JPH04303565A - Cathode material for high-temperature fuel cell and manufacture thereof - Google Patents

Cathode material for high-temperature fuel cell and manufacture thereof

Info

Publication number
JPH04303565A
JPH04303565A JP3089370A JP8937091A JPH04303565A JP H04303565 A JPH04303565 A JP H04303565A JP 3089370 A JP3089370 A JP 3089370A JP 8937091 A JP8937091 A JP 8937091A JP H04303565 A JPH04303565 A JP H04303565A
Authority
JP
Japan
Prior art keywords
cathode material
temperature
temperature fuel
fuel cell
oxidizing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3089370A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP3089370A priority Critical patent/JPH04303565A/en
Publication of JPH04303565A publication Critical patent/JPH04303565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a high-temperature fuel cell cathode material, excellent in oxidation resistance and stability at a high temperature, which shows a stable phase in an unchanged crystalline structure even in a high temperature range near the operating temperature of a high-temperature fuel cell while maintaining electric conductivity and has no change in thermal expansion coefficient. CONSTITUTION:Cathode material has composition as shown by a general expression, (La1-xMx)1-y MnOz, where A is Sr, Ca or Ba, and O<=x<=0.4, 0<y<=0.15, and z>(xy-x-3y+6)/2 hold. It is constituted by annealing treatment material under a corresponding firing material oxidizing atmosphere at 600 deg.C or more. The cathode material is formed by firing lanthanum manganate group material which may contain alkaline earth metal compound and then giving annealing treatment in an oxidizing atmosphere such as in the air at 600 deg.C, preferably at 800-1400 deg.C. A time for the annealing treatment is usually 3-60hours.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、新規な高温型燃料電池
用カソード材料に関するものである。さらに詳しくいえ
ば、本発明は、特に安定化ジルコニアを固体電解質とす
る高温型燃料電池に適した、高温安定性等に優れた改良
された高温型燃料電池用カソード材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel cathode material for high-temperature fuel cells. More specifically, the present invention relates to an improved cathode material for high-temperature fuel cells that is particularly suitable for high-temperature fuel cells using stabilized zirconia as a solid electrolyte and has excellent high-temperature stability.

【0002】0002

【従来の技術】燃料電池は、水素、一酸化炭素、炭化水
素等の燃焼性化学物質やそれを含有する燃料を活物質に
用い、該化学物質や燃料の酸化反応を電気化学的に行わ
せ、酸化過程におけるエネルギー変化を直接的に電気エ
ネルギーに変換させる電池であって、高いエネルギー変
換効率を期待しうるものである。
[Prior Art] Fuel cells use combustible chemicals such as hydrogen, carbon monoxide, and hydrocarbons and fuel containing them as active materials, and electrochemically carry out oxidation reactions of the chemicals and fuel. , a battery that directly converts the energy change during the oxidation process into electrical energy, and can be expected to have high energy conversion efficiency.

【0003】中でも特に高い効率を期待しうるものとし
て、近年、第一世代のリン酸型、第二世代の溶融炭酸塩
型に続く第三世代の高温型燃料電池、特に固体電解質型
燃料電池、例えばチューブラー型、コルゲート型の他、
集積度の高い平板型のものなどが注目されている。
[0003] Among these, in recent years, third generation high-temperature fuel cells following the first generation phosphoric acid type and second generation molten carbonate type fuel cells, particularly solid oxide type fuel cells, have been developed as ones that can be expected to have particularly high efficiency. For example, tubular type, corrugated type, etc.
Flat plate type devices with a high degree of integration are attracting attention.

【0004】この高温型燃料電池の開発における重要な
課題に電極の改良がある。この電極のうち、カソード材
料には種々の特性、例えば酸化還元に対する過電圧が小
さい、イットリア安定化ジルコニア(YSZ)等の固体
電解質との整合性(例えば熱膨張係数など)に優れてい
る、電子及びイオン導電性が高いなどの性質を備えるこ
とが要求される。このような特性をもつカソード材料と
して、これまで常温以下での多種多様な電気的、磁気的
特性のために固体物理化学的研究がなされ、特にセンサ
ーや触媒分野での応用研究のめざましい、アルカリ土類
金属をドープしたLa1−xMXMnO3(MはCa、
Sr又はBaである)系化合物が近年注目されるように
なった。
[0004] An important issue in the development of this high-temperature fuel cell is the improvement of electrodes. Among these electrodes, the cathode material has various properties, such as low redox overvoltage, excellent compatibility with solid electrolytes (e.g. thermal expansion coefficient, etc.) such as yttria-stabilized zirconia (YSZ), and electronic and It is required to have properties such as high ionic conductivity. As a cathode material with such characteristics, solid-state physical and chemical research has been conducted for its various electrical and magnetic properties below room temperature. La1-xMXMnO3 doped with similar metals (M is Ca,
In recent years, Sr or Ba) type compounds have attracted attention.

