JPH04304337A - Heat resistant alloy for engine valve - Google Patents

Heat resistant alloy for engine valve

Info

Publication number
JPH04304337A
JPH04304337A JP9483391A JP9483391A JPH04304337A JP H04304337 A JPH04304337 A JP H04304337A JP 9483391 A JP9483391 A JP 9483391A JP 9483391 A JP9483391 A JP 9483391A JP H04304337 A JPH04304337 A JP H04304337A
Authority
JP
Japan
Prior art keywords
alloy
less
present
resistant alloy
engine valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9483391A
Other languages
Japanese (ja)
Inventor
Koji Sato
光司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9483391A priority Critical patent/JPH04304337A/en
Publication of JPH04304337A publication Critical patent/JPH04304337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a low-cost heat resistant alloy for an engine valve having superior characteristics as compared with NCF751 used as an engine valve material for an automobile. CONSTITUTION:This heat resistant alloy for an engine valve consists of, by weight, 0.21-0.65% C, <=0.5% Si, <=1.0% Mn, 40-50% Ni, 15-23.5% Cr, <=6% Mo, 1.0-1.8% Al, 3.25-4.5% Ti, 1.0-2.5% Nb (5.3<=1.8Al+Ti+0.5Nb-4C<=6.5), 0.001-0.020% B and the balance Fe and contains 2-6 atomic % MC type carbide in the structure. This alloy may further contain one or more among Mg, Ca, Y and REM as required.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は主に自動車用のエンジン
バルブ材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates primarily to engine valve materials for automobiles.

【0002】0002

【従来の技術】従来、自動車用エンジンバルブ材にはN
i基合金のNCF751やこれを低価格化した特開昭6
0−70155号に開示されたNi基合金が使われてき
た。また、さらにエンジンバルブ材の低価格化を目的と
してNi量が50%以下である特公平1−12827号
,特開昭62−214149号,特開平2−47229
号,特開昭61−238942号,特開昭58−189
359号,特公昭62−50542号,特開昭56−2
0148号などが提案されている。
[Prior Art] Conventionally, N was used as an engine valve material for automobiles.
NCF751, an i-based alloy, and JP-A-6, which lowered its price.
The Ni-based alloy disclosed in No. 0-70155 has been used. Furthermore, for the purpose of lowering the price of engine valve materials, we have developed Japanese Patent Publications No. 1-12827, No. 62-214149, and No. 2-47229 in which the Ni content is 50% or less.
No., JP-A-61-238942, JP-A-58-189
No. 359, JP 62-50542, JP 56-2
No. 0148 and the like have been proposed.

【0003】0003

【発明が解決しようとする課題】前述のNCF751は
高級排気エンジンバルブ用合金として広く利用されてき
た。しかし、NCF751はNiを70%以上も多量に
含むために高価格であること、および硫黄を含む腐食環
境中での高温疲労強度やクリープ破断強度が大気中で使
用した場合に比べて著しく低下するという問題点があっ
た。
The aforementioned NCF751 has been widely used as an alloy for high-grade exhaust engine valves. However, NCF751 is expensive because it contains more than 70% Ni, and its high-temperature fatigue strength and creep rupture strength in a corrosive environment containing sulfur are significantly lower than when used in the air. There was a problem.

【0004】これに対し、NCF751の低価格化合金
として提案されている特公平1−12827号,特開昭
62−214149号,特開昭61−238942号,
特開昭58−189359号,特公昭62−50542
号や特開昭56−20148号などのNi50%以下の
合金は硫黄を含む腐食環境に対してはNCF751より
やや優れるものの硬さや高温強度がかならずしも十分で
ないという欠点がある。一方、特開平2−47229号
に開示される合金は、同じNi50%以下の低価格化合
金ではあるが、適正量のTiC炭化物を分散させること
により、オーステナイト結晶粒径を微細化し、靱延性を
劣化することなしに、硬さや高温強度を高めた合金で、
NCF751より優れた常温硬さとNCF751とほぼ
同等の高温強度をもつことを特徴としている。このよう
なMC型炭化物を積極的に利用する技術は従来のエンジ
ンバルブ用耐熱合金では、全く用いられていなかったも
のである。
On the other hand, Japanese Patent Publication No. 1-12827, Japanese Patent Application Publication No. 62-214149, Japanese Patent Application Publication No. 61-238942, which have been proposed as low-cost alloys of NCF751.
Japanese Patent Publication No. 58-189359, Publication No. 62-50542
Although alloys containing 50% Ni or less, such as those disclosed in No. 2014 and JP-A No. 56-20148, are slightly better than NCF751 in corrosive environments containing sulfur, they have the disadvantage that their hardness and high-temperature strength are not necessarily sufficient. On the other hand, the alloy disclosed in JP-A-2-47229 is a low-priced alloy with 50% Ni or less, but by dispersing an appropriate amount of TiC carbide, the austenite grain size is refined and toughness and ductility is improved. An alloy with increased hardness and high-temperature strength without deterioration.
It is characterized by having room temperature hardness superior to NCF751 and high temperature strength almost equivalent to NCF751. Such a technology that actively utilizes MC type carbides has not been used at all in conventional heat-resistant alloys for engine valves.

