JPH04303979A - Magnetoresistance element - Google Patents

Magnetoresistance element

Info

Publication number
JPH04303979A
JPH04303979A JP3093393A JP9339391A JPH04303979A JP H04303979 A JPH04303979 A JP H04303979A JP 3093393 A JP3093393 A JP 3093393A JP 9339391 A JP9339391 A JP 9339391A JP H04303979 A JPH04303979 A JP H04303979A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
pattern
magnetoresistive element
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3093393A
Other languages
Japanese (ja)
Inventor
Makoto Tsukahara
誠 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3093393A priority Critical patent/JPH04303979A/en
Publication of JPH04303979A publication Critical patent/JPH04303979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To provide a magnetoresistance element with an improved magnetoresistance effect, a high sensitivity, and a high output. CONSTITUTION:A title item is provided with a base 9 consisting of an insulation material, a pattern 8 consisting of a magnetoresistance film 81 which is formed on the base 9, and an electrode 7 which is electrically connected to the pattern 8. Then an auxiliary magnetic pole 10 consisting of a thin-film high permeability film 1 is formed on the entire surface of the base 9 and the pattern 8, thus enabling a diamagnetic field coefficient to be reduced and a sensitivity in a low magnetic field also to be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,磁気抵抗効果に優れ,
高感度で高出力の磁気抵抗素子に関する。
[Industrial Application Field] The present invention has excellent magnetoresistive effect and
The present invention relates to highly sensitive and high output magnetoresistive elements.

【0002】0002

【従来技術】磁気抵抗素子は,異方性磁気効果,即ち強
磁性金属において,磁化方向と電流方向のなす角度によ
って,電気抵抗が異方的に変化する現像を応用したもの
である。磁気抵抗素子は,図8に示すごとく,石英等の
絶縁材料からなる基板9と,該基板9上に形成されたI
nSb,Ni−Co等の磁気抵抗効果の大きい磁気抵抗
膜81からなるくし形のパターン8と,該パターン8と
電気的に接続した電極7とよりなる。上記磁気抵抗効果
は,磁場が加えられることにより,電流の流れている磁
気抵抗膜81に生じた抵抗のことである。
2. Description of the Related Art Magnetoresistive elements utilize the anisotropic magnetic effect, that is, the development in which the electrical resistance of a ferromagnetic metal changes anisotropically depending on the angle formed between the magnetization direction and the current direction. As shown in FIG. 8, the magnetoresistive element includes a substrate 9 made of an insulating material such as quartz, and an I layer formed on the substrate 9.
It consists of a comb-shaped pattern 8 made of a magnetoresistive film 81 having a large magnetoresistive effect, such as nSb or Ni-Co, and an electrode 7 electrically connected to the pattern 8. The above-mentioned magnetoresistive effect is the resistance generated in the magnetoresistive film 81 through which current flows due to the application of a magnetic field.

【0003】また,磁気抵抗素子は,磁気抵抗効果を利
用した磁気センサであるため,抵抗値が磁場方向に変化
する磁気異方性効果も有する。ところで,該磁気抵抗素
子の磁場と抵抗変化率との関係は,磁気抵抗素子に平行
な磁場が働く時には抵抗変化率が最大となり,一方磁気
抵抗素子に垂直な磁場が働く時には抵抗変化率が最小と
なる。そこで,磁気抵抗素子は,この特性を利用してマ
グネットロータと組み合わせ,回転数を電気信号などと
して検出するスピードメータ用の車速センサ,VTR(
ビデオ)用の回転センサなどとして用いられている。
Furthermore, since the magnetoresistive element is a magnetic sensor that utilizes the magnetoresistive effect, it also has a magnetic anisotropy effect in which the resistance value changes in the direction of the magnetic field. By the way, the relationship between the magnetic field and the rate of change in resistance of the magnetoresistive element is such that when a magnetic field parallel to the magnetoresistive element acts, the rate of change in resistance is maximum, while when a magnetic field perpendicular to the element acts, the rate of change in resistance is the minimum. becomes. Therefore, magnetoresistive elements are used in combination with magnetic rotors to utilize this property, and are used in vehicle speed sensors for speedometers and VTRs (VTRs) to detect the rotational speed as an electrical signal.
It is used as a rotation sensor for video).

