JPH08204245A - Josephson element - Google Patents

Josephson element

Info

Publication number
JPH08204245A
JPH08204245A JP7013652A JP1365295A JPH08204245A JP H08204245 A JPH08204245 A JP H08204245A JP 7013652 A JP7013652 A JP 7013652A JP 1365295 A JP1365295 A JP 1365295A JP H08204245 A JPH08204245 A JP H08204245A
Authority
JP
Japan
Prior art keywords
superconductor
insulating film
region
thin films
josephson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7013652A
Other languages
Japanese (ja)
Inventor
Yoichi Fujiyama
陽一 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7013652A priority Critical patent/JPH08204245A/en
Publication of JPH08204245A publication Critical patent/JPH08204245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE: To obtain a Josephson element which can be fabricated as easily as the quasi-planar Josephson junction without locating the junction at the outermost layer while suppressing deterioration of characteristics due to aging. CONSTITUTION: Two thin films 1, 2 of superconductor are laminated through an insulation film 3 of oxide or nitride of a superconductor. A superconductor region 4, not oxidized nor nitrided, is formed partially on the insulation film 3 and the two thin films 1, 2 of superconductor are mutually bonded through the superconductor region 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はジョセフソン素子に関
し、例えば生体磁気等の微弱磁界の計測等に用いられる
SQUIDや、ミリ波検出素子等のほか、ジョセフソン
接合部を有するあらゆる素子に対して適用可能なジョセ
フソン素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Josephson element, for example, SQUID used for measuring a weak magnetic field such as biomagnetism, a millimeter wave detecting element, and any element having a Josephson junction. Applicable Josephson device.

【0002】[0002]

【従来の技術】ジョセフソン接合には、従来、大きく分
けてトンネル型とマイクロブリッジ型(弱結合型)の2
つのタイプが知られている。このうち、トンネル型は最
も一般的に用いられているタイプであり、2つの超電導
体薄膜の間を、薄い絶縁膜(バリア)によってトンネル
接合した構造である。一方、マイクロブリッジ型は2つ
の超電導体薄膜を微小なブリッジ(弱結合部)によって
接合した構造を持ち、平面上に設けた2つの超電導薄膜
間を同じ平面上に形成されたブリッジで接合する構造の
平面型のほかに、2つの超電導体薄膜を絶縁膜を介して
部分的に積層するとともに、その積層部分において上下
の超電導薄膜を、これら両者の表面に跨がるようなブリ
ッジを形成した構造の準平面型のものがある。
2. Description of the Related Art Conventionally, a Josephson junction is roughly divided into a tunnel type and a microbridge type (weak coupling type).
Two types are known. Of these, the tunnel type is the most commonly used type and has a structure in which two superconducting thin films are tunnel-joined by a thin insulating film (barrier). On the other hand, the microbridge type has a structure in which two superconducting thin films are joined by a minute bridge (weak coupling portion), and two superconducting thin films provided on a plane are joined by a bridge formed on the same plane. In addition to the planar type, two superconducting thin films are partially laminated via an insulating film, and the superconducting thin films above and below are formed in the laminated part to form a bridge across both surfaces. There is a quasi-planar type.

【0003】[0003]

【発明が解決しようとする課題】ところで、以上の各タ
イプのジョセフソン接合のうち、トンネル型は数十Å程
度の極めて薄い絶縁膜(バリア)が必要であって、高度
な膜作成技術を要求されて作成が困難であり、また、接
合部のサイズを小さくできないために低ノイズ化が困難
であると言われている。
By the way, of the above types of Josephson junctions, the tunnel type requires an extremely thin insulating film (barrier) of about several tens of liters, and requires advanced film forming technology. Therefore, it is said that it is difficult to make it, and it is difficult to reduce the noise because the size of the joint cannot be reduced.

【0004】一方、マイクロブリッジ型は、原理的に接
合部のサイズが小さいために低ノイズ化には有利である
が、ブリッジの断面積、長さを非常に小さくする必要が
あるため、平面上の微細加工に頼らざるを得ない平面型
のものでは、接合部の作成が極めて困難である。
On the other hand, the microbridge type is advantageous in reducing noise because the size of the joint is small in principle, but it is necessary to make the cross-sectional area and length of the bridge extremely small, so that it is on a plane. It is extremely difficult to create a joint with a flat type that must rely on the microfabrication described above.