【0005】しかし、地球的規模の環境汚染問題から、
自動車エンジンの軽量・高効率化に対する要求はさらに
強くなってきた。本発明の目的は、50%以下のNi量
でかつNCF751や特開平2−47229号に開示さ
れる合金よりもさらに優れた高温強度と硫黄を含む腐食
環境に対して優れた耐腐食性(以下耐硫化腐食性を記す
)を有する合金を提供することである。
[0005] However, due to global environmental pollution problems,
Demand for lighter weight and higher efficiency automobile engines has become even stronger. The purpose of the present invention is to have a Ni content of 50% or less and to have superior high-temperature strength and corrosion resistance against corrosive environments containing sulfur (hereinafter referred to as The object of the present invention is to provide an alloy having a high resistance to sulfide corrosion.

【0006】[0006]

【課題を解決するための手段】前述のように、特開平2
−47229号に開示される合金はNCF751並みの
高温強度を示すが、さらにこの合金の高温強度の改良と
耐硫化腐食性を改良するため、MC型炭化物の分散強化
を用いた上でガンマプライム析出強化元素の最適成分範
囲と耐流下腐食性改善の最適成分範囲を検討した。その
結果、NCF751より優れた高温強度を得るためには
、■TiとNbのMC型一次炭化物の適正量の分散と、
それに伴うオーステナイト結晶粒の微細化、■ガンマプ
ライム析出強化元素である、Al、TiおよびNbの含
有量を特定の関係式の範囲内に限定することでバルブと
して鍛造可能でかつ優れた強度が得られること、および
、■Mo添加による固溶強化と耐硫化腐食性の改善の3
点により、本発明の合金を見出すに至った。
[Means for solving the problem] As mentioned above,
The alloy disclosed in No. 47229 exhibits high-temperature strength comparable to NCF751, but in order to further improve the high-temperature strength and sulfide corrosion resistance of this alloy, dispersion strengthening of MC-type carbides is used and gamma prime precipitation is applied. The optimal range of components for reinforcing elements and the optimal range of components for improving flow corrosion resistance were investigated. As a result, in order to obtain high-temperature strength superior to NCF751, it is necessary to disperse an appropriate amount of MC type primary carbides of Ti and Nb,
As a result, the austenite crystal grains become finer, ■ By limiting the content of Al, Ti, and Nb, which are gamma prime precipitation strengthening elements, to within the range of a specific relational expression, it is possible to forge the valve and achieve excellent strength. and ■Improvement of solid solution strengthening and sulfide corrosion resistance by Mo addition.
This led to the discovery of the alloy of the present invention.

