JPH04302180A - Superconductive connecting structure - Google Patents
Superconductive connecting structureInfo
- Publication number
- JPH04302180A JPH04302180A JP3066260A JP6626091A JPH04302180A JP H04302180 A JPH04302180 A JP H04302180A JP 3066260 A JP3066260 A JP 3066260A JP 6626091 A JP6626091 A JP 6626091A JP H04302180 A JPH04302180 A JP H04302180A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- superconducting
- nbn
- superconductive
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 claims abstract description 11
- 239000010409 thin film Substances 0.000 abstract description 34
- 238000000034 method Methods 0.000 abstract description 4
- 238000004140 cleaning Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 241000238366 Cephalopoda Species 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】 本発明は超電導接続構造に関
し、例えば生体磁場計測や微小磁気の検出等に用いられ
るSQUID等において、Nb超電導体薄膜とNb超電
導体製のリードとを接続する場合等に適用するのに適し
た超電導接続構造に関する。[Industrial Application Field] The present invention relates to a superconducting connection structure, and is suitable for connecting an Nb superconductor thin film and a lead made of Nb superconductor in, for example, SQUID used for biomagnetic field measurement or micromagnetic detection. The present invention relates to a superconducting connection structure suitable for application.
【0002】0002
【従来の技術】 SQUID(超電導量子干渉素子)
磁束計を用いて生体磁場を計測する場合等において、薄
膜作製技術を用いてNb超電導体薄膜製のSQUID素
子本体と検出コイルや入力コイル等を1枚の基板上に集
積することで、高感度化を図る技術はすでに提案されて
いる(例えば電子情報通信学会論文誌 ’90/7
Vol.J73−D−II No.7 )。[Prior art] SQUID (superconducting quantum interference device)
When measuring biomagnetic fields using a magnetometer, high sensitivity can be achieved by integrating the SQUID element body made of Nb superconductor thin film, the detection coil, the input coil, etc. on a single substrate using thin film fabrication technology. Techniques to achieve this have already been proposed (for example, IEICE Transactions '90/7)
Vol. J73-D-II No. 7).
【0003】このような場合、Nb薄膜を用いた各種コ
イルとSQUID素子本体等を絶縁膜を介して積層する
ことが行われるが、Nb薄膜製のコイルはスルーホール
によるリードを介して上層のNb薄膜等と超電導接続し
ている。In such cases, various coils made of Nb thin film and the SQUID element body are laminated with an insulating film interposed therebetween. It is superconductingly connected to thin films, etc.
【0004】0004
【発明が解決しようとする課題】 ところで、Nbは
表面酸化が著しく、上記のように接続用のスルーホール
作製時には、通常、下層のNb薄膜表面に逆スパッタに
よるクリーニングを行った後に上層のNb薄膜を製膜す
ることによって、上層のNb薄膜との超電導コンタクト
を図っている。しかし、このときに下層のNb薄膜の表
面にNbO が残ったり、あるいは不純物の付着等に起
因して、接続界面部分で超電導電流の流れを阻害し、こ
のことが歩留りの低下の原因となっている。[Problems to be Solved by the Invention] By the way, the surface of Nb is significantly oxidized, and when making through-holes for connection as described above, the surface of the Nb thin film in the upper layer is usually cleaned after cleaning by reverse sputtering on the surface of the Nb thin film in the lower layer. By forming a film, superconducting contact with the upper Nb thin film is achieved. However, at this time, NbO remains on the surface of the underlying Nb thin film or adhesion of impurities impedes the flow of superconducting current at the connection interface, which causes a decrease in yield. There is.
【0005】本発明はこのような点に鑑みてなされたも
ので、Nb超電導体間が確実に超電導接続され、もって
SQUID等の素子の歩留りを向上させることのできる
超電導接続構造の提供を目的としている。[0005] The present invention was made in view of the above points, and aims to provide a superconducting connection structure that can reliably connect Nb superconductors and thereby improve the yield of devices such as SQUIDs. There is.
【0006】[0006]
【課題を解決するための手段】 上記の目的を達成す
るため、本発明は、Nb超電導体とNb超電導体が相互
に接続されてなる超電導接続部の接続界面近傍に、Nb
N が形成されていることによって特徴付けられる。[Means for Solving the Problems] In order to achieve the above object, the present invention provides an Nb
It is characterized by the formation of N.
【0007】[0007]
【作用】 NbN は臨界温度が高く、安定した超電
導体であって、Nb超電導体間の接続界面部分にNbN
を形成することにより、安定した超電導接続が可能と
なる。ここで、Nb薄膜間の超電導接続を行う場合、従
来と同等の薄膜作製プロセスの後、表面から高エネルギ
でN2をイオン注入する等によって、接合界面近傍の不
安定なNbO ををNbN に置換する等の方法で上記
した本発明の超電導接続構造を得ることができる。[Function] NbN is a stable superconductor with a high critical temperature.
