き密着性も劣化を生じた。また逆にNo.3はめっき前
板温が低すぎるため、めっき密着性が劣化し、不めっき
部を生じた。No.5はドライデスケーリング温度が低
すぎるため、コイル巻戻し時に腰折れが発生した。また
、No.7は焼鈍温度が低すぎ、鋼板が再結晶できなか
ったために高い▲r▼値は得られなかった。No.9は
、適切なデスケーリング温度が確保できなかった例で、
そのために腰折れが発生した。 【0042】No.4、6、8は本発明の条件を満たし
ており、優れためっき密着性を示し、ふくれ状欠陥・腰
折れはみとめられず、しかも▲r▼値、Δrともに良好
なめっき製品が得られた。(凡例は表3に同じ)【00
43】 【表4】 【0044】 【実施例3】表1および表2に示した条件で製造された
コイルを用いて、以下の条件で真空アークによるドライ
デスケーリング、溶融めっきを行った。 【0045】鋼番:2 デスケーリング温度:600℃ 雰囲気:100%N2  めっき付着量:150g/m2  【0046】その後めっき密着性をDUPONT衝撃試
験機で、めっき表面のふくれ状欠陥および腰折れを目視
で、材質劣化を引張試験で評価した。なお、評価はめっ
き後、30日経過してから実施した。結果を表5に示す
。各種浴成分に対し、優れためっき密着性を示し、ふく
れ状欠陥・腰折れもみとめられず、良好なめっき製品が
得られた。(凡例は表3に同じ) 【0047】 【表5】 【0048】 【発明の効果】本発明は、上記した手段を使用し、上記
した作用を活用して、従来方法のごとくTi、Nb等の
合金を使用する事なく、また、油潤滑圧延を行うことな
く、良好な▲r▼値でかつΔrの小さい加工性熱延鋼板
を経済的に生産性、作業性良く製造することを可能とし
、かつ、より経済的に表層に亜鉛メッキを施すことがで
きるので、当業分野にもたらす産業上の効果は大きい。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention provides a hot-rolled steel plate coated with Zn or an alloy of Zn and Al as a main component.
The present invention relates to a method for producing a hot-rolled steel sheet for processing that has a good Δr value, which is an index showing the anisotropy of the ▲r▼ value and the r value. [0002] Generally, after hot rolling, Zn-based hot-dipped hot-rolled steel sheets are wound into coils and naturally cooled to less than 100°C over a long period of time, and then processed at about 80°C in a pickling line. It is descaled and then processed in a hot-dip plating line. In addition, in the case of a Zn-based hot-dip-plated cold-rolled steel sheet, cold rolling is performed between pickling and hot-dip plating. In addition, as a hot-dip plating line, 7
It is heated to about 00 to 800 degrees Celsius to burn off foreign substances called smut (Fe oxide, Fe + silicate, etc.), oils and other surface impurities that adhere to the surface of the steel plate during the pickling process and subsequent transportation, and then heats it with hydrogen. The so-called Sendzimer method, in which the surface cleanliness necessary for plating adhesion is ensured by reduction in an atmospheric gas, and then hot-dip plating by cooling to near the plating bath temperature in a non-oxidizing or reducing atmosphere, or a hydrogen atmosphere. It is heated to about 700-800℃ in gas to remove surface impurities such as smut and oil to ensure the surface cleanliness necessary for plating adhesion, and then heated to around the plating bath temperature in a non-oxidizing or reducing atmosphere. The so-called non-oxidation furnace method is used, which involves cooling the material to a temperature of 100°C before hot-dip plating. In the case of Zn-based hot-dipped hot-rolled steel sheets, surface impurities such as smut and oil that adhere to the steel sheet surface during the pickling process and subsequent transportation are removed by combustion and reduction, thereby achieving the surface cleanliness necessary for plating adhesion. 700-8 to ensure
Heating to around 00°C is unavoidable. However, in order to ensure the surface cleanliness necessary for plating adhesion, it is necessary to
Heating to a high temperature of around 00°C requires a huge amount of energy and a long heating furnace, which imposes a large operating cost. Furthermore, cooling the plating bath temperature (approximately 500° C.), which is an intermediate temperature between the two, results in a large loss of thermal energy. Furthermore, hydrogen is stored in the steel sheet in a high-temperature hydrogen atmosphere, and after plating, this hydrogen is released to the interface between the steel sheet and the plating, causing bulge-like defects on the plating surface. As a method to solve the above problems, for example, a method of coating with Ni or a Ni-based alloy as a pre-treatment for plating (Japanese Patent Laid-Open No. 61-44168)
has been disclosed, but although it is possible to reduce the heating temperature,
Since the pretreatment temperature is below 150℃, the coil must be cooled once, which not only makes it impossible to shorten the number of days required after winding, but also makes it impossible to utilize the heat retained in the coil, so energy loss is still inevitable. Furthermore, the number of pretreatment steps increases, which increases operating costs. In addition, blistering defects on the plating surface (not only deterioration of appearance but also peeling resistance and
