JPH04275923A - Multicomponent oxide powder and high-temperature electrode material, and production of the same - Google Patents

Multicomponent oxide powder and high-temperature electrode material, and production of the same

Info

Publication number
JPH04275923A
JPH04275923A JP3038577A JP3857791A JPH04275923A JP H04275923 A JPH04275923 A JP H04275923A JP 3038577 A JP3038577 A JP 3038577A JP 3857791 A JP3857791 A JP 3857791A JP H04275923 A JPH04275923 A JP H04275923A
Authority
JP
Japan
Prior art keywords
electrode material
oxide powder
laco1
thermal expansion
multicomponent oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3038577A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nagamoto
英俊 長本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP3038577A priority Critical patent/JPH04275923A/en
Publication of JPH04275923A publication Critical patent/JPH04275923A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To offer a multicomponent oxide powder which can be used as the source material of new high-temp. electrode material for a fuel cell and has high electronic conductivity and almost same coefft. of thermal expansion as that of solid electrolyte zirconia, and to offer the high-temp. electrode material and production method of those. CONSTITUTION:This invention relates to a multicomponent oxide powder expressed by LaCo1-XFeXO3 (X=0.5 to 0.9) and high-temp. electrode material featuring in that it consists of this oxide. Moreover, this invention relates to the production method of the multicomponent oxide powder by preparing a mixture soln. of metal salt so that the compsn. of the mixture becomes LaCo1-XFeXO3 (X=0.5-0.9), dehydrating, drying to precipitate, thermally decomposing the precipitate and calcining the product at 800-1100 deg.C. Also this invention relates to the production method of the high-temp. electrode material by molding the obtd. multicomponent oxide powder and sintering at 1000-1500 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は主な用途が固体電解質燃
料電池の空気極として有用な高温用電極材料の原料とし
ての複合酸化物粉末及び該複合酸化物よりなる高温用電
極材料並びにそれらの製造方法に関する。
[Industrial Application Field] The main uses of the present invention are composite oxide powders as raw materials for high-temperature electrode materials useful as air electrodes of solid electrolyte fuel cells, high-temperature electrode materials made of the composite oxides, and their use. Regarding the manufacturing method.

【0002】0002

【従来の技術】固体電解質燃料電池は高い発電効率及び
高い出力密度が得られるため、例えば発電プラント用な
ど、種々の用途が考えられている。固体電解質燃料電池
の空気極材料として要求される性質は、電子伝導度が高
く、高温の酸化的雰囲気で安定であり電解質と反応しな
いこと、酸素の電荷移動を触媒する機能を有すること、
電解質と熱膨張率がほぼ等しいこと等がある。この様な
観点から、一般にABO3 の組成で表されるペロブス
カイト型複合酸化物が注目され、中でも高温空気中で安
定かつ電子伝導性の高いランタン系遷移金属酸化物が有
力であると言われている。
2. Description of the Related Art Solid electrolyte fuel cells have high power generation efficiency and high output density, and are therefore being considered for various uses, such as in power generation plants. The properties required for an air electrode material in a solid electrolyte fuel cell are that it has high electronic conductivity, is stable in a high-temperature oxidizing atmosphere, does not react with the electrolyte, and has the ability to catalyze the charge transfer of oxygen.
The coefficient of thermal expansion is almost the same as that of the electrolyte. From this point of view, perovskite-type composite oxides, generally represented by the composition ABO3, are attracting attention, and among them, lanthanum-based transition metal oxides, which are stable in high-temperature air and have high electronic conductivity, are said to be promising. .