【0004】0004

【解決しようとする課題】しかしながら,上記従来技術
には,次の問題点がある。即ち,図8に示すごとく,上
記磁気抵抗膜81からなるパターン8は,くし形状を有
し,各列間のストライプ幅Wは極めて狭い。そのため,
磁気抵抗素子は,反磁場係数が大きくなる。そして,磁
気抵抗素子は,低磁場において磁気抵抗効果,感度が低
下し,高感度で高出力のものが得られないことになる。 上記反磁場係数とは,磁性体の磁化の強さと反磁場の強
さとの関係を与える係数のことである。本発明は,上記
従来の問題点に鑑みてなされたもので,磁気抵抗効果に
優れ,高感度で高出力の磁気抵抗素子を提供しようとす
るものである。
[Problem to be Solved] However, the above-mentioned conventional technology has the following problems. That is, as shown in FIG. 8, the pattern 8 made of the magnetoresistive film 81 has a comb shape, and the stripe width W between each row is extremely narrow. Therefore,
Magnetoresistive elements have a large demagnetizing field coefficient. The magnetoresistive effect and sensitivity of the magnetoresistive element decrease in low magnetic fields, making it impossible to obtain high sensitivity and high output. The above-mentioned demagnetizing field coefficient is a coefficient that gives the relationship between the strength of magnetization of a magnetic body and the strength of the demagnetizing field. The present invention has been made in view of the above-mentioned conventional problems, and aims to provide a magnetoresistive element with excellent magnetoresistive effect, high sensitivity, and high output.

【0005】[0005]

【課題の解決手段】本発明は,絶縁材料からなる基板と
,該基板上に形成した磁気抵抗膜からなるパターンと,
該パターンに接続した電極とを有する磁気抵抗素子にお
いて,上記磁気抵抗膜のいずれか一方の表面全体に薄膜
状の高透磁率膜からなる補助磁極を形成したことを特徴
とする磁気抵抗素子にある。本発明において最も注目す
べきことは,上記磁気抵抗膜のいずれか一方の表面,即
ち表面側の全体か,裏面側の全体に,薄膜状の高透磁率
膜からなる補助磁極を形成したことである。上記薄膜状
の高透磁率膜としては,例えば膜厚さが0.02〜0.
10μmで平板(ベタ)状の磁気誘導容量の大きい膜が
ある。そして高透磁率膜の材料としては,CoFe2 
O4 ,Li0.5 Fe2.5 O4 ,ZnFe2
 O4 ,FeSi,FeAl,FeAlSi,MnF
e2 O4 ,パーマロイ(78.5%Ni−Fe)合
金等がある。
[Means for Solving the Problems] The present invention includes a substrate made of an insulating material, a pattern made of a magnetoresistive film formed on the substrate,
A magnetoresistive element having an electrode connected to the pattern, characterized in that an auxiliary magnetic pole made of a thin film-like high magnetic permeability film is formed on the entire surface of one of the magnetoresistive films. . The most noteworthy feature of the present invention is that an auxiliary magnetic pole made of a thin film-like high magnetic permeability film is formed on one of the surfaces of the magnetoresistive film, that is, the entire front side or the entire back side. be. The thin film-like high magnetic permeability film has a film thickness of, for example, 0.02 to 0.
There is a film with a large magnetic induction capacity that is 10 μm thick and has a flat plate shape. The material for the high magnetic permeability film is CoFe2
O4, Li0.5 Fe2.5 O4, ZnFe2
O4, FeSi, FeAl, FeAlSi, MnF
e2 O4, permalloy (78.5% Ni-Fe) alloy, etc.

【0006】また,上記基板としては,例えば石英(S
iO2 ),ガラス,アルミナ等からなる絶縁材料があ
る。また,上記磁気抵抗膜としては,異方性,磁気抵抗
効果の大きいNiCo,NiFe,InSn等の金属膜
がある。また,上記電極としては,例えばFeNi,F
e,Ni,Al等の金属膜がある。そして,上記磁気抵
抗素子を製造するに当たっては,上記基板上に,磁気抵
抗膜,高透磁率膜,絶縁膜,電極膜を形成する。そこで
,真空蒸着,スパッタリング等の薄膜形成技術により,
まず上記磁気抵抗膜,高透磁率膜のいずれかを形成する
。即ち,上記磁気抵抗膜については,上記薄膜形成技術
により,ベタ状の薄膜を形成した後,レジスト膜形成,
露光,現像,エッチング加工,剥膜というパターン形成
の一連の技術により,例えばくし形状のパターンを形成
する。
[0006] Furthermore, as the substrate, for example, quartz (S
There are insulating materials made of iO2), glass, alumina, etc. Further, as the above-mentioned magnetoresistive film, there are metal films such as NiCo, NiFe, and InSn, which have large anisotropy and magnetoresistive effect. Further, as the above-mentioned electrode, for example, FeNi, F
There are metal films such as e, Ni, and Al. In manufacturing the magnetoresistive element, a magnetoresistive film, a high magnetic permeability film, an insulating film, and an electrode film are formed on the substrate. Therefore, thin film formation techniques such as vacuum evaporation and sputtering are used to
First, either the above magnetoresistive film or high magnetic permeability film is formed. That is, for the above magnetoresistive film, after forming a solid thin film using the above thin film forming technique, forming a resist film,
For example, a comb-shaped pattern is formed using a series of pattern forming techniques including exposure, development, etching, and film peeling.