【0005】これに対しマイクロブリッジ型のうちの準
平面型のものは、ブリッジの長さ(ウィークリンク長)
は絶縁膜の膜厚によって決まり、また、その超伝導体薄
膜としてNb等を用いる場合に絶縁膜は数百Å程度でよ
く、トンネル型の絶縁膜よりも作成が容易で、しかもそ
の程度の厚さの膜ではその膜厚制御が比較的容易である
ために、平面型のマイクロブリッジに比してウィークリ
ンク長を容易に、かつ、再現性よく短くすることができ
る点において有利である。
On the other hand, the quasi-planar type among the microbridge types has a bridge length (weak link length).
Is determined by the thickness of the insulating film, and when Nb or the like is used as the superconductor thin film, the insulating film can be several hundred liters, which is easier to create than a tunnel-type insulating film, and has a thickness of that level. Since it is relatively easy to control the film thickness of the saano film, it is advantageous in that the weak link length can be shortened easily and reproducibly as compared with the planar microbridge.

【0006】しかし、準平面型のジョセフソン接合で
は、絶縁膜を介して互いに積層された2つの超電導薄膜
の双方に跨がるブリッジを形成する関係上、ジョセフソ
ン接合部が素子の最外層にあるため、外界の影響によっ
て接合特性が経時的に劣化しやすいという欠点がある。
However, in the quasi-planar type Josephson junction, the Josephson junction is the outermost layer of the device because it forms a bridge that extends over both of the two superconducting thin films laminated with the insulating film interposed therebetween. Therefore, there is a drawback that the bonding characteristics are likely to deteriorate with time due to the influence of the external environment.

【0007】本発明の目的は、準平面型のジョセフソン
接合と同様に比較的作成が容易で、しかも接合部が最外
層にくることなく、もって経時的な接合特性の劣化が少
ないジョセフソン素子を提供することにある。
An object of the present invention is to make a Josephson device which is relatively easy to make similarly to the quasi-planar type Josephson junction, and in which the junction does not reach the outermost layer, and thus the junction characteristics are less deteriorated with time. To provide.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの構成を、実施例図面である図1を参照しつつ説明す
ると、本発明のジョセフソン素子は、2つの超電導体薄
膜1,2が、超電導体の酸化物もしくは窒化物からなる
絶縁膜3を介して積層されているとともに、その絶縁膜
3には、部分的に酸化または窒化されていない超電導体
領域4が形成され、その絶縁膜3の超電導体領域4によ
って2つの超電導体薄膜1と2が相互に接合されている
ことによって特徴づけられる。
A structure for achieving the above object will be described with reference to FIG. 1 which is an embodiment drawing, and a Josephson element of the present invention has two superconductor thin films 1 and 2. Are laminated via an insulating film 3 made of oxide or nitride of a superconductor, and a superconductor region 4 which is not partially oxidized or nitrided is formed in the insulating film 3 and its insulation It is characterized in that the two superconductor thin films 1 and 2 are joined to each other by the superconductor region 4 of the membrane 3.

【0009】ここで、本発明は、絶縁膜3中の超伝導体
領域4の両端がそれぞれ直接的に超伝導体薄膜1および
2に接触している状態のほか、後述する製造工程の都合
により、超伝導体領域4の一端といずれかの超伝導体薄
膜1または2の間に、近接効果を発揮する物質の微小片
が介在してもよい。
Here, in the present invention, both ends of the superconductor region 4 in the insulating film 3 are in direct contact with the superconductor thin films 1 and 2, respectively, and also due to the manufacturing process described later. A minute piece of a substance exhibiting the proximity effect may be interposed between one end of the superconductor region 4 and any one of the superconductor thin films 1 or 2.