【0007】すなわち本発明のうち、第1発明は、重量
百分率でC0.21〜0.65%,Si0.5%以下,
Mn1.0%以下,Ni40〜50%,Cr15%以上
23.5%未満,Mo6.0%以下,Al  1.0〜
1.8%,Ti3.25%を越え4.5%以下,Nb1
.0%を越え2.5%以下(ただし、5.3≦1.8A
l+Ti+0.5Nb−4C≦6.5)、B0.001
〜0.020%を含み、残部は不純物を除き本質的にF
eからなり、合金組織中に分散したMC炭化物を2〜6
原子%含有することを特徴とするエンジンバルブ用耐熱
合金であり、第2発明は、重量百分率でC0.21〜0
.65%,Si0.5%以下,Mn1.0%以下,Ni
40〜50%,Cr15%以上23.5%未満,Mo6
.0%以下,Al  1.0〜1.8%,Ti3.25
%を越え4.5%以下,Nb1.0%を越え2.5%以
下(ただし、5.3≦1.8Al+Ti+0.5Nb−
4C≦6.5)、B0.001〜0.020%を含み、
さらにMg0.0005〜0.02%,Ca0.000
5〜0.02%,Y0.001〜0.2%およびREM
0.001〜0.2%のうちの1種または2種以上を含
有し、残部は不純物を除き本質的にFeからなり、合金
組織中に分散したMC炭化物を2〜6原子%含有するこ
とを特徴とするエンジンバルブ用耐熱合金であり、第3
発明は重量百分率でC0.21〜0.65%,Si0.
5%以下,Mn1.0%以下,Ni40〜50%,Cr
15%以上23.5%未満,Mo1.0〜4.5%,A
l  1.0〜1.8%,Ti3.25%を越え4.5
%以下,Nb1.0%を越え2.5%以下(ただし、5
.3≦1.8Al+Ti+0.5Nb−4C≦6.5)
、B0.001〜0.020%を含み、残部は不純物を
除き、本質的にFeからなり、合金組織中に分散したM
C炭化物を2〜6原子%含有することを特徴とするエン
ジンバルブ用耐熱合金であり、第4発明は、重量百分率
でC0.21〜0.65%,Si0.5%以下,Mn1
.0%以下,Ni40〜50%,Cr15%以上23.
5%未満,Mo1.0〜4.5%,Al  1.0〜1
.8%,Ti3.25%を越え4.5%以下,Nb1.
0%を越え2.5%以下(ただし、5.3≦1.8Al
+Ti+0.5Nb−4C≦6.5)、B0.001〜
0.020%を含み、さらにMg0.0005〜0.0
2%,Ca0.0005〜0.02%,Y0.001〜
0.2%およびREM0.001〜0.2%のうちの1
種または2種以上を含有し、残部は不純物を除き本質的
にFeからなり、合金組織中に分散したMC炭化物を2
〜6原子%含有することを特徴とするエンジンバルブ用
耐熱合金である。
[0007] That is, the first invention of the present invention is based on the weight percentage of C0.21 to 0.65%, Si0.5% or less,
Mn 1.0% or less, Ni 40-50%, Cr 15% or more and less than 23.5%, Mo 6.0% or less, Al 1.0-50%
1.8%, Ti over 3.25% and 4.5% or less, Nb1
.. More than 0% and less than 2.5% (5.3≦1.8A
l+Ti+0.5Nb-4C≦6.5), B0.001
~0.020%, the remainder is essentially F excluding impurities
2 to 6 MC carbides dispersed in the alloy structure.
The second invention is a heat-resistant alloy for engine valves characterized by containing atomic% of C0.21 to 0 by weight percentage.
.. 65%, Si 0.5% or less, Mn 1.0% or less, Ni
40-50%, Cr15% or more and less than 23.5%, Mo6
.. 0% or less, Al 1.0-1.8%, Ti3.25
% but not more than 4.5%, Nb more than 1.0% and not more than 2.5% (however, 5.3≦1.8Al+Ti+0.5Nb-
4C≦6.5), B0.001 to 0.020%,
Furthermore, Mg0.0005~0.02%, Ca0.000
5-0.02%, Y0.001-0.2% and REM
Contains one or more of 0.001 to 0.2%, the remainder essentially consists of Fe excluding impurities, and contains 2 to 6 at% of MC carbide dispersed in the alloy structure. It is a heat-resistant alloy for engine valves characterized by
The invention has a weight percentage of C0.21-0.65%, Si0.
5% or less, Mn 1.0% or less, Ni 40-50%, Cr
15% or more and less than 23.5%, Mo1.0-4.5%, A
l 1.0~1.8%, Ti over 3.25% 4.5
% or less, Nb over 1.0% and 2.5% or less (however, 5%
.. 3≦1.8Al+Ti+0.5Nb-4C≦6.5)
, B0.001~0.020%, the remainder is essentially Fe excluding impurities, and M dispersed in the alloy structure.
The fourth invention is a heat-resistant alloy for engine valves characterized by containing 2 to 6 at% of C carbide, and the fourth invention is a heat-resistant alloy for engine valves, which is characterized by containing C carbide in a weight percentage of 0.21 to 0.65%, Si 0.5% or less, Mn1
.. 0% or less, Ni40-50%, Cr15% or more23.
Less than 5%, Mo1.0-4.5%, Al 1.0-1
.. 8%, Ti over 3.25% and 4.5% or less, Nb1.
More than 0% and less than 2.5% (however, 5.3≦1.8Al
+Ti+0.5Nb-4C≦6.5), B0.001~
Contains 0.020% and further contains Mg0.0005-0.0
2%, Ca0.0005~0.02%, Y0.001~
0.2% and 1 of REM 0.001-0.2%
The remainder consists essentially of Fe excluding impurities, and the MC carbide dispersed in the alloy structure is
It is a heat-resistant alloy for engine valves characterized by containing ~6 at%.

【0008】[0008]

【作用】本発明において、CはTi,Nbと結びついて
MC型の一次炭化物を生成させるのに必要な元素であり
、MC炭化物を2原子%以上分有させるためには、0.
21%以上必要であるが、0.65%を越えるとMC炭
化物の量が6原子%を越え、鍛造性や靱性を害するので
好ましくないため、Cは0.21〜0.65%に限定す
る。
[Operation] In the present invention, C is an element necessary to combine with Ti and Nb to form a MC type primary carbide, and in order to have a MC carbide content of 2 at % or more, 0.
C is required to be 21% or more, but if it exceeds 0.65%, the amount of MC carbide exceeds 6 at %, which impairs forgeability and toughness, which is not preferable, so C is limited to 0.21 to 0.65%. .

【0009】SiとMnは本発明合金において脱酸元素
として添加されるが、いずれも過度の添加は高温強度の
低下を招くため、Siは0.5%以下,Mnは1.0%
以下にそれぞれ限定する。
[0009]Si and Mn are added as deoxidizing elements in the alloy of the present invention, but excessive addition of either leads to a decrease in high temperature strength, so Si is added at 0.5% or less and Mn is added at 1.0%.
Each is limited to the following.

【0010】Niはオーステナイト基地とNi3 (A
l,Ti,Nb)のガンマプライム析出強化相を構成す
る基本元素であり、十分な量のガンマプライム相を析出
させた上で、なお安定なオーステナイト基地を保つため
に最低40%以上必要であるが、50%を越える過度の
添加は、安価な合金という特徴が失われるので、Niは
40〜50%に限定する。
[0010] Ni has austenite base and Ni3 (A
It is a basic element constituting the gamma prime precipitation strengthening phase of L, Ti, Nb), and is required to be at least 40% in order to precipitate a sufficient amount of gamma prime phase and still maintain a stable austenite base. However, if excessive addition exceeds 50%, the characteristic of an inexpensive alloy is lost, so Ni is limited to 40 to 50%.