【0003】高温で多種の材料と共に用いる材料の場合
、それらの材料間の熱膨張率が揃っていることが必要で
ある。金属材料の場合、カリウムのように8.5×10
−5K−1と大きい熱膨張係数をもつものがあるが、通
常1〜2×10−5K−1の範囲のものが多い。一方、
酸化物の場合1×10−5K−1前後のものが多い。固
体電解質型燃料電池の場合、固体電解質として用いられ
るイットリア安定化ジルコニア(YSZ)あるいは正方
晶部分安定化ジルコニア(TZP)は0〜1000℃の
温度範囲で、熱膨張係数がほぼ1×10−5K−1であ
るが、前に述べたランタン系遷移金属酸化物よりなる電
極材料として最も高い電子伝導性をもつLaCoO3 
は、熱膨張係数が2×10−5K−1でありYSZ及び
TZPとの差が著しく大きい。そのため、電池の昇降温
により固体電解質からはがれるおそれがあり、実用化は
困難であろうと考えられている。またLaNiO3 は
、熱膨張係数が8.8×10−6K−1とYSZ及びT
ZPに近いものの、その金属的性格により、電子伝導度
は低温の場合よりも低下している。更に、アルカリ土類
をAサイトにドープしたLa1−X SrX CoO3
 、La1−X SrX MnO3 等も盛んに検討さ
れ、現状では、電子伝導性のやや低いLaMnO3 に
Srをドープして作ったLa1−X SrX MnO3
 を用いている。しかしながら、熱膨張係数は、LaM
nO3 の1.1×10−5K−1から1.3×10−
5K−1(X=0.3)に増加している。
[0003] In the case of materials used together with various materials at high temperatures, it is necessary that the coefficients of thermal expansion among the materials be matched. In the case of metal materials, like potassium, 8.5 x 10
Some have a coefficient of thermal expansion as large as -5K-1, but most have a coefficient of thermal expansion of 1 to 2 x 10-5K-1. on the other hand,
In the case of oxides, it is often around 1 x 10-5K-1. In the case of solid electrolyte fuel cells, yttria-stabilized zirconia (YSZ) or tetragonal partially stabilized zirconia (TZP) used as the solid electrolyte has a thermal expansion coefficient of approximately 1 x 10-5 K in the temperature range of 0 to 1000°C. -1, but LaCoO3 has the highest electronic conductivity as an electrode material made of the lanthanum-based transition metal oxide mentioned above.
has a thermal expansion coefficient of 2 x 10-5K-1, which is significantly different from that of YSZ and TZP. Therefore, there is a risk that it will peel off from the solid electrolyte as the temperature of the battery rises and falls, and it is thought that it will be difficult to put it into practical use. In addition, LaNiO3 has a thermal expansion coefficient of 8.8 x 10-6K-1, which is YSZ and T
Although it is similar to ZP, due to its metallic nature, its electronic conductivity is lower than at low temperatures. Furthermore, La1-X SrX CoO3 doped with alkaline earth at the A site
, La1-X SrX MnO3, etc. have been actively studied, and currently, La1-X SrX MnO3, which is made by doping Sr into LaMnO3, which has slightly low electronic conductivity, is being actively studied.
is used. However, the coefficient of thermal expansion is LaM
1.1 x 10-5K-1 to 1.3 x 10-1 of nO3
It has increased to 5K-1 (X=0.3).

【0004】0004

【発明が解決しようとする課題】上述した、ランタン系
遷移金属酸化物を用いた従来の電極は熱膨張率の整合性
を重んじる余り、電子伝導性を犠牲としている。その結
果、燃料電池の特性を損なう要因である過電圧が高いも
のとなり、発電効率も期待される60%を10%程度下
回ったものとなっている。本発明者はこの問題を解決す
ることを目的として鋭意研究し本発明を見出した。本発
明の目的は燃料電池の電極材料として、電子伝導性が高
くかつ熱膨張率を固体電解質のジルコニアとほぼ同じく
する新規な高温用電極材料及びその製造方法の提供にあ
る。
[Problems to be Solved by the Invention] The above-mentioned conventional electrodes using lanthanum-based transition metal oxides sacrifice electronic conductivity in favor of matching thermal expansion coefficients. As a result, the overvoltage, which is a factor that impairs the characteristics of the fuel cell, is high, and the power generation efficiency is about 10% lower than the expected 60%. The present inventor conducted extensive research and discovered the present invention with the aim of solving this problem. An object of the present invention is to provide a novel high-temperature electrode material for use in fuel cells, which has high electronic conductivity and has a coefficient of thermal expansion almost the same as that of zirconia as a solid electrolyte, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明は、LaCo1−
X FeXO3 (X=0.5〜0.9)であらわされ
ることを特徴とする複合酸化物粉末に関する。更に該酸
化物よりなることを特徴とする高温用電極材料に関する
。また、本発明は組成がLaCo1−X FeX O3
 (X=0.5〜0.9)になるように各金属の塩の混
合水溶液を調合し、脱水、乾燥して得られる沈澱物を熱
分解し、800〜1100℃で仮焼することを特徴とす
る複合酸化物粉末の製造方法に関し、更にこの得られた
複合酸化物粉末を成形し1000〜1500℃で焼結す
ることを特徴とする高温用電極材料の製造方法に関する
。以下、本発明を詳細に説明する。
[Means for Solving the Problems] The present invention provides LaCo1-
The present invention relates to a composite oxide powder characterized by being represented by XFeXO3 (X=0.5 to 0.9). The present invention further relates to a high temperature electrode material comprising the oxide. Further, the present invention has a composition of LaCo1-X FeX O3
Prepare a mixed aqueous solution of salts of each metal so that The present invention relates to a method for producing a composite oxide powder, and further relates to a method for producing a high-temperature electrode material, which is characterized in that the obtained composite oxide powder is molded and sintered at 1000 to 1500°C. The present invention will be explained in detail below.