【0010】[0010]

【作用】絶縁膜3中の超電導体領域4は、その上下に存
在する2つの超電導薄膜1および2を相互に接合するマ
イクロブリッジを構成する。このジョセフソン接合のウ
ィークリンク長は、準平面型のマイクロブリッジと同様
に絶縁膜3の厚さで決まり、しかもそのウィークリンク
長は百ないし数百Å程度でよいため、その作成の困難性
はなく、膜厚の制御性並びに再現性は良好である。そし
て、このようなマイクロブリッジが2つの超電導体薄膜
1と2で挟まれた内側に存在するが故に、外部雰囲気等
の影響を受けにくく、経時的な劣化は生じにくい。
The superconductor region 4 in the insulating film 3 constitutes a microbridge that joins the two superconducting thin films 1 and 2 existing above and below it. The weak link length of this Josephson junction is determined by the thickness of the insulating film 3 similarly to the quasi-planar microbridge, and the weak link length may be about 100 to several hundred Å. The controllability and reproducibility of the film thickness are good. Since such a microbridge exists inside the two superconductor thin films 1 and 2, the microbridge is not easily affected by the external atmosphere or the like, and is not easily deteriorated with time.

【0011】[0011]

【実施例】図1は本発明の基本的実施例の構造を示す模
式的断面図である。基板10の上に下部電極1が形成さ
れ、その上方に絶縁膜3を介して上部電極2が積層され
ている。この例において下部電極1および上部電極2
は、いずれもNb超伝導薄膜である。
1 is a schematic sectional view showing the structure of a basic embodiment of the present invention. The lower electrode 1 is formed on the substrate 10, and the upper electrode 2 is stacked thereabove with the insulating film 3 interposed therebetween. In this example, the lower electrode 1 and the upper electrode 2
Are Nb superconducting thin films.

【0012】絶縁膜3はNb超伝導体の酸化物、例えばNb
2O5 、であり、膜厚は4〜500Å程度で、その略中央
部は局部的に酸化されておらず、従ってこの非酸化領域
はNbからなる超伝導体領域4となっている。そして、こ
の絶縁膜3内の超伝導体領域4が、下部電極1と上部電
極2間を接合する弱結合型のジョセフソン接合部を形成
している。
The insulating film 3 is an oxide of Nb superconductor, such as Nb.
2 O 5 , the film thickness is about 4 to 500 Å, the substantially central portion thereof is not locally oxidized, and thus this non-oxidized region is the superconductor region 4 made of Nb. The superconductor region 4 in the insulating film 3 forms a weakly coupled Josephson junction that joins the lower electrode 1 and the upper electrode 2.

【0013】このような構造によると、ジョセフソン接
合部を形成する超伝導体領域4は、その上下が下部およ
び上部電極1および2により、また、周囲が絶縁膜3に
よって覆われ、外界に対して実質的に隔離されているた
め、雰囲気等の影響によって経時的に特性が劣化するこ
とがない。
According to such a structure, the superconductor region 4 forming the Josephson junction is covered with the lower and upper electrodes 1 and 2 at the upper and lower sides thereof, and with the insulating film 3 at the periphery thereof. Therefore, the characteristics are not deteriorated with time due to the influence of the atmosphere or the like.

【0014】次に、以上の本発明実施例の製造方法につ
いて述べる。図2〜図4はその製造手順の説明図で、各
図において(A)は平面図を、(B)はそのB−B断面
図を示している。
Next, the manufacturing method of the above embodiment of the present invention will be described. 2 to 4 are explanatory views of the manufacturing procedure thereof, in which (A) is a plan view and (B) is a cross-sectional view taken along the line BB.

【0015】まず、基板10上に一様なNb超伝導薄膜を
形成して、フォトリソグラフィ技術等を用いて下部電極
1をパターニングした後、図2に示すように、その下部
電極1の表面に、ジョセフソン接合部を形成したい位置
にEB露光装置等を用いて微小なドット状のレジストパ
ターン20を形成する。
First, a uniform Nb superconducting thin film is formed on the substrate 10, and the lower electrode 1 is patterned by using a photolithography technique or the like. Then, as shown in FIG. A minute dot-shaped resist pattern 20 is formed by using an EB exposure device or the like at a position where a Josephson junction is desired to be formed.