【0007】一方,上記高透磁率膜については,上記磁
気抵抗膜のごとくパターンを形成することなく,平板(
ベタ)状の薄膜状態に形成する。また,該絶縁膜は,上
記高透磁率膜上に,上記薄膜形成技術により形成する。 そして,該絶縁膜上に,上記磁気抵抗膜からなるパター
ンを形成する。また,必要に応じて,該パターン上に保
護膜を形成する。そして,上記磁気抵抗膜からなるパタ
ーンの両端には,上記薄膜形成技術により,電極膜を形
成する。該電極膜は,上記磁気抵抗膜と電気的に接続す
る。また,上記基板は,真空蒸着やスパッタリングを行
うに当たり,蒸着源,スパッタリングターゲットに対し
て斜めに置くことができる。また,基板の背後に磁極を
配置して成膜し,長手方向が磁化容易軸を形成するよう
,基板を置くことが好ましい。
On the other hand, regarding the above-mentioned high magnetic permeability film, unlike the above-mentioned magnetoresistive film, a flat plate (
It is formed into a solid thin film. Further, the insulating film is formed on the high magnetic permeability film by the thin film forming technique described above. Then, a pattern made of the magnetoresistive film is formed on the insulating film. Further, a protective film is formed on the pattern as necessary. Then, electrode films are formed on both ends of the pattern made of the magnetoresistive film using the thin film forming technique described above. The electrode film is electrically connected to the magnetoresistive film. Furthermore, the substrate can be placed obliquely to the evaporation source and sputtering target when performing vacuum evaporation or sputtering. Further, it is preferable that the film is formed with a magnetic pole placed behind the substrate, and that the substrate is placed so that the longitudinal direction forms the axis of easy magnetization.

【0008】[0008]

【作用及び効果】本発明にかかる磁気抵抗素子において
は,上記基板と磁気抵抗膜のいずれか一方の表面に薄膜
状の高透磁率膜からなる補助磁極を形成してある。該補
助磁極は,磁気誘導効果及び磁気抵抗効果が高くなるよ
う,高透磁率膜により構成する。そのため,上記補助磁
極は,上記磁気抵抗膜からなるパターンに対して,反磁
場係数を下げるように働く。これにより,上記補助磁極
は低磁場においても,磁気抵抗素子の磁気抵抗効果,感
度を高めることになる。したがって,上記補助磁極は,
低磁場において,上記パターンがストライプ幅の狭いく
し形状を有していても,抵抗変化率を高め感度を高める
と共に,高い出力を出すよう働く。以上のごとく,本発
明によれば,磁気抵抗効果に優れ,高感度で高出力の磁
気抵抗素子を提供することができる。
[Operations and Effects] In the magnetoresistive element according to the present invention, an auxiliary magnetic pole made of a thin film with high magnetic permeability is formed on the surface of either the substrate or the magnetoresistive film. The auxiliary magnetic pole is made of a high magnetic permeability film so as to enhance the magnetic induction effect and the magnetoresistive effect. Therefore, the auxiliary magnetic pole acts to lower the demagnetizing field coefficient with respect to the pattern made of the magnetoresistive film. Thereby, the auxiliary magnetic pole increases the magnetoresistive effect and sensitivity of the magnetoresistive element even in a low magnetic field. Therefore, the above auxiliary magnetic pole is
In a low magnetic field, even if the pattern has a comb shape with a narrow stripe width, it works to increase the rate of change in resistance, increase sensitivity, and produce high output. As described above, according to the present invention, it is possible to provide a magnetoresistive element with excellent magnetoresistive effect, high sensitivity, and high output.