【0005】しかしながら、この材料は高温では電解質
のYSZ等と化学的に反応してしまうという問題を有し
、非化学量論組成の(La,Sr)1−YMnO3の方
が化学量論組成のものよりYSZ等との反応性に乏しい
ことが報告されているが、高温での相関係や、結晶学的
、電気的、熱的性質についての基礎的なデータは極めて
少ないのが現状である。
However, this material has the problem of chemically reacting with the electrolyte YSZ etc. at high temperatures, and (La,Sr)1-YMnO3, which has a non-stoichiometric composition, has a stoichiometric composition. Although it has been reported that it has poor reactivity with YSZ and the like, there is currently very little basic data on phase relationships at high temperatures, crystallographic, electrical, and thermal properties.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来のカソード材料のもつ欠点を克服し、電気伝導度を
維持しつつ、高温型燃料電池の作動温度付近の高温域に
おいても同じ結晶構造の安定な相状態を示し、熱膨張係
数の変化も認められない、高温での耐酸化性や安定性に
優れる高温型燃料電池用カソード材料を提供することを
目的としてなされたものである。
[Problems to be Solved by the Invention] The present invention overcomes the drawbacks of conventional cathode materials, maintains electrical conductivity, and maintains the same crystalline structure even in the high temperature range near the operating temperature of high-temperature fuel cells. The purpose of this invention was to provide a cathode material for high-temperature fuel cells that exhibits a stable phase state of structure, shows no change in thermal expansion coefficient, and has excellent oxidation resistance and stability at high temperatures.

【0007】[0007]

【課題を解決するための手段】本発明者は、前記の好ま
しい性質を有するカソード材料を開発するために種々研
究を重ねた結果、特定組成のランタンマンガネート系化
合物がその目的に適合することを見出し、この知見に基
づいて本発明を完成するに至った。
[Means for Solving the Problem] As a result of various studies to develop a cathode material having the above-mentioned preferable properties, the present inventor has found that a lanthanum manganate-based compound with a specific composition is suitable for the purpose. Based on this finding, we have completed the present invention.

【0008】すなわち、本発明は、一般式(I)That is, the present invention provides general formula (I)

【式2
】〔式中のMはSr、Ca又はBa、0≦x≦0.4、
0<y≦0.15、z>(xy−x−3y+6)/2で
ある〕で表わされる組成を有し、かつ相当する焼成物の
酸化性雰囲気下で少なくとも600℃でのアニーリング
処理物で構成されることを特徴とする高温型燃料電池用
カソード材料を提供するものである。
[Formula 2
] [M in the formula is Sr, Ca or Ba, 0≦x≦0.4,
0<y≦0.15, z>(xy-x-3y+6)/2], and is an annealed product at least 600°C in an oxidizing atmosphere of the corresponding fired product. The present invention provides a cathode material for a high-temperature fuel cell characterized by the following structure.

【0009】本発明の式(I)の化合物の特徴はAサイ
トに欠陥を有し、かつ酸素量が全構成金属原子に対する
化学量論量よりも大きい組成を有し、しかも所要焼成物
の所定条件下でのアニーリング処理物であることである
。前記酸素量の化学量論量z′は次の式により表わされ
る。
The compound of formula (I) of the present invention is characterized by having a defect at the A site, having a composition in which the amount of oxygen is larger than the stoichiometric amount with respect to all the constituent metal atoms, and moreover, It is an annealed product under certain conditions. The stoichiometric amount z' of the oxygen amount is expressed by the following formula.

【数1】[Math 1]

【0010】この式(I)の化合物は高温型燃料電池の
作動温度付近の高温域、例えば800〜1000℃、か
つ空気中などの酸化性雰囲気下で菱面体構造の安定相状
態を保持することができる上に、固体電解質として多用
されているジルコニアとの反応が抑制され、それを組み
込んだ燃料電池の出力低下を伴うことがない。従って式
(I)の化合物は高温型燃料電池用カソード材料となる
[0010] The compound of formula (I) maintains a stable phase state of a rhombohedral structure in a high temperature range near the operating temperature of a high-temperature fuel cell, for example 800 to 1000°C, and in an oxidizing atmosphere such as air. In addition, the reaction with zirconia, which is often used as a solid electrolyte, is suppressed, and there is no reduction in the output of fuel cells incorporating it. Therefore, the compound of formula (I) serves as a cathode material for high temperature fuel cells.