【0011】Crは合金に耐酸化性を付与するのに不可
欠の元素であり、エンジンバルブ用としての耐酸化性を
保証するために最低15%は必要であるが、23.5%
以上添加すると組織が不安定となり、多量のα相を生成
し、クリープ破断強度と常温延性の低下を招くので、C
rは15%以上23.5%未満とする。
Cr is an essential element for imparting oxidation resistance to the alloy, and a minimum of 15% is required to ensure oxidation resistance for use in engine valves, but 23.5%.
C
r is 15% or more and less than 23.5%.

【0012】Moはオーステナイト地を固溶強化し、高
温疲労強度と高温クリープ破断強度を著しく高める効果
をもつ。さらに本発明合金において明らかになった点は
、Moが硫黄と安定なMoS2 の硫化物をつくりNC
F751の耐硫化腐食性を低下させる主原因であるNi
−NiSの低融点の共晶反応を防げる効果を見出したこ
とである。これらの効果を得るためにMoは必須添加さ
れるが、6.0%を越える過度の添加は熱間加工性を害
し、過剰なα相の析出を生じるために、Moは6.0%
以下に限定する。さらにMoの好適な範囲は1.0〜4
.5%の範囲である。
[0012] Mo has the effect of solid-solution strengthening the austenitic base and significantly increasing high-temperature fatigue strength and high-temperature creep rupture strength. Furthermore, it has become clear in the alloy of the present invention that Mo forms a stable MoS2 sulfide with sulfur, resulting in NC
Ni is the main cause of decreasing the sulfide corrosion resistance of F751.
-We have discovered the effect of preventing the low melting point eutectic reaction of NiS. Mo is indispensably added to obtain these effects, but excessive addition of more than 6.0% impairs hot workability and causes excessive precipitation of α phase, so Mo is added in an amount of 6.0%.
Limited to the following. Furthermore, the preferred range of Mo is 1.0 to 4
.. It is in the range of 5%.

【0013】Alは安定なガンマプライム相を析出させ
て所望の高温強度を得るために不可欠な元素であり、最
低1.0%を必要とするが、1.8%を越えると熱間加
工性が劣化するので、1.0〜1.8%に限定する。
Al is an essential element to precipitate a stable gamma prime phase and obtain the desired high-temperature strength, and requires a minimum content of 1.0%, but if it exceeds 1.8%, hot workability deteriorates. is limited to 1.0 to 1.8%.

【0014】Tiは本発明合金において、Nbと同様、
Cと結びついてMC型の一次炭化物を生成する一方、残
部はAl,NbとともにNiと結びついてガンマプライ
ム相を析出させ高温強度を高める作用があり、3.25
%を越える添加を必要とするが4.5%を越えるとガン
マプライム相が高温で不安定となってη相を生成しやす
くし、また熱間加工性を害するため、Tiは3.25%
を越え4.5%以下に限定する。
[0014] In the alloy of the present invention, Ti, like Nb,
It combines with C to form MC-type primary carbide, while the remaining part combines with Ni together with Al and Nb to precipitate a gamma prime phase, which has the effect of increasing high-temperature strength.
%, but if it exceeds 4.5%, the gamma prime phase becomes unstable at high temperatures, making it easy to generate η phase, and impairing hot workability, so Ti should be added in an amount of 3.25%.
Exceeding 4.5% or less.

【0015】Nbは従来合金のNCF751と同等の強
度を有する特開平2−47229号に開示される合金よ
りも格段に優れた高温強度を付与するため、本発明にお
いて必須の元素であり、前記特開平2−47229号の
合金組成だけでは得られない効果を有する。すなわち、
ガンマプライム相のAlサイトをTiのみで強化する場
合、AlとTiの原子比は短時間引張強度に対しては4
:6程度が望ましいが、長時間加熱を受けると一部がη
相に変態するため、後述するようにガンマプライム量を
NCF751より高めても、クリープ破断強度はせいぜ
いNCF751程度となる。
[0015] Nb is an essential element in the present invention because it imparts high-temperature strength that is much superior to that of the alloy disclosed in JP-A-2-47229, which has the same strength as the conventional alloy NCF751, and is an essential element in the present invention. It has an effect that cannot be obtained by the alloy composition of Kaihei 2-47229 alone. That is,
When strengthening the Al sites of the gamma prime phase with Ti only, the atomic ratio of Al and Ti is 4 for short-time tensile strength.
: About 6 is desirable, but if heated for a long time, a part of it will change to η.
Because it transforms into a phase, even if the amount of gamma prime is made higher than NCF751 as described later, the creep rupture strength will be about NCF751 at most.