To avoid this (leading to deterioration of corrosion resistance), the heating temperature should be set to
Method for reducing temperature to 00 to 720°C (Japanese Patent Application Laid-open No. 52-9554
Publication No. 3) is disclosed, but due to cleaning with acid,
Since the steel plate temperature once drops below 100℃, not only is it not possible to shorten the number of days required after winding, but the heat retained in the coil cannot be used, and heating temperatures of 600 to 720℃ still require a huge amount of energy and time. Since it requires a heating furnace, the effect of reducing operating costs is small. On the other hand, regarding the improvement of the ▲r▼ value of hot-rolled steel sheets, as described in Japanese Patent Application Laid-open No. 59-226149,
A method for producing ultra-low carbon steel using Ti by oil-lubricated rolling,
Alternatively, there is a method of manufacturing by adding alloys such as Nb and Ti, as described in JP-A-62-192539. Problems to be Solved by the Invention The above manufacturing method has the following problems. ■In the process of applying Zn plating to hot rolled steel sheets,
Because the temperature of the steel sheet must be lowered to room temperature for cleaning with acid, not only is it not possible to shorten the number of days required after winding, but the heat retained in the coil cannot be utilized, and the heating process before plating still requires a huge amount of energy and time. The operating cost is high because it requires a heating furnace. [0008] The rolling oil used in oil lubrication has a high concentration, and rolling itself is inevitably carried out under conditions at the very edge of the slip limit, and there are significant restrictions on rolling temperature, rolling speed, rollable size, etc. The deterioration of production efficiency cannot be denied. [0009] Furthermore, it becomes necessary to take time and effort to remove oil adhering to the rolls, which deteriorates workability and production efficiency. ■When using alloys such as Nb and Ti,
Alloy cost is high and not economical. [0011] Furthermore, in the case of JP-A-62-192539, the Δr value is large and cannot be said to be good. The object of the present invention is to provide a method for producing Zn-based plated steel sheets that are free from these problems, are economical, have good workability, and have excellent ▲r▼ values and ▲r▼ values. [Means for Solving the Problems] In order to achieve the above-mentioned problems, the present invention provides Mn: 0.10 to 0.60% by weight,
A steel containing 0.001 to 0.006% S and other Fe and other unavoidable components is cast and solidified in a temperature range of 1400°C to 1200°C at a cooling rate of ≥5.0°C/min to form a slab. , the temperature range of the slab from 1200℃ to 1100℃ 5
After keeping the slab warm at an average cooling rate of ℃/min or more and 30℃/min or less, finish rolling of the slab is started within 60 minutes from the start of casting in a temperature range of Ar3 point + 100℃ or less, and the rolling is carried out at Ar3 The process is completed in an isothermal temperature range above 350°C, followed by dry descaling at 350°C or above, temperature adjustment before plating from 400°C to 600°C, and continuous Zn-based hot-dip plating on the steel sheet. Zn with excellent plating surface properties and plating adhesion, and excellent ▲r▼ and Δr values.
The method is a method for producing hot-dipped hot-rolled steel sheets. [0014] Note that the hot-rolled steel sheet for processing in the present invention refers to
In the field of manufacturing and using hot-rolled steel sheets for processing, steels commonly used for such steel sheets, for example, C:
0.01% to 0.10%, Mn: 0.10% to 0.60
%, Si: 0.001-0.06% and P: 0.00
1% - 0.050%, S: 0.001% - 0.006%
This refers to steel that contains Fe and other unavoidable components. [Operation] In order to achieve the above object, the present inventors conducted various experimental studies and obtained the following knowledge. [0016] The steel having the above components is cast and solidified in the temperature range of 1400°C to 1200°C at a cooling rate of 5°C/min or more to form a slab, and the temperature range of the slab is 5°C.