【0006】本発明者は、LaCoO3 のBサイトを
遷移金属イオンで置換しその熱膨張率と電子伝導度の制
御を行う方法において、遷移金属イオンとしてFeを用
い、更にLaCo1−X FeX O3 で表した場合
のXの値を0.5〜0.9、好ましくは0.6〜0.8
5の範囲とすることにより、熱膨張率が小さく700℃
以上の高温領域における電子伝導率の高い優れた電極材
料として用いることができる新規な複合酸化物を見出し
た。
[0006] The present inventor used Fe as the transition metal ion in a method of replacing the B site of LaCoO3 with a transition metal ion to control its coefficient of thermal expansion and electronic conductivity. When the value of X is 0.5 to 0.9, preferably 0.6 to 0.8
By setting it in the range of 5, the coefficient of thermal expansion is small and can reach 700℃.
We have discovered a new composite oxide that can be used as an excellent electrode material with high electronic conductivity in the above high temperature range.

【0007】遷移金属イオンとしてFe以外の金属例え
ばNiを用いた場合には、熱膨張率としてはYSZ及び
TZPとほぼ同様の値が得られるが、700℃以上の高
温領域における電子伝導度が低く満足される結果が得ら
れない。また、上記のXの値が0.5よりも小さい場合
には、熱膨張率が大きくなり過ぎ好ましくない。更に、
上記のXの値が0.9よりも大きい場合には、700℃
以上の高温領域における電子伝導度が低くなり過ぎ好ま
しくない。
When a metal other than Fe, such as Ni, is used as the transition metal ion, a coefficient of thermal expansion similar to that of YSZ and TZP can be obtained, but the electronic conductivity in the high temperature region of 700° C. or higher is low. Unsatisfactory results cannot be obtained. Moreover, if the value of the above-mentioned X is smaller than 0.5, the coefficient of thermal expansion becomes too large, which is not preferable. Furthermore,
If the value of X above is greater than 0.9, 700℃
The electronic conductivity in the above high temperature range becomes too low, which is not preferable.

【0008】本発明の電極材料は、常温と作動温度(約
1000℃まで)の間で熱膨張係数が固体電解質のそれ
とほぼ等しいという条件を満たしつつ、電子伝導度が、
850℃程度の温度領域では、LaCoO3 の約2/
3まで達するという優れた性質を有するものである。ま
た、高温の酸化的雰囲気においても安定であるため、固
体電解質燃料電池の電極として有用となる。
The electrode material of the present invention satisfies the condition that the coefficient of thermal expansion is approximately equal to that of the solid electrolyte between room temperature and operating temperature (up to about 1000°C), and the electronic conductivity is
In the temperature range of about 850℃, about 2/2 of LaCoO3
It has an excellent property of reaching up to 3. Furthermore, it is stable even in high-temperature oxidizing atmospheres, making it useful as an electrode for solid electrolyte fuel cells.