【0009】[0009]

【実施例】実施例1 本発明の実施例1にかかる磁気抵抗素子につき,図1〜
図4を用いて説明する。即ち,本例の磁気抵抗素子は,
図1,図2に示すごとく,絶縁材料からなる基板9と,
該基板9上に形成した磁気抵抗膜81からなるくし形状
のパターン8と,該パターン8に接続した電極7とを有
する。そして,図1に示すごとく,上記基板9とパター
ン8の表面にベタ状で薄膜状の高透磁率膜1を形成して
ある。上記絶縁材料からなる基板9としては,石英基板
を用いる。また,上記磁気抵抗膜81は,厚みが100
μmのNi−Co膜よりなる。
[Example] Example 1 Regarding the magnetoresistive element according to Example 1 of the present invention, FIGS.
This will be explained using FIG. 4. That is, the magnetoresistive element of this example is
As shown in FIGS. 1 and 2, a substrate 9 made of an insulating material,
It has a comb-shaped pattern 8 made of a magnetoresistive film 81 formed on the substrate 9, and an electrode 7 connected to the pattern 8. As shown in FIG. 1, a thin high magnetic permeability film 1 is formed on the surfaces of the substrate 9 and the pattern 8. A quartz substrate is used as the substrate 9 made of the above-mentioned insulating material. Further, the magnetoresistive film 81 has a thickness of 100 mm.
It consists of a μm Ni-Co film.

【0010】上記高透磁率膜1は,厚みが60nm膜よ
りなる。また,上記電極7は,厚みが200nmのNi
とFeの2重層膜よりなる。次に,上記磁気抵抗素子の
製造方法について,図3を用いて説明する。図3は,磁
気抵抗素子の製造手順を示す工程説明図である。まず,
石英(SiO2 )からなる基板9上に,真空蒸着によ
り,厚みが約100nmのベタ状で薄膜状のNi−Co
からなる磁気抵抗膜81を形成する。この時,蒸着源(
図示略)に対し,上記基板9を斜めに置く。これにより
,図2に示すごとく,くし形状のパターン8の長手方向
Bに磁化容易軸を形成することになる。
The high magnetic permeability film 1 is a film having a thickness of 60 nm. Further, the electrode 7 is made of Ni with a thickness of 200 nm.
It consists of a double layer film of and Fe. Next, a method for manufacturing the above magnetoresistive element will be explained using FIG. 3. FIG. 3 is a process explanatory diagram showing the manufacturing procedure of the magnetoresistive element. first,
A solid thin film of Ni-Co with a thickness of about 100 nm is deposited on a substrate 9 made of quartz (SiO2) by vacuum evaporation.
A magnetoresistive film 81 is formed. At this time, the evaporation source (
(not shown), the substrate 9 is placed diagonally. As a result, as shown in FIG. 2, an axis of easy magnetization is formed in the longitudinal direction B of the comb-shaped pattern 8.

【0011】次に,上記磁気抵抗膜81上に,ドライフ
ィルムからなるフォトレジスト液(図示略)を塗布し,
硬化させる。次いで,図2に示すごとく,くし形状のパ
ターン8を形成するに当たり,上記レジスト膜を露光し
,現像する。そして,エッチング液ガスを用いて,くし
形状のパターン8を選択的にエッチングにより形成する
。その後,上記レジスト膜を剥離し,パターン形成を完
了する。なお,上記パターン8は,ストライプ幅Wがそ
れぞれ約20μmである。次いで,図1に示すごとく,
電極7を形成する部分を,SUS薄板71でマスキング
を施す。そして,マスキングを施した部分以外の基板9
の表面に,高比抵抗率のソフトフェライトであるCoF
e2 O4 の高透磁率膜1を薄膜状に形成する。該高
透磁率膜1は,上記くし形状のパターン8及びそれ以外
の基板9上の一面に,ベタ状に形成する。
Next, a photoresist solution (not shown) consisting of a dry film is applied onto the magnetoresistive film 81.
Let it harden. Next, as shown in FIG. 2, in order to form a comb-shaped pattern 8, the resist film is exposed and developed. Then, a comb-shaped pattern 8 is selectively etched using an etching liquid gas. Thereafter, the resist film is peeled off to complete pattern formation. Note that the pattern 8 has a stripe width W of approximately 20 μm. Next, as shown in Figure 1,
The portion where the electrode 7 will be formed is masked with a thin SUS plate 71. Then, the board 9 other than the masked part is
CoF, a soft ferrite with high resistivity, is deposited on the surface of
A high magnetic permeability film 1 of e2O4 is formed into a thin film. The high magnetic permeability film 1 is formed in a solid manner over the comb-shaped pattern 8 and the other surface of the substrate 9.