The temperature is maintained at an average cooling rate of 30° C./min or more and 30° C./min or less, finish rolling of the slab is started at a temperature of Ar3 point +100° C. or less within 60 minutes from the start of solidification, and Ar3
When finishing isothermal finish rolling at or above the point, the amount of S precipitated as MnS during finish rolling was ensured in a sufficient solid solution state until finish rolling, and by this ensuring, the precipitation amount and precipitation size were controlled during finish rolling. Fine MnS precipitates, which effectively controls austenite recrystallization, fully develops the rolling texture of austenite, and ferrite transformed from this rolling texture has a high accumulation of (112) planes. ▲r▼ value improves. At this time, due to the above-mentioned finish rolling, a large shear strain acts on the surface layer of the steel sheet and randomizes the texture of the surface layer, so that the Δr value becomes small. [0017] Regarding the temperature history from 1200°C to 1100°C, it is sufficient that the average temperature drop rate is 5°C/min or more and 30°C/min or less, and depending on the thickness of the slab, simple air cooling may be sufficient, or coolant Cooling or heating may be used. Further, complete heat retention may be partially included during this time, and rolling for adjusting the width and thickness may be interposed. [0018] The lower limit of the winding temperature after rolling is 350
℃. The reasons for this limitation are explained below. If the winding temperature is less than 350°C, a distorted pattern known as buckling will occur during unwinding, impairing the appearance quality after plating, and making it impossible to effectively utilize the heat retained in the coil, resulting in energy loss. The equipment required to adjust the temperature to 400 to 600°C becomes long, making it impossible to enjoy the effect of reducing equipment costs. Further, in this step, in order to improve the telescaling efficiency in the subsequent step, it is also possible to adopt process conditions that reduce the scale thickness. For example, rolling in an inert atmosphere such as Ar, N2, etc., cooling between rolling stands with cooling water containing a solvent that has a scale control effect, cooling on a hot run table, N2 sealing atmosphere of the wound coil BO
It is possible to employ cooling within the X. Next, regarding descaling conditions, descaling is limited to dry descaling without using an acid solution. This avoids the generation of smut that adheres to the surface of the steel sheet due to the pickling process, making it possible to ensure the surface cleanliness necessary for plating adhesion without having to heat and burn off foreign matter. A specific dry descaling method is vacuum arc (10-1 to 10
-6 Torr), plasma, reaction (reduction), magnetic polishing (
(Using magnetic powder of tens to hundreds of microns), shot blasting, sand blasting, grid blasting, wire brushing, grinder, etc. can be used alone or in combination. [0021] In order to maintain the surface cleanliness necessary for the plating adhesion obtained by dry descaling, at least after dry descaling is completed, an inert gas atmosphere such as argon or nitrogen, or a mixture of an inert gas and hydrogen is used. It is necessary to maintain the atmosphere in a non-oxidizing or reducing atmosphere such as a hydrogen atmosphere. It goes without saying that dry descaling may be performed in a non-oxidizing or reducing atmosphere. In particular, it is desirable to use a reducing atmosphere for materials that are difficult to plate and contain a large amount of Si or the like. [0023] Furthermore, dry descaling must be started at 350°C or higher and completed at 350-600°C. The reasons for this limitation are explained below. [0024] If the dry descaling temperature is less than 350°C, a distortion pattern called buckling occurs due to deformation of the steel plate due to bending and unbending during sheet passing, which impairs the appearance quality. Furthermore, since the heat retained in the coil cannot be used effectively and energy loss occurs, the equipment required to adjust the plate temperature to 400 to 600°C before plating becomes long, making it impossible to enjoy the effect of reducing equipment costs. On the other hand, when the dry descaling temperature is 600
When the temperature exceeds 0.degree. C., hydrogen in the reducing atmosphere tends to be absorbed into the steel sheet, which tends to cause blistering defects on the plating surface. In addition, from the perspective of the energy cost and equipment cost required to adjust the plate temperature before plating to 400 to 600 °C,
If the temperature exceeds ℃, the loss becomes large. As for the process conditions after dry descaling, in order to maintain the surface cleanliness necessary for the plating adhesion obtained by dry descaling, after dry descaling, the process is continuously carried out in a non-oxidizing or reducing atmosphere. So 4