【0016】それに対し、Tiの一部をNbで置換する
ことで、ガンマプライム相はより安定となり高温強度の
向上が可能となる。本発明合金における、Al,Tiお
よびNbの最適原子比は4.5:4.5:1であり、N
bの原子比が高くなりすぎるとガンマダブルプライム相
が析出して、900℃のクリープ破断強度をかえって低
下させる。Nbは上述のようなガンマプライム相を強化
させる効果の他に、Tiと同様にCと結びついてMC型
の一次炭化物を生成する。これらの作用のために本発明
においてNbは1.0%を越え2.5%以下に限定する
On the other hand, by substituting a part of Ti with Nb, the gamma prime phase becomes more stable and the high temperature strength can be improved. The optimum atomic ratio of Al, Ti and Nb in the alloy of the present invention is 4.5:4.5:1, and N
If the atomic ratio of b becomes too high, a gamma double prime phase will precipitate, which will actually reduce the creep rupture strength at 900°C. In addition to the above-mentioned effect of strengthening the gamma prime phase, Nb also combines with C to form MC type primary carbide, similar to Ti. Due to these effects, in the present invention, Nb is limited to more than 1.0% and less than 2.5%.

【0017】本発明の目的の達成のためには上述のAl
,TiおよびNbはそれぞれ単独に上述の成分範囲を満
足する必要があるだけでなく、ガンマプライム構成元素
として、それぞれの元素の総和を適正範囲とすることも
重要である。本発明によればTiとNbの一部はMC炭
化物を生成するため、ガンマプライム相の析出に関与さ
せる有効Ti当量は1.8Al+Ti+0.5Nb−4
Cで表される。前記有効Ti当量値の高さに比例してガ
ンマプライム相の量は増加するが、本発明において有効
Ti当量が5.3未満の場合、目標とする高温強度が得
られず、逆に6.5を越えると熱間加工性を害し、バル
ブの鍛造成形が困難となるため、有効Ti当量は5.3
〜6.5の範囲に限定する。
In order to achieve the object of the present invention, the above-mentioned Al
, Ti, and Nb must not only individually satisfy the above-mentioned component ranges, but also it is important that the sum of each element be within an appropriate range as gamma prime constituent elements. According to the present invention, since a part of Ti and Nb forms MC carbides, the effective Ti equivalent involved in the precipitation of the gamma prime phase is 1.8Al+Ti+0.5Nb-4
It is represented by C. The amount of gamma prime phase increases in proportion to the height of the effective Ti equivalent value, but in the present invention, if the effective Ti equivalent value is less than 5.3, the target high temperature strength cannot be obtained; If it exceeds 5, the hot workability will be impaired and it will be difficult to forge the valve, so the effective Ti equivalent is 5.3.
-6.5.

【0018】Bは本発明において粒界強化作用により高
温の強度と延性を高めるのに有効であり、最低0.00
1%必要であるが、0.020%を越えると加熱時の初
期溶融温度が低下して熱間加工性が劣化するので、0.
001〜0.020%に限定する。
In the present invention, B is effective in increasing high-temperature strength and ductility through grain boundary strengthening action, and has a minimum of 0.00
1% is required, but if it exceeds 0.020%, the initial melting temperature during heating will decrease and hot workability will deteriorate;
001% to 0.020%.

【0019】Mg,Ca,YおよびREMは、強い脱酸
・脱硫元素で、これらの元素を1種または2種以上含む
ことにより本発明合金の熱間加工性と延性の改善に役立
つ。そのために必要なMg,Ca,YおよびREMの量
はそれぞれ0.0005〜0.02%,0.0005〜
0.02%,0.001〜0.2%および、0.001
〜0.2%である。Feは本発明合金を安価にさせる元
素でNiとともにオーステナイト基地を安定化させるた
め、残部とする。
Mg, Ca, Y, and REM are strong deoxidizing and desulfurizing elements, and the inclusion of one or more of these elements helps improve the hot workability and ductility of the alloy of the present invention. The amounts of Mg, Ca, Y and REM required for this are 0.0005-0.02% and 0.0005-0.0005%, respectively.
0.02%, 0.001-0.2% and 0.001
~0.2%. Fe is an element that makes the alloy of the present invention inexpensive, and is left in the remainder because it stabilizes the austenite base together with Ni.

【0020】本発明合金においては不純物としてP,S
等の混入が考えられるが、以下の量は特性上特に問題な
いので本発明合金中に含まれてもよい。 P≦0.03%,S≦0.03% 本発明に含まれる適正量のTi,NbのMC型一次炭化
物は、マトリックス中に均一に分散し、オーステナイト
結晶粒径を微細化し、靱延性を劣化することなしにかた
さや高温強度を高めることができる。そのために、MC
炭化物は最低2原子%を必要とするが、6原子%を越え
ると高温強度や靱性が劣化するので2〜6原子%に限定
する。
The alloy of the present invention contains P, S as impurities.
Although the following amounts may be included in the alloy of the present invention, there are no particular problems in terms of properties. P≦0.03%, S≦0.03% The appropriate amount of Ti and Nb MC type primary carbides contained in the present invention is uniformly dispersed in the matrix, refines the austenite grain size, and improves toughness and ductility. Hardness and high temperature strength can be increased without deterioration. For that purpose, M.C.
The carbide content is required to be at least 2 atomic %, but if it exceeds 6 atomic %, high temperature strength and toughness deteriorate, so it is limited to 2 to 6 atomic %.