【0011】前記した反応の抑制はAサイトのLaやS
rやCaやBaの量や総量が化学量論的に不足している
ことに起因し、この不足量が多い程反応抑制効果は大き
いが、導電率も低下するので、式(I)中のxは0.2
以下であるのが好ましい。
[0011] The above reaction can be suppressed by La or S at the A site.
This is due to a stoichiometric deficiency in the amount and total amount of r, Ca, and Ba, and the greater the amount of deficiency, the greater the reaction suppression effect, but the electrical conductivity also decreases. x is 0.2
It is preferable that it is below.

【0012】これに対し、従来のものでは酸素雰囲気な
どの酸化性雰囲気下で接触しているカソード材料である
ランタン系酸化物と常用の電解質であるジルコニアが前
記高温域では反応してLa2Zr2O7やMn2O3を
生じやすく、これらの反応生成物は導電率が低いため、
電池の出力低下は免れなかった。
On the other hand, in the conventional method, lanthanum-based oxide, which is a cathode material, and zirconia, which is a commonly used electrolyte, are in contact with each other in an oxidizing atmosphere such as an oxygen atmosphere, and in the high temperature range, they react to form La2Zr2O7 and Mn2O3. These reaction products have low conductivity, so
A drop in battery output was inevitable.

【0013】本発明のカソード材料は、通常の焼成法で
得た、アルカリ土類金属化合物を含有していてもよいラ
ンタンマンガネート系材料をさらに所要のアニーリング
を施すことによって製造される。
The cathode material of the present invention is produced by further subjecting a lanthanum manganate-based material, which may contain an alkaline earth metal compound, obtained by a conventional calcination method to the necessary annealing.

【0014】すなわち、原料は、あらかじめ乾燥した粉
粒状のものが好ましく、所要金属成分に相当する酸化物
や、焼成により酸化物を形成しうる化合物、例えば炭酸
塩などが挙げられる。焼成法としては、これらの原料を
所要の組成になるように混合し、通常800〜1200
℃で1〜20時間仮焼し、この仮焼物を粉砕し、板状等
所要形状に成形したのち、通常1200〜1700℃で
1〜20時間焼成するなどの一般的な方法が用いられる
[0014] That is, the raw material is preferably in the form of powder and granules that have been dried in advance, and examples thereof include oxides corresponding to the required metal components and compounds that can form oxides upon firing, such as carbonates. In the firing method, these raw materials are mixed to have the required composition, and the composition is usually 800 to 1200.
A common method is used, such as calcining at 1 to 20 hours at 1200 to 1700C, pulverizing the calcined product, forming it into a desired shape such as a plate, and then firing at 1200 to 1700C for 1 to 20 hours.

【0015】次いで、このようにして得た焼成物は、酸
化性雰囲気下、例えば空気中で少なくとも600℃、好
ましくは800〜1400℃で、少なくとも2時間、好
ましくは3〜60時間アニーリングされる。
[0015] The fired product thus obtained is then annealed in an oxidizing atmosphere, for example in air, at a temperature of at least 600°C, preferably from 800 to 1400°C, for at least 2 hours, preferably from 3 to 60 hours.

【0016】本発明のカソード材料を図面により詳述す
ると、図1の(a)、(b)、(c)はyの値とアニー
リング温度による結晶構造の変化を示すグラフであり、
これより、yの値が大きくなり、Aサイトの欠損量が増
大するとともに菱面体構造から斜方晶構造に変わるアニ
ーリング温度が高温側へシフトすることが分る。一方、
X線回折により、yの値が0.15を超えるとMn3O
4が不純物相として析出しやすくなるので、結晶構造と
して好適な単一相を維持するにはLa欠損量を0.1以
下とするのが好ましい。このことは、例えば図2にグラ
フで示した式La1−yMnOzの化合物の所定温度に
おけるyの値と格子定数との関係から明らかなように、
yが0.1以上では格子定数がほぼ一定になっているこ
とからも裏付けられる。
To explain the cathode material of the present invention in detail with reference to drawings, FIGS. 1(a), (b), and (c) are graphs showing changes in crystal structure depending on the value of y and annealing temperature.
From this, it can be seen that as the value of y increases and the amount of defects at the A site increases, the annealing temperature at which the rhombohedral structure changes to the orthorhombic structure shifts to the higher temperature side. on the other hand,
By X-ray diffraction, when the value of y exceeds 0.15, Mn3O
4 tends to precipitate as an impurity phase, so in order to maintain a suitable single phase crystal structure, it is preferable that the amount of La vacancies be 0.1 or less. This is clear, for example, from the relationship between the value of y and the lattice constant at a given temperature for the compound of the formula La1-yMnOz shown graphically in FIG.
This is supported by the fact that the lattice constant is almost constant when y is 0.1 or more.