【0012】次に,上記電極7以外の部分に,SUS薄
板を用いてマスキングを施す。そして,マスキングを施
した部分,即ち電極形成部分に,NiとFeとの2重層
膜からなる電極7を形成する。これにより,該電極7は
,上記パターン8の両端部と電気的に接続される。また
,該電極7は,NiとFeの2重層よりなるため,半田
が浸透しない。次に,図9,図10を用いて,比較例1
,2につき説明する。まず,図9に示すごとく,比較例
1としての磁気抵抗素子は,上記磁気抵抗膜81の間に
くし形状に高透磁率膜51を形成したものである。
Next, parts other than the electrode 7 are masked using a thin SUS plate. Then, an electrode 7 made of a double layer film of Ni and Fe is formed in the masked part, that is, in the electrode forming part. Thereby, the electrode 7 is electrically connected to both ends of the pattern 8. Furthermore, since the electrode 7 is made of a double layer of Ni and Fe, solder does not penetrate therethrough. Next, using FIGS. 9 and 10, Comparative Example 1
, 2 will be explained. First, as shown in FIG. 9, a magnetoresistive element as Comparative Example 1 has a comb-shaped high magnetic permeability film 51 formed between the magnetoresistive films 81.

【0013】しかし,上記高透磁率膜51は,くし形状
の磁気抵抗膜81に隣接して形成させるため,均一な膜
形成が困難である。これは,該磁気抵抗膜81,高透磁
率膜51のいずれか一方のくし形状のパターンをまず形
成した後,次にこの間に他のパターンを形成するために
,均一にフォトレジストを塗布することが困難なためで
ある。その他は,実施例1と同様である。次に,図10
に示すごとく,比較例2としての磁気抵抗素子は,材料
及び製法については,上記従来例(図8)に示したもの
と同様である。
However, since the high magnetic permeability film 51 is formed adjacent to the comb-shaped magnetoresistive film 81, it is difficult to form a uniform film. This is done by first forming a comb-shaped pattern on either the magnetoresistive film 81 or the high magnetic permeability film 51, and then uniformly applying photoresist to form the other pattern in the meantime. This is because it is difficult. The rest is the same as in the first embodiment. Next, Figure 10
As shown in FIG. 8, the material and manufacturing method of the magnetoresistive element as Comparative Example 2 are the same as those shown in the conventional example (FIG. 8).

【0014】そして,上記本発明の実施例1の各磁気抵
抗素子につき,有効磁気抵抗効果を評価するために,磁
場(H)と抵抗値(R)との関係を測定した。また,こ
の結果を,図5のグラフに示す。図5に示すごとく,実
施例1は,低磁場において,Rmax(感度)が高く,
磁気抵抗効果曲線がシャープである。以上の結果から明
らかなごとく,実施例1の磁気抵抗素子は,磁気抵抗効
果が顕著に向上している。これは,反磁場係数が小さく
なることによる。
For each magnetoresistive element of Example 1 of the present invention, the relationship between the magnetic field (H) and the resistance value (R) was measured in order to evaluate the effective magnetoresistive effect. Moreover, this result is shown in the graph of FIG. As shown in Figure 5, Example 1 has a high Rmax (sensitivity) in a low magnetic field,
The magnetoresistive effect curve is sharp. As is clear from the above results, the magnetoresistive element of Example 1 has significantly improved magnetoresistive effect. This is because the demagnetizing field coefficient becomes smaller.

【0015】即ち,本例の磁気抵抗素子においては,上
記磁気抵抗膜81の表面全体にベタ状で薄膜状の高透磁
率膜1からなる補助磁極を形成してある。該補助磁極は
,磁気誘導効果及び磁気抵抗効果が高くなるよう,高透
磁率膜1により構成する。そのため,上記補助磁極は,
上記磁気抵抗膜8からなるパターン8に対して,反磁場
係数を下げるように働く。これにより,上記補助磁極は
低磁場においても磁気抵抗素子の磁気抵抗効果,感度を
高めることになる。したがって,上記補助磁極は,低磁
場において,上記パターンがストライプ幅の狭いくし形
状を有していても,抵抗変化率を高め感度を高めると共
に,高い出力を出すよう働く。
That is, in the magnetoresistive element of this example, an auxiliary magnetic pole made of a solid, thin film-like high magnetic permeability film 1 is formed on the entire surface of the magnetoresistive film 81. The auxiliary magnetic pole is constituted by a high magnetic permeability film 1 so as to enhance the magnetic induction effect and the magnetoresistive effect. Therefore, the above auxiliary magnetic pole is
The pattern 8 made of the magnetoresistive film 8 acts to lower the demagnetizing field coefficient. As a result, the auxiliary magnetic pole increases the magnetoresistive effect and sensitivity of the magnetoresistive element even in a low magnetic field. Therefore, in a low magnetic field, even if the pattern has a comb shape with a narrow stripe width, the auxiliary magnetic pole increases the rate of resistance change, increases the sensitivity, and works to output high output.