【0009】本発明で得られる電極材料の電子伝導度は
、試料粉末をペレット状に加圧成形後焼結させ,Ag電
極を両面に焼き付けたものを用い、通常の交流測定法に
より求めることができる。また、熱膨張係数は、通常の
昇温X線回折法により、試料の格子定数を測定すること
により求められる。本発明の複合酸化物粉末の製造方法
は、組成がLaCo1−X FeX O3 (X=0.
5〜0.9)になるように各金属の塩の混合水溶液を調
合し、脱水、乾燥して得られる生成物を350℃以上で
熱分解し、800〜1100℃で仮焼することにより得
られる。各金属の塩としては、塩酸塩、酢酸塩、硝酸塩
、蓚酸塩等が挙げられる。脱水、乾燥方法は通常行われ
る方法、例えば加熱(減圧)による蒸発、低級アルコー
ル等による共沸蒸留により水を除去し、溶媒を除去する
方法、或いは噴霧乾燥等が挙げられる。熱分解温度は3
50℃〜1000℃で、好ましくは400〜600℃で
ある。熱分解の時間は特に限定しないが1〜10時間程
度で良い。次に熱分解生成物を仮焼により固相反応を行
い目的の複合酸化物を得る。この際に、熱分解生成物が
粉末状でない場合は、粉砕し粉末とした方が好ましい。 仮焼温度は800〜1100℃で、好ましくは900〜
1000℃である。仮焼時間も特に限定しないが8〜1
5時間程度で良い。そして、得られた粉末試料を成形し
、1000〜1500℃で焼結して電極材料を得る。成
形方法は通常行われる方法で良い、例えばプレス成形、
鋳込成形、シート成形、射出成形及び押出成形等が挙げ
られる。この際にバインダーは必要に応じて市販のバイ
ンダーを用いても良い。
[0009] The electronic conductivity of the electrode material obtained in the present invention can be determined by a normal AC measurement method using a sample powder that is pressure-formed into a pellet shape and then sintered, with Ag electrodes baked on both sides. can. Further, the coefficient of thermal expansion is determined by measuring the lattice constant of the sample using a normal heating X-ray diffraction method. The method for producing a composite oxide powder of the present invention has a composition of LaCo1-X FeX O3 (X=0.
5 to 0.9), dehydrate and dry the resulting product, thermally decompose it at 350°C or higher, and calcinate it at 800 to 1100°C. It will be done. Examples of the salts of each metal include hydrochloride, acetate, nitrate, oxalate, and the like. Dehydration and drying methods include conventional methods such as evaporation by heating (reduced pressure), azeotropic distillation using lower alcohols to remove water and solvent, spray drying, and the like. The thermal decomposition temperature is 3
The temperature is 50°C to 1000°C, preferably 400 to 600°C. The time for thermal decomposition is not particularly limited, but may be about 1 to 10 hours. Next, the thermal decomposition product is subjected to a solid phase reaction by calcining to obtain the desired composite oxide. At this time, if the pyrolysis product is not in powder form, it is preferable to crush it into powder. Calcining temperature is 800-1100℃, preferably 900-1100℃
The temperature is 1000°C. The calcination time is not particularly limited, but it is 8 to 1
About 5 hours is enough. Then, the obtained powder sample is molded and sintered at 1000 to 1500°C to obtain an electrode material. The molding method may be any conventional method, such as press molding,
Examples include cast molding, sheet molding, injection molding, and extrusion molding. At this time, a commercially available binder may be used as the binder, if necessary.

【0010】このようにして得た本発明の電極材料は以
下の実施例に示すように、熱膨張係数が1.25〜1.
6×10−5K−1とイットリア安定化ジルコニアに近
く、即ち、電解質材料との熱膨張率の差が小さいので、
熱サイクルによる破断がなく、また抵抗率も850℃で
0.18〜0.5Ω・cmであるため、低過電圧の電極
材料となり、発電効率を上げることが出来る。以下実施
例で本発明を更に詳細に説明する。
The electrode material of the present invention thus obtained has a coefficient of thermal expansion of 1.25 to 1.25, as shown in the following examples.
6×10-5K-1, which is close to yttria-stabilized zirconia, that is, the difference in thermal expansion coefficient with the electrolyte material is small.
Since it does not break due to thermal cycles and has a resistivity of 0.18 to 0.5 Ω·cm at 850°C, it becomes an electrode material with low overvoltage and can increase power generation efficiency. The present invention will be explained in more detail with reference to Examples below.