【0016】次に、図3に示すように、レジストパター
ン20を介在させて下部電極1の表面の陽極酸化を行
う。これにより、下部電極1の表面は、レジストパター
ン20の形成部分を除いて全面的に酸化してNb2O5 から
なる絶縁膜3となる一方、レジストパターン20の直下
部分は酸化せずNb超伝導体のまま残り、絶縁膜3内に局
部的に形成された超伝導体領域4となる。
Next, as shown in FIG. 3, the surface of the lower electrode 1 is anodized with the resist pattern 20 interposed. As a result, the surface of the lower electrode 1 is entirely oxidized to form the insulating film 3 made of Nb 2 O 5 except for the portion where the resist pattern 20 is formed, while the portion directly below the resist pattern 20 is not oxidized and exceeds Nb. It remains as a conductor and becomes the superconductor region 4 formed locally in the insulating film 3.

【0017】その後、レジストパターン20を除去した
後、絶縁膜3の上方からのNb超伝導体薄膜の形成とパタ
ーニングにより、下部電極1と絶縁膜3の上に積層され
た上部電極2を形成する。これにより、図1に示した構
造のジョセフソン素子が得られる。
After removing the resist pattern 20, the Nb superconductor thin film is formed from above the insulating film 3 and patterned to form the upper electrode 2 laminated on the lower electrode 1 and the insulating film 3. . As a result, the Josephson device having the structure shown in FIG. 1 is obtained.

【0018】ここで、本発明のジョセフソン接合部はブ
リッジ型のジョセフソン接合の一種に当たり、従ってそ
のブリッジ長は数百Å程度に短くする必要があるが、本
発明の素子構成によるとそのブリッジ長は絶縁膜3の膜
厚に依存する。この絶縁膜3の膜厚は、100Å〜10
00Åの範囲では再現性よく簡単に制御することができ
る。また、ブリッジ型のジョセフソン接合では、ブリッ
ジ長のほかにブリッジ幅(断面積)も小さくする必要が
あるが、上記した陽極酸化工程を用いた製造方法による
と、レジストパターン20で覆われることにより酸化さ
れない領域は、その周囲の露呈表面等からの酸素の進入
により、実際のレジストパターン20のサイズよりも目
減りし、その分、超伝導体領域4のサイズ(断面積)が
減少し、EB露光によるレジストパターン20の作成限
界のサイズよりも小さなサイズの超伝導体領域4が得ら
れ、平面上での微細加工の限界を超えたブリッジ幅を持
つマイクロブリッジ型のジョセフソン接合が得られる。
Here, the Josephson junction of the present invention corresponds to a kind of bridge type Josephson junction, and therefore, the bridge length needs to be shortened to several hundred Å, but according to the element structure of the present invention, the bridge is formed. The length depends on the film thickness of the insulating film 3. The insulating film 3 has a film thickness of 100Å to 10
In the range of 00Å, control can be performed easily with good reproducibility. Further, in the bridge type Josephson junction, it is necessary to reduce the bridge width (cross-sectional area) in addition to the bridge length. However, according to the above-described manufacturing method using the anodic oxidation process, the bridge pattern is covered with the resist pattern 20. The area that is not oxidized becomes smaller than the actual size of the resist pattern 20 due to the entry of oxygen from the exposed surface and the like around the area, and the size (cross-sectional area) of the superconductor area 4 is reduced by that amount, and the EB exposure is performed. A superconductor region 4 having a size smaller than the limit of forming the resist pattern 20 is obtained, and a microbridge type Josephson junction having a bridge width exceeding the limit of fine processing on a plane is obtained.

【0019】次に、以上のような本発明実施例をDC−
SQUIDリングに適用した具体例を示す。図5はその
全体構成を示す平面図(A)と、そのB部拡大図(B)
である。
Next, the above-described embodiment of the present invention is applied to DC-
A specific example applied to the SQUID ring will be shown. FIG. 5 is a plan view (A) showing the overall structure and an enlarged view of the B portion (B).
Is.