The plate temperature before plating is adjusted to 00 to 600°C, and hot-dip plating is performed. In particular, it is desirable to use a reducing atmosphere for materials that are difficult to plate and contain a large amount of Si or the like. The reasons for limiting the plate temperature before plating are described below. If the temperature is less than 400°C, so-called "wettability" cannot be ensured, resulting in non-plating or deterioration of plating adhesion. Further, if the temperature is lower than 350° C., distortion patterns called buckling may occur due to deformation of the steel sheet due to bending and unbending during sheet passing, and there is a risk that the appearance quality may be impaired. On the other hand, when the temperature exceeds 600°C, deterioration and fluctuation of the steel sheet material occur due to tempering of the transformed structure, redissolution of precipitates, grain growth, etc., and hydrogen in the reducing atmosphere is likely to be absorbed into the steel sheet. , which tends to cause blistering defects on the plating surface. Further, the alloying reaction between Zn and Fe progresses excessively, and a brittle plating layer such as a Γ phase appears, deteriorating the plating adhesion. In addition, the energy cost and
Also from the point of view of equipment cost, if the temperature exceeds 600°C, losses will be large. Furthermore, according to this manufacturing method, since the material is built in during the hot rolling process, it goes without saying that there is no need for recrystallization annealing to adjust the material. [0027] Furthermore, after completion of plating, the required characteristics and
Various post-treatments such as skin pass, chromate treatment, bonding treatment, and painting can be appropriately selected depending on the application. [0028] By utilizing the above knowledge, the present invention has achieved the object. [Example] Steel having the chemical composition shown in Table 1 was manufactured under the hot rolling conditions shown in Table 2, and dry descaling and hot dipping were performed under the conditions shown below. [Table 1] [Table 2] (Note) CCS: Casting cooling rate
Temperature lowering conditions: ■ Temperature lowering rate 20℃/min FTO: Finish rolling start temperature
■1200℃×10 minutes constant FTE: Finish rolling end temperature
■1100℃×10 minutes constant MST: From the start of solidification
■Cooling rate 50℃/min
Time until rolling start CT: Coiling temperature [0032] [Example 1] Using a coil manufactured under the conditions shown in Tables 1 and 2, dry descaling and hot-dip plating with a vacuum arc were performed under the following conditions. went. Plating bath temperature: 470°C, pre-plating plate temperature: 480°C Plating bath components: Zn-0.2%Al Atmosphere: 80%N2-20%H2 Plating deposition amount: 190g/m2 Dry descaling temperature: 350 [0034] Thereafter, plating adhesion was evaluated using a DUPONT impact tester by visually observing blistering defects and folds on the plating surface, and by measuring the ▲r▼ value (tensile test). Note that the evaluation was conducted 30 days after plating. The results are shown in Table 3. [0035] Hot-rolled steel sheets with a high ▲r▼ value and a small ▲r▼ value, which exhibited excellent plating adhesion with various composition systems of steel types A to F, were free from bulging defects and buckles, and had a small ▲r▼ value. Further, the bare corrosion resistance and painted corrosion resistance were evaluated by a salt spray test, the chemical conversion treatment property was evaluated by the amount of chemical conversion film deposited, and the paint adhesion was evaluated by an Erichsen test, and all properties were good. However, compared to the present invention example, Steel No. 4 did not satisfy the average temperature drop condition, Steel No. 5 did not satisfy the condition that the rolling start temperature was Ar3 + 100℃ or less, and Steel No. 6 did not satisfy the cooling rate condition during solidification. In all cases, the ▲r▼ value is low, and steel No. 7, whose heat retention conditions are outside the upper limit, has a good ▲r▼ value, but Δr
Steel No. 8, which had a large value and the rolling temperature was less than Ar3, was
Steel numbers 9, 11, and 1 with low r▼ values and S content outside the conditions
3 also has a low ▲r▼ value. In addition, Steel No. 10, which does not satisfy the S content condition and the heat retention condition, has a low ▲r▼ value, and Steel No. 12, which does not meet the S content condition and the heat retention condition, has a good ▲r▼ value, but Δ
Steel No. 14, which has a large r and a long time from the start of casting to the start of finish rolling, has a low ▲r▼ value. [Table 3] r=(rC +rL +2·rD )/4Δr=(rC
+rL )/2-rD [Example 2] Using the coils manufactured under the conditions shown in Tables 1 and 2, dry descaling and hot-dip plating were carried out using a combination of magnetic polishing and reduction under the following conditions. went. Plating bath temperature: 470°C, plating bath components: Zn-0.10
%Al atmosphere: 85%N2 -15%H2, plating amount:
90 g/m2 [0040] Thereafter, plating adhesion was evaluated using a DUPONT impact tester by visually observing blistering defects and buckles on the plating surface, and material deterioration was evaluated using a tensile test. Note that the evaluation was conducted 30 days after plating. The results are shown in Table 4. No. In No. 1, the dry descaling temperature was too high, so a bulge-like defect occurred. Also, even if dry desks are arranged within the conditions, No. If the pre-plating plate temperature is too high as in 2, blistering defects will occur.