【0011】[0011]

【実施例】実施例1〜4及び比較例1〜4Feの酢酸塩
とCo、Laの硝酸塩をLaCo1−X FeX O3
 において置換率X=0.5、0.67,0.85の各
組成となるように混合した後、純水に溶解し、ロータリ
ーエバァポレータ中で減圧して水分を蒸発させた。 得られた沈澱物を450〜500℃の炉で空気を流しな
がら約5時間で熱分解させ混合酸化物を得た。この混合
酸化物にエタノールを加えて乳鉢中で良く混合したのち
、エタノールを蒸発させ、表1の反応温度で12時間仮
焼し、固相反応をさせた。
[Example] Examples 1 to 4 and Comparative Examples 1 to 4 Fe acetate and Co, La nitrate were mixed into LaCo1-X FeX O3
The mixture was mixed so that each composition had a substitution ratio of X=0.5, 0.67, and 0.85, then dissolved in pure water, and water was evaporated under reduced pressure in a rotary evaporator. The obtained precipitate was thermally decomposed in a furnace at 450 to 500°C with air flowing for about 5 hours to obtain a mixed oxide. After adding ethanol to this mixed oxide and mixing well in a mortar, the ethanol was evaporated and calcined for 12 hours at the reaction temperature shown in Table 1 to perform a solid phase reaction.

【0012】得られた粉末試料をX線回折法で結晶構造
を測定したところ、ベロプスカイト型酸化物であること
を確認した。置換率Xが0.50では菱面体構造をとり
、Xが0.67以上では斜方晶であった。Xが0.67
の時の室温での格子定数はa=5.512Å、b=5.
526Å、c=7.795Åであった。次に、粉末試料
を乳鉢中で擂り潰した後、バインダーを加えずに10m
mφのデスク状に加圧成形し、空気中で1100℃、5
時間焼結させた。得られたデイスクペレットの両面に銀
ペースト電極を焼き付けた後、交流法によって室温から
850℃までの焼結体の抵抗率を測定し、850℃の結
果を表1に示した。
When the crystal structure of the obtained powder sample was measured by X-ray diffraction, it was confirmed that it was a velopskite type oxide. When the substitution ratio X was 0.50, it had a rhombohedral structure, and when X was 0.67 or more, it was an orthorhombic structure. X is 0.67
The lattice constants at room temperature are a=5.512 Å, b=5.
526 Å, c=7.795 Å. Next, after grinding the powder sample in a mortar, 10 m
Pressure molded into a disk shape of mφ and heated at 1100℃ in air for 5 minutes.
Sintered for hours. After baking silver paste electrodes on both sides of the obtained disc pellet, the resistivity of the sintered body was measured from room temperature to 850°C by an alternating current method, and the results at 850°C are shown in Table 1.

【0013】また、粉末試料に校正用の白金黒を混合し
た試料を作り、高温X線回折装置を用いて室温から10
00℃までの格子定数を測定して熱膨張係数を算出した
。以上の結果を表1に記載した。尚、比較例として置換
率Xが0(LaCoO3 )、0.33、1(LaFe
O3 )で実施例と同様に複合酸化物粉末を得、加圧成
形して焼結した。またMn、Laの硝酸塩をLaMnO
3 の組成に配合し同様に行った。それらの測定結果も
併せて表1に記載した。
[0013] In addition, a sample was prepared by mixing platinum black for calibration with a powder sample, and a high-temperature X-ray diffraction device was used to measure the
The thermal expansion coefficient was calculated by measuring the lattice constant up to 00°C. The above results are listed in Table 1. As comparative examples, the substitution rate X was 0 (LaCoO3), 0.33, and 1 (LaFe
Composite oxide powder was obtained in the same manner as in the example, pressure molded and sintered. Also, nitrates of Mn and La are converted into LaMnO
3 and the same procedure was carried out. The measurement results are also listed in Table 1.