【0021】[0021]

【実施例】表1に示す組成の合金を真空誘導溶解によっ
て10kgのインゴットにした後、熱間鍛造によって2
5mm角の棒材を作成した。これに1050℃×1時間
保持後水冷の固溶化処理と750℃×4時間後空冷の時
効処理を行ない、JIS結晶粒度番号、熱処理ままおよ
び800℃×200時間後の常温硬さ、常温および80
0℃の引張特性、800℃−35kgf/mm2負荷時
の回転曲げ疲労寿命、900℃−6kgf/mm2 負
荷時のクリープ破断寿命および、55%CaSO4 +
30%BaSO4 +10%Na2 SO4 +5%C
の混合硫化腐食塩中での870℃×80時間後の腐食減
量について測定した。これらの結果を表2に示す。
[Example] An alloy having the composition shown in Table 1 was made into a 10 kg ingot by vacuum induction melting, and then 2 kg was made by hot forging.
A 5 mm square bar material was created. This was subjected to solid solution treatment of water cooling after holding at 1050℃ for 1 hour and aging treatment of air cooling after 4 hours of 750℃.
Tensile properties at 0℃, rotating bending fatigue life at 800℃-35kgf/mm2 load, creep rupture life at 900℃-6kgf/mm2 load, and 55%CaSO4 +
30%BaSO4 +10%Na2 SO4 +5%C
The corrosion weight loss after 80 hours at 870°C in a mixed sulfurized corrosive salt was measured. These results are shown in Table 2.

【0022】[0022]

【表1】[Table 1]

【0023】[0023]

【表2】[Table 2]

【0024】ここで、No.1〜10は本発明合金、N
o.11〜17は比較合金、No.21と22は従来合
金である。本発明合金のうち、No.1と4は第1発明
合金、No.5と8は第2発明合金、No.2と3は第
3発明合金およびNo.6,7,9,10は第4発明合
金である。また従来合金のうちNo.21は特開平2−
47229号に開示される合金であり、No.22はN
CF751である。表1および表2より、本発明合金N
o.1〜10は、No.22のNCF751に比べ硬さ
、常温および800℃の引張強さ、800℃の疲労寿命
および900℃のクリープ破断寿命において全て上回る
特性を示すことがわかる。さらに本発明合金は従来合金
No.22に比べて耐硫化腐食性が大巾に改善されてい
ることがわかる。
[0024] Here, No. 1 to 10 are alloys of the present invention, N
o. Nos. 11 to 17 are comparative alloys, No. 21 and 22 are conventional alloys. Among the alloys of the present invention, No. 1 and 4 are the first invention alloys, No. 5 and 8 are the second invention alloys, No. 2 and 3 are the third invention alloy and No. 6, 7, 9, and 10 are the fourth invention alloys. Also, among conventional alloys, No. 21 is JP-A-2-
It is an alloy disclosed in No. 47229, and No. 22 is N
It is CF751. From Tables 1 and 2, the present invention alloy N
o. 1 to 10 are No. It can be seen that this material exhibits better properties than No. 22 NCF751 in hardness, tensile strength at room temperature and 800°C, fatigue life at 800°C, and creep rupture life at 900°C. Furthermore, the alloy of the present invention is the same as conventional alloy No. It can be seen that the sulfide corrosion resistance is greatly improved compared to No. 22.

【0025】また、従来合金No.21に対しても、本
発明合金の高温強度は全て上回る特性も示し、耐硫化腐
食性の点でもNo.21より良好な特性が得られている
。本発明合金No.5〜10の良好な800℃の引張伸
びは主にMg,Ca,YおよびREM添加の効果である
。比較合金のうちNo.11はTi当量が、本発明合金
よりも低いために800℃の引張強さと疲労寿命が本発
明合金に劣る。No.12はMo無添加の合金で本発明
合金に比べ高温強度と耐硫化腐食性が劣り、本発明合金
においてMoがいかに重要な効果を及ぼしているかがわ
かる。
[0025] Also, conventional alloy No. 21, the high temperature strength of the alloy of the present invention is superior to that of No. 21, and it is also No. 1 in terms of sulfide corrosion resistance. Better characteristics than No. 21 were obtained. Invention alloy No. The good tensile elongation at 800°C of 5 to 10 is mainly due to the addition of Mg, Ca, Y and REM. Among the comparative alloys, No. Since the Ti equivalent of No. 11 is lower than that of the alloy of the present invention, the tensile strength at 800° C. and fatigue life are inferior to the alloy of the present invention. No. No. 12 is an alloy with no addition of Mo and is inferior in high temperature strength and sulfide corrosion resistance compared to the alloy of the present invention, which shows how important the effect of Mo is on the alloy of the present invention.