【0017】次に、図3は、式La1−yMnOzで表
わされる本発明の材料について、La欠損量yと酸素量
zの関係を示すグラフであって、これよりMnの酸化状
態は同じ温度でアニーリングされたものであればLa欠
損量にかかわらずほぼ一定であることが分る。同様のこ
とは本発明のアルカリ土類金属をドープさせた材料につ
いても認められる。
Next, FIG. 3 is a graph showing the relationship between the amount of La deficiency y and the amount of oxygen z for the material of the present invention expressed by the formula La1-yMnOz. From this, it can be seen that the oxidation state of Mn is the same at the same temperature. It can be seen that if it is annealed, it is almost constant regardless of the amount of La deficiency. The same holds true for the alkaline earth metal-doped materials of the present invention.

【0018】次に、図4は、800℃でアニーリングさ
れた本発明材料及び比較のためのLaMnO3について
、加熱温度と熱膨張係数との関係を示すグラフであって
、これより比較試料では850℃付近で熱膨張係数が大
きく変化しこの変化は菱面体構造から斜方晶構造への相
変化を反映していると推測されるのに対し、本発明材料
は1000℃までこのような変化は認められず安定した
相が保持されていることは図1の(a)からも支持され
る。同様のことは本発明のアルカリ土類金属をドープさ
せた材料についても認められる。
Next, FIG. 4 is a graph showing the relationship between heating temperature and thermal expansion coefficient for the present invention material annealed at 800°C and LaMnO3 for comparison. The coefficient of thermal expansion changes significantly near the center, and this change is presumed to reflect a phase change from a rhombohedral structure to an orthorhombic structure, whereas the material of the present invention shows no such change up to 1000°C. The fact that a stable phase is maintained without any turbulence is also supported by FIG. 1(a). The same holds true for the alkaline earth metal-doped materials of the present invention.

【0019】[0019]

【発明の効果】本発明のカソード材料は、電気伝導度を
維持しつつ、高温型燃料電池の作動温度付近の高温域に
おいても同じ結晶構造の安定な相状態を示し、熱膨張係
数の変化も認められず、高温での耐酸化性や安定性に優
れるという顕著な効果を奏する。
[Effects of the Invention] The cathode material of the present invention exhibits a stable phase state of the same crystal structure even in a high temperature range near the operating temperature of high-temperature fuel cells while maintaining electrical conductivity, and exhibits no change in thermal expansion coefficient. It has remarkable effects of excellent oxidation resistance and stability at high temperatures.

【0020】したがって、本発明のカソード材料は高温
型燃料電池、特にイットリア安定化ジルコニアのような
安定化ジルコニアを固体電解質とする高温型燃料電池に
用いて好適である。
Therefore, the cathode material of the present invention is suitable for use in high-temperature fuel cells, particularly high-temperature fuel cells using stabilized zirconia such as yttria-stabilized zirconia as a solid electrolyte.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  yの値とアニーリング温度による結晶構造
の変化を示すグラフ。
FIG. 1 is a graph showing changes in crystal structure depending on the value of y and annealing temperature.

【図2】  式La1−yMnOzの化合物の所定温度
におけるyの値と格子定数との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the value of y and the lattice constant at a predetermined temperature for a compound of the formula La1-yMnOz.

【図3】  式La1−yMnOzで表わされる本発明
の材料について、La欠損量yと酸素量zの関係を示す
グラフ。
FIG. 3 is a graph showing the relationship between the amount of La deficiency y and the amount of oxygen z for the material of the present invention expressed by the formula La1-yMnOz.

【図4】  800℃でアニーリングされた本発明材料
及び比較のためのLaMnO3について、加熱温度と熱
膨張係数との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between heating temperature and thermal expansion coefficient for the present invention material annealed at 800°C and LaMnO3 for comparison.