【0014】[0014]

【表1】                          
         表1──────────────
────────────────────     
         Fe置    仮焼      熱
膨張    抵抗率    電子伝導    結晶形 
             換量    温度    
  係数      (850℃)   度(850℃
)   (室温)              x  
   ℃        K −1      Ω・c
m    Ω−1・cm−1          ──
─────────────────────────
───────  実施例 1    0.5    
 1000    1.6 ×10−5    0.1
8      5.56    菱面体晶  実施例 
2    0.67    1000    1.5 
×10−5    0.23      4.35  
    斜方晶  実施例 3    0.67   
  900    1.55×10−5    0.2
8      3.57      斜方晶  実施例
 4    0.85    1000    1.2
5×10−5    0.50      2.00 
     斜方晶  比較例 1    0     
  1000    2.15×10−5    0.
13      7.69    菱面体晶  比較例
 2    0.33    1000    1.8
 ×10−5    0.17      5.88 
   菱面体晶  比較例 3    1.0    
 1000    1.05×10−5    2.5
       0.40      斜方晶  比較例
 4   LaMnO3   1050    1.1
 ×10−5    2.0       0.5  
     ───  ───────────────
────────────────────  表1に
示すように実施例4(X=0.85)即ちLaCo0.
15Fe0.85O3 は、比較例4のLaMnO3 
に近い熱膨張率である上に抵抗率はその1/5となり過
電圧、即ちオーム損の大幅な低減が可能となる。従って
、本発明による高温用電極材料を固体電解質燃料電池に
使用すれば、高発電効率の燃料電池とすることができる
[Table 1]
Table 1──────────────
────────────────────
Fe placement Calcination Thermal expansion Resistivity Electron conduction Crystal form
Temperature
Coefficient (850℃) Degrees (850℃
) (room temperature) x
℃ K −1 Ω・c
m Ω-1・cm-1 ──
──────────────────────────
─────── Example 1 0.5
1000 1.6 ×10-5 0.1
8 5.56 Rhombohedral crystal Example
2 0.67 1000 1.5
×10-5 0.23 4.35
Orthorhombic Example 3 0.67
900 1.55×10-5 0.2
8 3.57 Orthorhombic Example 4 0.85 1000 1.2
5×10-5 0.50 2.00
Orthorhombic comparative example 1 0
1000 2.15×10-5 0.
13 7.69 Rhombohedral Comparative Example 2 0.33 1000 1.8
×10-5 0.17 5.88
Rhombohedral Comparative Example 3 1.0
1000 1.05×10-5 2.5
0.40 Orthorhombic Comparative Example 4 LaMnO3 1050 1.1
×10-5 2.0 0.5
─── ──────────────────
──────────────────── As shown in Table 1, Example 4 (X=0.85), that is, LaCo0.
15Fe0.85O3 is LaMnO3 of Comparative Example 4
In addition to having a coefficient of thermal expansion close to , the resistivity is 1/5 of that, making it possible to significantly reduce overvoltage, that is, ohmic loss. Therefore, if the high temperature electrode material according to the present invention is used in a solid electrolyte fuel cell, a fuel cell with high power generation efficiency can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  LaCo1−X FeX O3 (X
=0.5〜0.9)であらわされることを特徴とする複
合酸化物粉末。
[Claim 1] LaCo1-X FeX O3 (X
=0.5 to 0.9).
【請求項2】  LaCo1−X FeX O3 (X
=0.5〜0.9)であらわされる複合酸化物よりなる
ことを特徴とする高温用電極材料。
[Claim 2] LaCo1-X FeX O3 (X
=0.5-0.9) A high-temperature electrode material comprising a composite oxide represented by the formula: =0.5-0.9).
【請求項3】  組成がLaCo1−X FeX O3
 (X=0.5〜0.9)になるように各金属の塩の混
合水溶液を調合し、脱水、乾燥して得られる沈澱物を熱
分解し、800〜1100℃で仮焼することを特徴とす
る複合酸化物粉末の製造方法。
[Claim 3] Composition is LaCo1-X FeX O3
Prepare a mixed aqueous solution of salts of each metal so that Characteristic method for producing composite oxide powder.
【請求項4】  組成がLaCo1−X FeX O3
 (X=0.5〜0.9)になるように各金属の塩の混
合水溶液を調合し、脱水、乾燥して得られる沈澱物を熱
分解し、800〜1100℃で仮焼し得た粉末を成形し
1000〜1500℃で焼結することを特徴とする高温
用電極材料の製造方法。
[Claim 4] Composition is LaCo1-X FeX O3
(X = 0.5 to 0.9), a mixed aqueous solution of metal salts was prepared, dehydrated and dried, and the resulting precipitate was thermally decomposed and calcined at 800 to 1100°C. A method for producing a high-temperature electrode material, which comprises molding powder and sintering it at 1000 to 1500°C.
JP3038577A 1991-03-05 1991-03-05 Multicomponent oxide powder and high-temperature electrode material, and production of the same Pending JPH04275923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038577A JPH04275923A (en) 1991-03-05 1991-03-05 Multicomponent oxide powder and high-temperature electrode material, and production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038577A JPH04275923A (en) 1991-03-05 1991-03-05 Multicomponent oxide powder and high-temperature electrode material, and production of the same