【0026】No.13はMC炭化物の量が本発明合金
よりも少ないために結晶粒が粗くなり、クリープ破断寿
命は良好となるが、疲労寿命が著しく低下する。No.
14は過度のMC炭化物を含むために常温の伸びや高温
強度が全般に低下する。No.15は本発明合金に比べ
てCr量が高いために、α相が粒界に多量に析出し、8
00℃の引張強さのような短時間引張強度においては、
本発明合金よりわずかに低い程度であるが、高温疲労寿
命やクリープ破断寿命のような高温長時間強度の低下が
著しい。
[0026]No. In No. 13, the amount of MC carbides is smaller than that of the alloy of the present invention, so the crystal grains become coarse and the creep rupture life is good, but the fatigue life is significantly reduced. No.
Since No. 14 contains an excessive amount of MC carbide, the elongation at room temperature and the high temperature strength are generally lowered. No. Since No. 15 has a higher Cr content than the present alloy, a large amount of α phase precipitates at the grain boundaries, and No. 8
In short-time tensile strength such as 00℃ tensile strength,
Although the degree is slightly lower than that of the alloy of the present invention, the reduction in high-temperature long-term strength such as high-temperature fatigue life and creep rupture life is significant.

【0027】またNo.16はTi当量が高すぎるため
に熱間加工中に割れが発生し、硬さは大変高いが、他の
確性試験を実施できなかった。No.17は本発明合金
よりも高いMo量の合金で、No.16と同様、鍛造中
に割れが発生し、確性試験が出来なかった。
[0027] Also, No. In No. 16, cracks occurred during hot working because the Ti equivalent was too high, and although the hardness was very high, other confirmation tests could not be performed. No. No. 17 is an alloy with a higher amount of Mo than the alloy of the present invention. Similar to No. 16, cracks occurred during forging, making it impossible to conduct an accuracy test.

【0028】[0028]

【発明の効果】本発明によれば、70%以上のNiを含
むNCF751よりも優れた常温および高温の機械的性
質と耐硫化腐食性を有することから、自動車のエンジン
バルブ用合金に適し、その結果安価で高性能のエンジン
が製造可能となる。
Effects of the Invention According to the present invention, it is suitable as an alloy for automobile engine valves because it has mechanical properties at room temperature and high temperature and sulfide corrosion resistance that are superior to NCF751 containing 70% or more Ni. As a result, it becomes possible to manufacture low-cost, high-performance engines.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  重量百分率でC0.21〜0.65%
,Si0.5%以下,Mn1.0%以下,Ni40〜5
0%,Cr15%以上23.5%未満,Mo6.0%以
下,Al  1.0〜1.8%,Ti3.25%を越え
4.5%以下,Nb1.0%を越え2.5%以下(ただ
し、5.3≦1.8Al+Ti+0.5Nb−4C≦6
.5)、B0.001〜0.020%を含み、残部は不
純物を除き本質的にFeからなり、合金組織中に分散し
たMC炭化物を2〜6原子%含有することを特徴とする
エンジンバルブ用耐熱合金。
Claim 1: C0.21-0.65% by weight percentage
, Si0.5% or less, Mn1.0% or less, Ni40~5
0%, Cr 15% or more and less than 23.5%, Mo 6.0% or less, Al 1.0-1.8%, Ti more than 3.25% and less than 4.5%, Nb more than 1.0% and 2.5% Below (5.3≦1.8Al+Ti+0.5Nb-4C≦6
.. 5), for engine valves, containing 0.001 to 0.020% of B, the remainder essentially consisting of Fe excluding impurities, and containing 2 to 6 at.% of MC carbide dispersed in the alloy structure. Heat resistant alloy.
【請求項2】  重量百分率でC0.21〜0.65%
,Si0.5%以下,Mn1.0%以下,Ni40〜5
0%,Cr15%以上23.5%未満,Mo6.0%以
下,Al  1.0〜1.8%,Ti3.25%を越え
4.5%以下,Nb1.0%を越え2.5%以下(ただ
し、5.3≦1.8Al+Ti+0.5Nb−4C≦6
.5)、B0.001〜0.020%を含み、さらにM
g0.0005〜0.02%,Ca0.0005〜0.
02%,Y0.001〜0.2%およびREM0.00
1〜0.2%のうちの1種または2種以上を含有し、残
部は不純物を除き本質的にFeからなり、合金組織中に
分散したMC炭化物を2〜6原子%含有することを特徴
とするエンジンバルブ用耐熱合金。
Claim 2: C0.21-0.65% by weight percentage
, Si0.5% or less, Mn1.0% or less, Ni40~5
0%, Cr 15% or more and less than 23.5%, Mo 6.0% or less, Al 1.0-1.8%, Ti more than 3.25% and less than 4.5%, Nb more than 1.0% and 2.5% Below (5.3≦1.8Al+Ti+0.5Nb-4C≦6
.. 5), contains 0.001 to 0.020% of B, and further contains M
g0.0005-0.02%, Ca0.0005-0.
02%, Y0.001-0.2% and REM0.00
It is characterized by containing one or more of 1 to 0.2%, the remainder essentially consisting of Fe excluding impurities, and containing 2 to 6 at% of MC carbide dispersed in the alloy structure. Heat-resistant alloy for engine valves.
【請求項3】  重量百分率でC0.21〜0.65%
,Si0.5%以下,Mn1.0%以下,Ni40〜5
0%,Cr15%以上23.5%未満,Mo1.0〜4
.5%,Al  1.0〜1.8%,Ti3.25%を
越え4.5%以下,Nb1.0%を越え2.5%以下(
ただし、5.3≦1.8Al+Ti+0.5Nb−4C
≦6.5)、B0.001〜0.020%を含み、残部
は不純物を除き本質的にFeからなり、合金組織中に分
散したMC炭化物を2〜6原子%含有することを特徴と
するエンジンバルブ用耐熱合金。
Claim 3: C0.21-0.65% by weight percentage
, Si0.5% or less, Mn1.0% or less, Ni40~5
0%, Cr15% or more and less than 23.5%, Mo1.0-4
.. 5%, Al 1.0-1.8%, Ti over 3.25% and up to 4.5%, Nb over 1.0% and up to 2.5% (
However, 5.3≦1.8Al+Ti+0.5Nb-4C
≦6.5), contains 0.001 to 0.020% of B, the remainder essentially consists of Fe excluding impurities, and contains 2 to 6 at.% of MC carbide dispersed in the alloy structure. Heat-resistant alloy for engine valves.
【請求項4】  重量百分率でC0.21〜0.65%
,Si0.5%以下,Mn1.0%以下,Ni40〜5
0%,Cr15%以上23.5%未満,Mo1.0〜4
.5%,Al  1.0〜1.8%,Ti3.25%を
越え4.5%以下,Nb1.0%を越え2.5%以下(
ただし、5.3≦1.8Al+Ti+0.5Nb−4C
≦6.5)、B0.001〜0.020%を含み、さら
にMg0.0005〜0.02%,Ca0.0005〜
0.02%,Y0.001〜0.2%およびREM0.
001〜0.2%のうちの1種または2種以上を含有し
、残部は不純物を除き本質的にFeからなり、合金組織
中に分散したMC炭化物を2〜6原子%含有することを
特徴とするエンジンバルブ用耐熱合金。
Claim 4: C0.21-0.65% by weight percentage
, Si0.5% or less, Mn1.0% or less, Ni40~5
0%, Cr15% or more and less than 23.5%, Mo1.0-4
.. 5%, Al 1.0-1.8%, Ti over 3.25% and up to 4.5%, Nb over 1.0% and up to 2.5% (
However, 5.3≦1.8Al+Ti+0.5Nb-4C
≦6.5), B0.001~0.020%, further Mg0.0005~0.02%, Ca0.0005~
0.02%, Y0.001-0.2% and REM0.
001 to 0.2%, the remainder essentially consists of Fe excluding impurities, and contains 2 to 6 atomic percent of MC carbide dispersed in the alloy structure. Heat-resistant alloy for engine valves.
JP9483391A 1991-04-01 1991-04-01 Heat resistant alloy for engine valve Pending JPH04304337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9483391A JPH04304337A (en) 1991-04-01 1991-04-01 Heat resistant alloy for engine valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9483391A JPH04304337A (en) 1991-04-01 1991-04-01 Heat resistant alloy for engine valve