Furthermore, since alloying of Zn and Fe progressed excessively, plating adhesion also deteriorated. On the other hand, No. In No. 3, the plate temperature before plating was too low, resulting in poor plating adhesion and unplated areas. No. In No. 5, the dry descaling temperature was too low, so bending occurred during coil unwinding. Also, No. In No. 7, the annealing temperature was too low and the steel plate could not be recrystallized, so a high ▲r▼ value could not be obtained. No. 9 is an example where an appropriate descaling temperature could not be secured.
As a result, a broken back occurred. [0042]No. Samples Nos. 4, 6, and 8 met the conditions of the present invention, exhibited excellent plating adhesion, had no bulging defects, and had no buckling, and yielded plated products with good ▲r▼ values and ▲r▼ values. (Legend is the same as Table 3) 00
[Table 4] [Example 3] Using the coils manufactured under the conditions shown in Tables 1 and 2, dry descaling and hot-dip plating using a vacuum arc were performed under the following conditions. [0045] Steel number: 2 Descaling temperature: 600°C Atmosphere: 100% N2 Plating adhesion: 150 g/m2 [0046] After that, the plating adhesion was checked using a DUPONT impact tester by visually checking the plating surface for blistering defects and buckling. , Material deterioration was evaluated using a tensile test. Note that the evaluation was performed 30 days after plating. The results are shown in Table 5. Excellent plating adhesion was exhibited to various bath components, and a good plated product was obtained with no blistering defects or buckling. (The legend is the same as in Table 3) [Table 5] [Effects of the Invention] The present invention uses the above-described means and utilizes the above-described effects to produce Ti, Nb, etc. as in the conventional method. This makes it possible to economically produce hot-rolled steel sheets with good ▲r▼ value and low workability ▲r with good productivity and workability without using alloys or without oil-lubricated rolling. Moreover, since the surface layer can be galvanized more economically, it has a great industrial effect on the field of art.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量%で、Mn:0.10〜0.60
%、S:0.001〜0.006%を含み、その他Fe
及び不可避的成分からなる鋼の1400℃〜1200℃
の温度範囲を≧5.0℃/分の冷却速度で鋳造凝固して
鋳片とし、該鋳片の1200℃〜1100℃の温度範囲
を5℃/分以上、30℃/分以下の平均降温速度で保温
した後、該鋳片の仕上げ圧延を前記凝固開始から60分
以内にAr3 点+100℃以下の温度域で開始し、該
圧延をAr3 点以上の等温温度域で終了し、350℃
以上で巻取り、その後350℃以上でドライデスケーリ
ング、400℃〜600℃へのめっき前板温調整、鋼板
へのZn系溶融めっきを連続的に行い、かつ、少なくと
もドライデスケーリング完了以降は非酸化性もしくは還
元性に雰囲気調整することを特徴とする、めっき表面性
状およびめっき密着性に優れ▲r▼値とΔr値の優れた
Zn系溶融めっき熱延鋼板の製造方法。
[Claim 1] Mn: 0.10 to 0.60 in weight%
%, S: 0.001-0.006%, other Fe
and 1400°C to 1200°C for steel consisting of unavoidable components.