Publications (1)

Publication Number Publication Date
JPH04275923A true JPH04275923A (en) 1992-10-01

Family

ID=12529144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038577A Pending JPH04275923A (en) 1991-03-05 1991-03-05 Multicomponent oxide powder and high-temperature electrode material, and production of the same

Country Status (1)

Country Link
JP (1) JPH04275923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106202A (en) * 2012-11-29 2014-06-09 Noritake Co Ltd Preparation condition evaluation system for conductive paste
JP2014106204A (en) * 2012-11-29 2014-06-09 Noritake Co Ltd Preparation condition evaluation device for conductive paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106202A (en) * 2012-11-29 2014-06-09 Noritake Co Ltd Preparation condition evaluation system for conductive paste
JP2014106204A (en) * 2012-11-29 2014-06-09 Noritake Co Ltd Preparation condition evaluation device for conductive paste

Similar Documents

Publication Publication Date Title
Slater et al. Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells
Taguchi et al. Synthesis of Perovskite‐type (La1− xSrx) MnO3 (OX 0.3) at low temperature
JP2882104B2 (en) Proton conductor and method for producing the same
US6517693B2 (en) Ion conductor
Gao et al. Synthesis, ionic conductivity, and chemical compatibility of garnet-like lithium ionic conductor Li5La3Bi2O12
JP2001307546A (en) Ionic conductor
JPH04341765A (en) Manufacture of lanthanum chromite film and interconnector for solid electrolyte fuel cell
Chakraborty et al. Low temperature synthesis and some physical properties of barium-substituted lanthanum manganite (La1− x BaxMnO3)
JPH06107462A (en) Oxide ion conductive body and solid fuel cell
Aruna et al. Studies on strontium substituted rare earth manganites
Padmasree et al. Synthesis and characterization of Ca3-xLaxCo4-yCuyO9+ δ cathodes for intermediate temperature solid oxide fuel cells
Kuharuangrong et al. Effects of Co and Fe addition on the properties of lanthanum strontium manganite
Kumar et al. Sr2SnO4 ruddlesden popper oxide: future material for renewable energy applications
Nguyen et al. Electrical conductivity, thermal expansion and reaction of (La, Sr)(Ga, Mg) O3 and (La, Sr) AlO3 system
Kim et al. Characterization of Sr2. 7Ln0. 3Fe1. 4Co0. 6O7 (Ln= La, Nd, Sm, Gd) intergrowth oxides as cathodes for solid oxide fuel cells
JPH04275923A (en) Multicomponent oxide powder and high-temperature electrode material, and production of the same
Muzaffar et al. Synthesis, characterization, fabrication, and electrochemical performance of transition metal doped LSCTA-as anode candidates for SOFCS
Kim et al. Ln (Sr, Ca) 3 (Fe, Co) 3O10 intergrowth oxide cathodes for solid oxide fuel cells
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
Parkash et al. Dielectric properties of the Sr 1− x La x Sn 1− x Co x O 3 system
JP3346668B2 (en) Solid oxide fuel cell
JP6819638B2 (en) Oxide ion conductors and electrochemical devices
JP3260947B2 (en) Porous sintered body and solid oxide fuel cell
JPH0317959A (en) Air electrode material for solid electrolyte fuel cell and solid electrolyte fuel cell
JP2846559B2 (en) Porous sintered body and solid oxide fuel cell