【0016】次に,図4は,磁場Hの大きさと抵抗値R
との関係を有するグラフである。このグラフにおいて,
磁場H=0で,抵抗値R=0(Ro)の状態を示す。そ
して,磁場Hを徐々に増加してゆくと,抵抗値Rは一旦
上昇し,やがて最大値Rmaxとなる。ここで,磁気抵
抗素子の特性に鑑み,H=0でRmaxとなることが理
想的である。しかし,実際には,磁気抵抗素子のスピン
・ピン止め効果により,H=0ではRmaxとならない
。ところが,実施例1の磁気抵抗素子においては,H=
0でRmaxとなる。これは,上記磁気抵抗膜81上に
,ベタ状で薄膜状の高透磁率膜1を形成した磁気抵抗効
果によるものである。
Next, FIG. 4 shows the magnitude of the magnetic field H and the resistance value R.
This is a graph that has a relationship with . In this graph,
A state in which the magnetic field H=0 and the resistance value R=0 (Ro) is shown. Then, when the magnetic field H is gradually increased, the resistance value R increases once and eventually reaches the maximum value Rmax. Here, in view of the characteristics of the magnetoresistive element, it is ideal that H=0 and Rmax. However, in reality, Rmax is not achieved when H=0 due to the spin pinning effect of the magnetoresistive element. However, in the magnetoresistive element of Example 1, H=
0 is Rmax. This is due to the magnetoresistive effect produced by forming the solid, thin, high magnetic permeability film 1 on the magnetoresistive film 81.

【0017】つまり,高比抵抗率を有する高透磁率膜1
の形成により,磁場を変化させた場合の有効な磁場変化
が大きくなる。これに起因して反磁場係数が低下する。 そのため,低磁場おにけるRmax(感度)が高くなる
のである。そこで,図4に示すごとく,実施例1は,反
磁場係数が低減し,低磁場における感度が高くなること
が知られる。
In other words, the high magnetic permeability film 1 having high specific resistivity
The formation of , increases the effective magnetic field change when changing the magnetic field. Due to this, the demagnetizing field coefficient decreases. Therefore, Rmax (sensitivity) in a low magnetic field increases. Therefore, as shown in FIG. 4, it is known that in Example 1, the demagnetizing field coefficient is reduced and the sensitivity in low magnetic fields is increased.

【0018】即ち,実施例1の磁気抵抗素子においては
,図1に示すごとく,パターン8は,ストライプ幅Wが
狭い,くし形状を有する。そのため,反磁場係数は一般
に大きくなる。しかし,実施例1の磁気抵抗素子におい
ては,図1に示すごとく,上記くし形状のパターン8に
隣接して,基板9の平面上91にも比較的反磁場係数の
小さい,ベタ状で薄膜状の高透磁率膜11が形成してあ
る。そのため,これにより,磁気抵抗素子全体の反磁場
係数を低減することができる。また,ヒステリシスが少
なくなる。したがって,実施例1の磁気抵抗素子は,低
磁場において抵抗変化率が小さく,高感度で高出力とな
る。また,上記高透磁率膜1は,磁気抵抗膜81からな
るパターン8の保護膜としての機能を有する。また,高
透磁率膜1はくし形状にパターンニングしないため,上
記比較例1に比較して,製造が簡単になる。また,上記
比較例2のごとく,低磁場において,Rmax(感度)
が低くなることがない。
That is, in the magnetoresistive element of Example 1, as shown in FIG. 1, the pattern 8 has a comb shape with a narrow stripe width W. Therefore, the demagnetizing field coefficient generally becomes large. However, in the magnetoresistive element of Example 1, as shown in FIG. A high magnetic permeability film 11 is formed. Therefore, this makes it possible to reduce the demagnetizing field coefficient of the entire magnetoresistive element. Also, hysteresis is reduced. Therefore, the magnetoresistive element of Example 1 has a small resistance change rate in a low magnetic field, and has high sensitivity and high output. Further, the high magnetic permeability film 1 has a function as a protective film for the pattern 8 made of the magnetoresistive film 81. Furthermore, since the high magnetic permeability film 1 is not patterned into a comb shape, manufacturing is easier than in Comparative Example 1 described above. In addition, as in Comparative Example 2 above, in a low magnetic field, Rmax (sensitivity)
never becomes low.