The slab is solidified by casting at a cooling rate of ≥5.0°C/min in the temperature range of 1200°C to 1100°C, and the average temperature decrease is 5°C/min or more and 30°C/min or less. After keeping the slab warm at a constant speed, finish rolling of the slab is started within 60 minutes from the start of solidification in a temperature range below the Ar3 point +100°C, and the rolling is finished in an isothermal temperature range above the Ar3 point, and then finished at 350°C.
After winding in the above manner, dry descaling at 350°C or higher, temperature adjustment before plating to 400°C to 600°C, and Zn-based hot-dip plating on the steel sheet are performed continuously, and at least after completion of dry descaling, no A method for producing a Zn-based hot-dipped hot-rolled steel sheet with excellent plating surface properties and plating adhesion, and excellent ▲r▼ and ▲r values, the method comprising adjusting the atmosphere to be oxidizing or reducing.
JP8921091A 1991-03-29 1991-03-29 Production of hot-dip galvanized steel plate excellent in r-value and deltar-value Withdrawn JPH04304349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8921091A JPH04304349A (en) 1991-03-29 1991-03-29 Production of hot-dip galvanized steel plate excellent in r-value and deltar-value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8921091A JPH04304349A (en) 1991-03-29 1991-03-29 Production of hot-dip galvanized steel plate excellent in r-value and deltar-value

Publications (1)

Publication Number Publication Date
JPH04304349A true JPH04304349A (en) 1992-10-27

Family

ID=13964359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8921091A Withdrawn JPH04304349A (en) 1991-03-29 1991-03-29 Production of hot-dip galvanized steel plate excellent in r-value and deltar-value

Country Status (1)

Country Link
JP (1) JPH04304349A (en)

Similar Documents

Publication Publication Date Title
EP2009130A1 (en) Process for producing alloyed hot-dip zinc-coated steel sheet satisfactory in processability, non-powdering property, and sliding property
JP2010501725A (en) Method of plating a metal protective layer on a hot-rolled steel plate or a cold-rolled steel plate containing 6-30% by weight of Mn
JP3002379B2 (en) Manufacturing method of high-strength cold-rolled galvannealed steel sheets for automobiles with excellent formability, paint bake hardenability and little change in paint bake hardenability
WO2017110030A1 (en) High strength hot dip hot-rolled steel sheet and manufacturing method therefor
EP2659019B1 (en) Aluminum coated steel sheet having excellent oxidation resistance and heat resistance
JP3598087B2 (en) High-strength galvannealed steel sheet with excellent workability and method for producing the same
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP3444007B2 (en) Manufacturing method of high workability, high strength galvanized steel sheet
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet
EP0632141B1 (en) Surface treated steel sheet and method therefore
JPH06116653A (en) Production of low cost type hot rolled and hot dip plated steel strip excellent in plating surface property and plating adhesion and device therefor
JP3580541B2 (en) Surface-treated steel sheet excellent in workability and corrosion resistance of processed part and method for producing the same
JPH04304349A (en) Production of hot-dip galvanized steel plate excellent in r-value and deltar-value
JP2022531669A (en) Method for manufacturing continuously cast hot-rolled high-strength steel sheet products
JPH04304348A (en) Production of hot-dip galvanized steel plate excellent in r-value
JPS6223975A (en) Alloyed hot dip galvanized high-tension hot-rolled steel sheet and its manufacture
JPH04304351A (en) Production of hot dip zn coated steel sheet having high productivity and excellent deep drawability
JP4131577B2 (en) Manufacturing method of plated steel sheet
JPH0232326B2 (en) TOSOYAKITSUKEKOKASEIOJUSURUTOSOKOHANNOSEIZOHOHO
JP3205292B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion
JPH04304347A (en) Production of hot-dip galvanized hot rolled steel plate excellent in surface characteristic of plating and adhesive strength of plating
JPH06116695A (en) Method and device for producing hot-rolled hot-dip plated steel strip excellent in plating adhesion
JP3497201B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing with excellent surface properties
JPH04304350A (en) Production of hot dip zn coated hot rolled steel sheet having excellent deep drawability
JPH07292436A (en) Surface treated steel sheet for deep drawing, excellent in corrosion resistance, and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514