By forming this, a stable superconducting connection becomes possible. Here, when making a superconducting connection between Nb thin films, after the same thin film fabrication process as before, unstable NbO near the bonding interface is replaced with NbN by ion implantation of N2 from the surface with high energy. The superconducting connection structure of the present invention described above can be obtained by the following methods.
【0008】[0008]
【実施例】 図1は本発明実施例の模式的構造を示す
断面図である。基板1上に形成された下層のNb超電導
薄膜2は、例えばSQUIDの検出コイルを構成するも
ので、上層のNb超電導薄膜3は、この検出コイルを他
と接続するための超電導リードである。下層のNb超電
導薄膜2の周囲部分にはSiO 絶縁膜4で、また上方
部分はSiO2絶縁膜5で覆われており、上方部分のS
iO2絶縁膜5にはスルーホール6が形成されている。
そしてこのスルーホール6内に、上層のNb超電導薄膜
3が入り込み、下層のNb超電導薄膜2と相互に接続さ
れている。Embodiment FIG. 1 is a sectional view showing a schematic structure of an embodiment of the present invention. The lower layer Nb superconducting thin film 2 formed on the substrate 1 constitutes, for example, a detection coil of a SQUID, and the upper layer Nb superconducting thin film 3 is a superconducting lead for connecting this detection coil to others. The surrounding part of the lower layer Nb superconducting thin film 2 is covered with a SiO insulating film 4, and the upper part is covered with a SiO2 insulating film 5.
A through hole 6 is formed in the iO2 insulating film 5. The upper layer Nb superconducting thin film 3 enters into this through hole 6 and is interconnected with the lower layer Nb superconducting thin film 2.
【0009】スルーホール6内における下層と上層のN
b超電導薄膜2と3の接合界面近傍はNbN 層7とな
っている。NbN は安定した高い臨界温度を持つ超電
導体であって、以上の本発明実施例の構造によると、N
bN 層7の存在により、上層のNb超電導薄膜3と下
層のNb超電導薄膜2は確実に超電導接続されることに
なり、Nb薄膜の積層構造を持つSQUID等の素子に
おいて、超電導接続を要する箇所に上記した構造を採用
することにって、素子の歩留りは向上する。N of the lower layer and upper layer in the through hole 6
Near the junction interface between the b superconducting thin films 2 and 3 is a NbN layer 7. NbN is a superconductor with a stable and high critical temperature, and according to the structure of the embodiment of the present invention described above, NbN
Due to the presence of the bN layer 7, the upper layer Nb superconducting thin film 3 and the lower layer Nb superconducting thin film 2 are reliably connected to each other by superconductivity, and in elements such as SQUIDs having a stacked structure of Nb thin films, superconducting connections are required at points where superconducting connections are required. By employing the above structure, the yield of devices is improved.
【0010】次に、以上の本発明実施例の製造方法につ
いて述べる。図2はその製造手順の説明図である。まず
、(A)に示すように、基板1上にスパッタリング法に
よりNb薄膜を形成した後、リアクティブイオンエッチ
ング等によって所望のパターニングを行い、下層のNb
超電導薄膜2を形成するとともに、そのパターンの上に
フォトレジストを介してSiO を蒸着することにより
、Nb超電導薄膜2の周囲を埋めるSiO 絶縁膜4を
形成して表面を平坦化する。Next, the manufacturing method of the above embodiment of the present invention will be described. FIG. 2 is an explanatory diagram of the manufacturing procedure. First, as shown in (A), an Nb thin film is formed on a substrate 1 by sputtering, and then a desired patterning is performed by reactive ion etching etc.
A superconducting thin film 2 is formed, and SiO 2 is deposited on the pattern through a photoresist to form an SiO 2 insulating film 4 filling the periphery of the Nb superconducting thin film 2 and flattening the surface.
【0011】次に(B)に示すように表面に一様にSi
O2絶縁膜5を蒸着した後、このSiO2絶縁膜5の所
定部分にリアクティブイオンエッチングによってコンタ
クト用のスルーホール6を穿つ。その後、(C)に示す
ように表面からAr+ を照射して表面のクリーニング
を行った後、(D)に示すようにリード層となる上層の
Nb超電導薄膜3を製膜する。Next, as shown in (B), Si is uniformly applied to the surface.
After depositing the O2 insulating film 5, a through hole 6 for contact is formed in a predetermined portion of the SiO2 insulating film 5 by reactive ion etching. Thereafter, as shown in (C), the surface is irradiated with Ar+ to clean the surface, and then, as shown in (D), an upper Nb superconducting thin film 3 that will become a lead layer is formed.
【0012】最後に、(E)示すように表面から、下層
と上層のNb超電導薄膜2と3の界面部分に飛程の中心
がくるように、例えばMevオーダー程度の高エネルギ
でN2をイオン注入する。これにより、図3に模式的拡
大断面図(A)とそのNbN の作成割合を表すグラフ
(B)を示すように、N2のイオンはNbと反応して、
下層と上層のNb超電導薄膜2と3の界面bを挟む領域
に臨界温度の高い安定したNbN 層7が形成され、N
b超電導薄膜2と3は確実に超電導接続される。Finally, as shown in (E), N2 ions are implanted from the surface at a high energy of, for example, Mev order, so that the center of the range is at the interface between the lower and upper Nb superconducting thin films 2 and 3. do. As a result, the N2 ions react with Nb, as shown in FIG. 3, which shows a schematic enlarged cross-sectional view (A) and a graph (B) showing the NbN production ratio.