【0020】この例において、下部電極1は、リングの
一部が切り欠かれ、その切り欠かかれたリングの両端部
がリング外方に伸びて引き出し部1a,1bを形成する
パターンを有しており、その下部電極1の2本の引き出
し部1a,1bの上に跨がるように、各引きだし部1
a,1bの表面を酸化することによって形成された絶縁
膜3(図示せず)を介して上部電極2が形成されてい
る。下部電極1および上部電極2はそれぞれNb超伝導体
薄膜であり、その間の絶縁膜3は前記した実施例と同様
にNb2O5 である。そして、この上部電極2と、下部電極
1の各引き出し部1a,1bとが積層されている部分
の、それぞれの絶縁膜3に、図1に示した構造の超伝導
体領域4がそれぞれ形成されている。このような構造に
より、下部電極1と上部電極2はこれらの間に介在する
絶縁膜3内に局所的に形成された微細な超伝導体領域
4,4によって2箇所で接合され、全体として超伝導ル
ープ内に2つのジョセフソン接合部が存在するDC−S
QUIDリングが得られる。
In this example, the lower electrode 1 has a pattern in which a part of the ring is notched, and both ends of the notched ring extend to the outside of the ring to form lead portions 1a and 1b. Each lead-out portion 1 so that it extends over the two lead-out portions 1a and 1b of the lower electrode 1.
The upper electrode 2 is formed via an insulating film 3 (not shown) formed by oxidizing the surfaces of a and 1b. The lower electrode 1 and the upper electrode 2 are Nb superconductor thin films, respectively, and the insulating film 3 between them is Nb 2 O 5 as in the above-mentioned embodiment. Then, the superconductor region 4 having the structure shown in FIG. 1 is formed in each insulating film 3 in the portion where the upper electrode 2 and the lead-out portions 1a and 1b of the lower electrode 1 are laminated. ing. With such a structure, the lower electrode 1 and the upper electrode 2 are joined at two locations by the fine superconductor regions 4 and 4 which are locally formed in the insulating film 3 which is interposed therebetween, so that the super electrode as a whole is superposed. DC-S with two Josephson junctions in the conduction loop
A QUID ring is obtained.

【0021】ここで、このようなDC−SQUIDリン
グ等のジョセフソン素子では、その素子が持つ接合容量
が問題となることがある。本発明のジョセフソン素子の
構造によると、ジョセフソン接合部である超伝導体領域
4の面積を相当に小さくすることができ、また、下部お
よび上部電極1および2間の距離は、トンネル接合(5
0Å程度)に比して相当に厚く(数百Å〜千Å程度)で
きるため、接合容量を極めて小さくすることが可能であ
るという利点もある。
Here, in the Josephson element such as the DC-SQUID ring, the junction capacitance of the element sometimes poses a problem. According to the structure of the Josephson device of the present invention, the area of the superconductor region 4 which is the Josephson junction can be made considerably small, and the distance between the lower and upper electrodes 1 and 2 can be 5
Since it can be made considerably thicker (about several hundred liters to about 1,000 liters) than that of 0 liters, there is also an advantage that the junction capacitance can be made extremely small.

【0022】なお、前記した製造方法では、絶縁膜3の
形成に陽極酸化法を用いたが、その他に熱酸化やUV−
3 による酸化、あるいはプラズマ酸化等の方法も用い
ることができる。また、絶縁膜は超伝導体の酸化物に限
らず、窒化により絶縁化する超伝導体薄膜を用いる場合
には窒化物であってもよく、窒化物の場合にはプラズマ
窒化によって絶縁膜を形成することができる。更に、超
伝導体薄膜としてはNbに限らず、酸化または窒化によっ
て絶縁化する超伝導体薄膜であれば任意のものを使用す
ることができることは勿論である。
In the above-mentioned manufacturing method, the anodic oxidation method is used to form the insulating film 3, but in addition, thermal oxidation or UV-
A method such as O 3 oxidation or plasma oxidation can also be used. The insulating film is not limited to the oxide of a superconductor, and may be a nitride when a superconductor thin film that is insulated by nitriding is used. In the case of a nitride, the insulating film is formed by plasma nitriding. can do. Further, the superconductor thin film is not limited to Nb, and it goes without saying that any superconductor thin film that is insulated by oxidation or nitridation can be used.