Publications (1)

Publication Number Publication Date
JPH04304337A true JPH04304337A (en) 1992-10-27

Family

ID=14121049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9483391A Pending JPH04304337A (en) 1991-04-01 1991-04-01 Heat resistant alloy for engine valve

Country Status (1)

Country Link
JP (1) JPH04304337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016661A3 (en) * 2000-08-24 2002-06-06 Inco Alloys Int Low cost, corrosion and heat resistant alloy for diesel engine valves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016661A3 (en) * 2000-08-24 2002-06-06 Inco Alloys Int Low cost, corrosion and heat resistant alloy for diesel engine valves

Similar Documents

Publication Publication Date Title
US3969109A (en) Oxidation and sulfidation resistant austenitic stainless steel
EP0639654B1 (en) Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
JPS62227068A (en) Austenite steel and its production
JP3905034B2 (en) Low cost, corrosion resistant and heat resistant alloy for diesel engine valves
US20040184946A1 (en) High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
US4631169A (en) Alloys for exhaust valves
US4767597A (en) Heat-resistant alloy
US4871512A (en) Alloys for exhaust valve
JP3412234B2 (en) Alloy for exhaust valve
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JPH03166342A (en) Heat-resistant steel for engine valve
US2891858A (en) Single phase austenitic alloy steel
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JPH04304337A (en) Heat resistant alloy for engine valve
JP3959659B2 (en) Heat resistant alloy for engine valves
JP3424314B2 (en) Heat resistant steel
US2523917A (en) Age hardening austenitic alloy steels
JPH03177543A (en) Valve steel
JPH04191344A (en) Heat resisting alloy for valve
JPH04304338A (en) Heat resistant alloy for engine valve
JPS6046353A (en) Heat resistant steel
JP3068868B2 (en) Heat resistant steel for engine valves
JPH10130790A (en) Heat resistant alloy excellent in cold workability and overaging characteristic