【0019】実施例2 本例の磁気抵抗素子は,図6に示すごとく,基板9の表
面にベタ状で薄膜状の高透磁率膜1を形成し,その表面
に絶縁膜2を形成し,その表面にくし形状のパターン8
を形成したものである。また,該パターン8上には,保
護膜4を形成してある。その他は,上記実施例1の磁気
抵抗素子と同様である。上記磁気抵抗素子は,次のよう
にして製造する。即ち,図6,図7に示すごとく,まず
基板9上に,フェライト膜(Li0.5 Fe2.5 
O4 )からなる,ベタ状で薄膜状の高透磁率膜12を
形成する。
Embodiment 2 As shown in FIG. 6, the magnetoresistive element of this embodiment includes a solid thin high magnetic permeability film 1 formed on the surface of a substrate 9, an insulating film 2 formed on the surface, Comb-shaped pattern 8 on its surface
was formed. Further, a protective film 4 is formed on the pattern 8. The rest is the same as the magnetoresistive element of Example 1 above. The above magnetoresistive element is manufactured as follows. That is, as shown in FIGS. 6 and 7, a ferrite film (Li0.5 Fe2.5
A solid, thin, high magnetic permeability film 12 made of O4) is formed.

【0020】次に,図6に示すごとく,上記高透磁率膜
12上に,絶縁膜2を形成する。次いで,該絶縁膜2上
に,真空中でベタ状で薄膜状の磁気抵抗膜81を形成す
る。これにより,磁気抵抗膜81にピンホールが生ずる
ことを防ぐ。そして,図7に示すごとく,上記実施例1
と同様に,その後,パターン形成のために,上記磁気抵
抗膜上に,紫外線硬化樹脂からなるレジスト膜を形成し
,該レジスト膜を露光し,現像する。次いで,該レジス
ト膜を選択的にエッチング液(塩化第2鉄の水溶液)に
よりエッチングして,図6に示すごとく,パターン8を
形成し,次いで剥膜する。これにより,くし形状パター
ンを有する磁気抵抗膜81を形成する。なお,上記エッ
チング液は,上記絶縁膜2と反応しないものを用いる。
Next, as shown in FIG. 6, an insulating film 2 is formed on the high magnetic permeability film 12. Next, a solid thin magnetoresistive film 81 is formed on the insulating film 2 in a vacuum. This prevents pinholes from forming in the magnetoresistive film 81. As shown in FIG. 7, the above Example 1
Similarly, a resist film made of ultraviolet curing resin is then formed on the magnetoresistive film to form a pattern, and the resist film is exposed and developed. Next, the resist film is selectively etched with an etching solution (ferric chloride aqueous solution) to form a pattern 8 as shown in FIG. 6, and then the film is peeled off. As a result, a magnetoresistive film 81 having a comb-shaped pattern is formed. Note that the etching solution used is one that does not react with the insulating film 2.

【0021】次に,上記パターン81上には,Al2 
O3 からなる保護膜4を,スパッタリングにより形成
する。そして,上記パターン8の両端部には,NiとF
eとの2重層からなる電極7を形成する。これにより,
該電極7には,半田が浸透しなくなる。本例においては
,上記パターン8と高透磁率膜12との間に,絶縁膜2
が形成してある。そのため,両者間でリークを生ずるこ
とがない。また,上記パターン81上には,保護膜4が
形成してある。そのため,上記パターン8は耐久性に優
れる。その他,実施例1と同様の効果を得ることができ
る。
Next, on the pattern 81, Al2
A protective film 4 made of O3 is formed by sputtering. At both ends of the pattern 8, Ni and F
An electrode 7 consisting of a double layer with e is formed. As a result,
Solder will no longer penetrate into the electrode 7. In this example, an insulating film 2 is placed between the pattern 8 and the high permeability film 12.
is formed. Therefore, no leakage occurs between the two. Further, a protective film 4 is formed on the pattern 81. Therefore, the pattern 8 has excellent durability. Other effects similar to those of the first embodiment can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例1にかかる磁気抵抗素子(図2)のA−
A矢視断面図。
FIG. 1 A- of the magnetoresistive element (FIG. 2) according to Example 1
A sectional view taken along arrow A.

【図2】実施例1にかかる磁気抵抗素子の平面図。FIG. 2 is a plan view of the magnetoresistive element according to Example 1.

【図3】実施例1の磁気抵抗素子の製造手順を示す工程
説明図。
FIG. 3 is a process explanatory diagram showing the manufacturing procedure of the magnetoresistive element of Example 1.