A stable NbN layer 7 with a high critical temperature is formed in the region sandwiching the interface b between the lower and upper Nb superconducting thin films 2 and 3.
b The superconducting thin films 2 and 3 are reliably connected superconductingly.
【0013】[0013]
【発明の効果】 以上説明したように、本発明によれ
ば、Nb−Nb超電導接続部の接続界面近傍に臨界温度
が高く安定した化合物であるNbN を形成しているの
で、表面クリーニング等によっても界面部分に多少のN
bO等が残っていても、両者は確実に超電導接続される
ことになり、積層構造を持つSQUID等の素子に本発
明を適用することにより、その歩留りを向上させること
が可能となる。Effects of the Invention As explained above, according to the present invention, NbN, which is a stable compound with a high critical temperature, is formed near the connection interface of the Nb-Nb superconducting connection, so that it can be easily removed even by surface cleaning etc. Some N at the interface
Even if bO and the like remain, the two are reliably connected superconductingly, and by applying the present invention to elements such as SQUIDs having a stacked structure, it is possible to improve the yield.
【図1】 本発明実施例の模式的構造を示す断面図[Figure 1] Cross-sectional view showing a schematic structure of an embodiment of the present invention
【
図2】 本発明実施例の製造手順の例の説明図[
Figure 2: An explanatory diagram of an example of the manufacturing procedure of the embodiment of the present invention
【図3
】 図2(E)の界面近傍の模式的拡大断面図(A)
とそのNbN の作成割合を示すグラフ[Figure 3
] Schematic enlarged cross-sectional view (A) near the interface in Figure 2 (E)
Graph showing the creation rate of NbN
1・・・・基板 2・・・・下層のNb超電導薄膜 3・・・・上層のNb超電導薄膜 4・・・・SiO 絶縁膜 5・・・・SiO2絶縁膜 6・・・・スルーホール 7・・・・NbN 層 1... Board 2... Lower layer Nb superconducting thin film 3... Upper layer Nb superconducting thin film 4...SiO insulating film 5...SiO2 insulation film 6...Through hole 7...NbN layer
Claims (1)
接続されてなる超電導接続箇所において、接続界面近傍
にNbN が形成されていることを特徴とする超電導接
続構造。1. A superconducting connection structure characterized in that NbN is formed near the connection interface at a superconducting connection point where Nb superconductors and Nb superconductors are connected to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3066260A JPH04302180A (en) | 1991-03-29 | 1991-03-29 | Superconductive connecting structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3066260A JPH04302180A (en) | 1991-03-29 | 1991-03-29 | Superconductive connecting structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04302180A true JPH04302180A (en) | 1992-10-26 |
Family
ID=13310714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3066260A Pending JPH04302180A (en) | 1991-03-29 | 1991-03-29 | Superconductive connecting structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04302180A (en) |
-
1991
- 1991-03-29 JP JP3066260A patent/JPH04302180A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58200586A (en) | Josephson tunnel junction device of niob-insultor-niob and method of producing same | |
JP2764115B2 (en) | Manufacturing method of high sensitivity magnetic field detector | |
US5462762A (en) | Fabrication method of superconducting quantum interference device constructed from short weak links with ultrafine metallic wires | |
JPH04302180A (en) | Superconductive connecting structure | |
JPH04130680A (en) | Dc-squid element and manufacture thereof | |
JP2001091611A (en) | High magnetic field resolution fluxmeter | |
JPH0766462A (en) | Superconducting circuit | |
JPS6257263A (en) | Manufacture of josephson integrated circuit | |
JP3319205B2 (en) | Method of manufacturing Josephson junction device | |
JPS60147179A (en) | Superconducting multi-terminal element | |
JP2761504B2 (en) | Oxide superconducting device and manufacturing method thereof | |
JP2768276B2 (en) | Oxide superconducting junction element | |
JP2955407B2 (en) | Superconducting element | |
JP2564246B2 (en) | SQUID magnetic sensor | |
JPH02205784A (en) | Superconducting magnetoresistance element | |
JP3024400B2 (en) | Josephson junction device and method of manufacturing the same | |
JPH08186300A (en) | Pickup coil for oxide squid | |
JPH0414882A (en) | Josephson element | |
JPH03211777A (en) | Structure and manufacture of josephson junction | |
JPH05291632A (en) | Superconductive junction structure | |
JP3267352B2 (en) | Superconducting quantum interference device and method of manufacturing the same | |
JPH08204245A (en) | Josephson element | |
JPH04302181A (en) | Manufacture of quasi-plane josephson junction element | |
JPH07193286A (en) | Squid magnetic sensor | |
JPS5845193B2 (en) | josephson logic element |