【化2】[Case 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  一般式 【化1】 〔式中のMはSr、Ca又はBa、0≦x≦0.4、0
<y≦0.15、z>(xy−x−3y+6)/2であ
る〕で表わされる組成を有し、かつ相当する焼成物の酸
化性雰囲気下で少なくとも600℃でのアニーリング処
理物で構成されることを特徴とする高温型燃料電池用カ
ソード材料。
Claim 1: General formula [Formula 1] [M in the formula is Sr, Ca or Ba, 0≦x≦0.4, 0
<y≦0.15, z>(xy-x-3y+6)/2] and consists of a corresponding fired product annealed at at least 600°C in an oxidizing atmosphere A cathode material for high-temperature fuel cells characterized by:
【請求項2】  アルカリ土類金属化合物を含有してい
てもよいランタンマンガネート系材料を焼成により形成
したのち、酸化性雰囲気下少なくとも600℃でアニー
リング処理することを特徴とする請求項1記載の材料の
製造方法。
2. The material according to claim 1, wherein the lanthanum manganate-based material which may contain an alkaline earth metal compound is formed by firing and then annealed at at least 600° C. in an oxidizing atmosphere. Method of manufacturing the material.
【請求項3】  空気中800〜1400℃で3〜60
時間アニーリング処理することを特徴とする請求項2記
載の製造方法。
Claim 3: 3-60 at 800-1400°C in air
3. The manufacturing method according to claim 2, further comprising a time annealing process.
JP3089370A 1991-03-29 1991-03-29 Cathode material for high-temperature fuel cell and manufacture thereof Pending JPH04303565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089370A JPH04303565A (en) 1991-03-29 1991-03-29 Cathode material for high-temperature fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089370A JPH04303565A (en) 1991-03-29 1991-03-29 Cathode material for high-temperature fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04303565A true JPH04303565A (en) 1992-10-27

Family

ID=13968810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089370A Pending JPH04303565A (en) 1991-03-29 1991-03-29 Cathode material for high-temperature fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04303565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009505A1 (en) * 2009-12-31 2012-01-12 Saint-Gobain Ceramics & Plastics, Inc. Anisotropic cte lsm for sofc cathode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009505A1 (en) * 2009-12-31 2012-01-12 Saint-Gobain Ceramics & Plastics, Inc. Anisotropic cte lsm for sofc cathode
CN102763261A (en) * 2009-12-31 2012-10-31 圣戈本陶瓷及塑料股份有限公司 Anisotropic cte lsm for sofc cathode
US8580461B2 (en) * 2009-12-31 2013-11-12 Saint-Gobain Ceramics & Plastics, Inc. Anisotropic coefficient of thermal expansion lanthanum strontium manganite for solid oxide fuel cell cathode

Similar Documents

Publication Publication Date Title
Slater et al. Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells
Medvedev et al. Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
WO2020153485A1 (en) Solid electrolyte, electrolyte layer and battery
JP3011387B2 (en) Ceramics, cylindrical solid electrolyte fuel cells using the same, and flat solid electrolyte fuel cells
JPH04303565A (en) Cathode material for high-temperature fuel cell and manufacture thereof
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
JP3573519B2 (en) Single cell of solid oxide fuel cell and method of manufacturing the same
Kus̆c̆er et al. Defect structure and electrical properties of La1− ySryFe1− xAlxO3− δ
EP1184926B1 (en) Gallate based complex oxide electrolyte material
JP2968326B2 (en) Calcium D-Plantan Manganite and Solid Electrolyte Fuel Cell Using It
KR100462950B1 (en) Solid oxide fuel cell
JP6819638B2 (en) Oxide ion conductors and electrochemical devices
Thangadurai et al. Development and investigation of perovskite (ABO 3)-type oxides for power generation
Mori Enhancing Effect on Densification and Thermal Expansion Compatibility for La0. 8Sr0. 2Cr0. 9Ti0. 1 O 3-Based SOFC Interconnect with B-Site Doping
JP3346668B2 (en) Solid oxide fuel cell
JPH05251087A (en) Cathode material for high temperature solid electrolytic fuel cell
JP4018797B2 (en) Electron conductive ceramics
JPH04149024A (en) Strontium-doped lanthanum manganite and solid electrolyte fuel cell using the same
JP3359421B2 (en) Solid oxide fuel cell
JPH0359953A (en) Solid electrolyte-type fuel cell
JPH05225820A (en) Ion conductor and solid fuel cell
CN116914103A (en) Manganese-based-cerium-zirconium-based oxide composite material with high thermal expansion behavior matching degree, and preparation method and application thereof
JP2001143525A (en) Solid electrolyte, its manufacturing method and fuel cell using the solid electrolyte