【図4】実施例1における磁場の強さと抵抗値との関係
を示すグラフ。
FIG. 4 is a graph showing the relationship between magnetic field strength and resistance value in Example 1.

【図5】実施例1における磁場の強さと抵抗値との関係
を示すグラフ。
FIG. 5 is a graph showing the relationship between magnetic field strength and resistance value in Example 1.

【図6】実施例2にかかる磁気抵抗素子の断面図。FIG. 6 is a cross-sectional view of a magnetoresistive element according to Example 2.

【図7】実施例2の磁気抵抗素子の製造手順を示す工程
説明図。
FIG. 7 is a process explanatory diagram showing the manufacturing procedure of the magnetoresistive element of Example 2.

【図8】従来例の磁気抵抗素子の平面図。FIG. 8 is a plan view of a conventional magnetoresistive element.

【図9】比較例1としての磁気抵抗素子の断面図。FIG. 9 is a cross-sectional view of a magnetoresistive element as Comparative Example 1.

【図10】比較例2としての磁気抵抗素子の断面図。FIG. 10 is a cross-sectional view of a magnetoresistive element as Comparative Example 2.

【符号の説明】[Explanation of symbols]

1,12...高透磁率膜, 10...補助磁極, 2...絶縁膜, 4...保護膜, 7...電極, 8...パターン, 81...磁気抵抗膜, 9...基板, W...ストライプ幅, 1,12. .. .. High permeability film, 10. .. .. Auxiliary pole, 2. .. .. Insulating film, 4. .. .. Protective film, 7. .. .. electrode, 8. .. .. pattern, 81. .. .. magnetoresistive film, 9. .. .. substrate, W. .. .. stripe width,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  絶縁材料からなる基板と,該基板上に
形成した磁気抵抗膜からなるパターンと,該パターンに
接続した電極とを有する磁気抵抗素子において,上記磁
気抵抗膜のいずれか一方の表面全体に薄膜状の高透磁率
膜からなる補助磁極を形成したことを特徴とする磁気抵
抗素子。
Claim 1: A magnetoresistive element comprising a substrate made of an insulating material, a pattern made of a magnetoresistive film formed on the substrate, and an electrode connected to the pattern, wherein either surface of the magnetoresistive film is A magnetoresistive element characterized by having an auxiliary magnetic pole formed entirely of a thin film with high magnetic permeability.
JP3093393A 1991-03-29 1991-03-29 Magnetoresistance element Pending JPH04303979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3093393A JPH04303979A (en) 1991-03-29 1991-03-29 Magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3093393A JPH04303979A (en) 1991-03-29 1991-03-29 Magnetoresistance element

Publications (1)

Publication Number Publication Date
JPH04303979A true JPH04303979A (en) 1992-10-27

Family

ID=14081066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3093393A Pending JPH04303979A (en) 1991-03-29 1991-03-29 Magnetoresistance element

Country Status (1)

Country Link
JP (1) JPH04303979A (en)

Similar Documents

Publication Publication Date Title
US6198378B1 (en) Magnetoresisitive sensor and manufacturing method therefor
KR20070087628A (en) Bridge type sensor with tunable characteristic
JPH0950613A (en) Magnetoresistive effect element and magnetic field detecting device
JPH0212610A (en) Magnetoresistance reader/converter
JP3089828B2 (en) Ferromagnetic magnetoresistive element
JP2000180207A (en) Magnetism sensor
JP3562993B2 (en) Magnetic detector
JP2000180524A (en) Magnetic field sensor
JPH0870148A (en) Magnetoresistance element
JPH0870149A (en) Magnetoresistance element
JP3035836B2 (en) Magnetoresistive element
JP2004340953A (en) Magnetic field sensing element, manufacturing method therefor, and device using them
KR20010033533A (en) Magnetoresistant device and a magnetic sensor comprising the same
JP3282444B2 (en) Magnetoresistive element
JPH04303979A (en) Magnetoresistance element
JPS5931771B2 (en) thin film magnetoresistive head
KR100196654B1 (en) Magnetoresistive sensor having a bias field applied at approximately 56 deg
JPS6064484A (en) Ferromagnetic magnetoresistance effect alloy film
JPH07209100A (en) Distortion detecting unit
JPH0266479A (en) Magnetoresistance effect element
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JPH0217476A (en) Differential type magnetoresistance effect element
JP3182858B2 (en) Ferromagnetic magnetoresistive element
JP4069419B2 (en) Magneto-impedance element
Kim et al. Effect of uniaxial anisotropy on anisotropic magnetoresistance: Thickness dependence in bilayer NiO (30 nm)/NiFe (t)