【0023】また、絶縁膜3の形成に際して、レジスト
パターン20の周囲からの酸素の回り込みによる、非酸
化領域の目減りが激しく、下部および上部電極1と2と
の間を接続する超伝導体領域4が形成されにくい場合に
は、レジストパターン20に加えて例えばAu等の近接効
果を発揮する物質の微小パターンをマスクとして酸化処
理をすればよい。すなわち、前記した製造工程におい
て、下部電極1のパターニングの後、その上に一様にAu
薄膜等の近接効果を発揮する物質の薄膜を形成する。そ
して、その上に図2に示したものと同等のレジストパタ
ーン20を形成し、これをマスクとしてAu薄膜をスパッ
タエッチング等によってパターニングし、下部電極1の
上に微小なAuパターンを形成する。そして、その微小Au
パターンを介在させた状態、あるいは更にその上にレジ
ストパターン20を介在させた状態で、陽極酸化等によ
って下部電極1の表面を酸化させることで、下部電極1
の表面に、局部的な非酸化領域つまり超伝導体領域4を
持つ絶縁膜3を形成する。その後、その上に上部電極2
を形成するに当たり、レジストパターン20を残してい
る場合にはこれを取り除くが、微小Auパターンについて
はこれを取り除いてもよいが、これを取り除くことな
く、その上から上部電極2を形成してもよい。微小Auパ
ターンを取り除かない場合、図6に模式的断面図を示す
ように、下部電極1と上部電極2は、超伝導体領域4お
よび微小Auパターン60を介して接続された構造となる
が、AuはNb超伝導体に対して近接効果を発揮するため、
下部および上部電極1と2は、超伝導体領域4および微
小Auパターン60を介して弱結合され、前記した実施例
と全く同様の作用効果を奏することができる。
Further, when the insulating film 3 is formed, the non-oxidized region is drastically reduced due to oxygen flowing from around the resist pattern 20, and the superconductor region 4 connecting the lower and upper electrodes 1 and 2 is formed. When it is difficult to form the oxides, the oxidation process may be performed by using, in addition to the resist pattern 20, a fine pattern of a substance that exhibits a proximity effect, such as Au, as a mask. That is, in the above-described manufacturing process, after patterning the lower electrode 1, Au is uniformly formed on the lower electrode 1.
A thin film of a substance that exhibits a proximity effect, such as a thin film, is formed. Then, a resist pattern 20 equivalent to that shown in FIG. 2 is formed thereon, and an Au thin film is patterned by sputter etching or the like using this as a mask to form a minute Au pattern on the lower electrode 1. And that small Au
By oxidizing the surface of the lower electrode 1 by anodic oxidation or the like with the pattern interposed, or with the resist pattern 20 further interposed thereon, the lower electrode 1
An insulating film 3 having a locally non-oxidized region, that is, a superconductor region 4 is formed on the surface of the. Then, the upper electrode 2 on top of it
When forming the resist pattern 20, if the resist pattern 20 remains, it is removed. For the minute Au pattern, this may be removed, but without removing this, the upper electrode 2 may be formed on the resist pattern 20. Good. When the fine Au pattern is not removed, as shown in the schematic cross-sectional view of FIG. 6, the lower electrode 1 and the upper electrode 2 have a structure in which they are connected via the superconductor region 4 and the fine Au pattern 60. Since Au exerts a proximity effect on Nb superconductors,
The lower and upper electrodes 1 and 2 are weakly coupled to each other via the superconductor region 4 and the minute Au pattern 60, and the same effect as that of the above-described embodiment can be obtained.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
2つの超伝導体薄膜を、超伝導体薄膜の酸化物または窒
化物からなる絶縁膜を介して積層し、その絶縁膜に局所
的に設けた超伝導体領域によって2つの超伝導体薄膜を
接合してマイクロブリッジ型のジョセフソン接合部を形
成しているから、ブリッジが上下の超伝導体薄膜および
絶縁膜によって外界に対して隔離することができ、準平
面型のブリッジのように外界の影響等による接合特性の
経時的な劣化が生じず、特にSQUID等のデバイスを
作成する場合に、後のプロセスの自由度が大きくとれる
という利点に繋がる。
As described above, according to the present invention,
Two superconductor thin films are laminated via an insulating film made of oxide or nitride of the superconductor thin film, and the two superconductor thin films are joined by a superconductor region locally provided on the insulating film. Since the micro-bridge type Josephson junction is formed by the above, the bridge can be isolated from the outside by the superconducting thin film and the insulating film above and below, and the influence of the outside can be obtained like a quasi-plane type bridge. This leads to an advantage that the junction characteristics are not deteriorated with time and the degree of freedom of the subsequent process can be increased particularly when a device such as SQUID is manufactured.

【0025】また、絶縁膜内に形成された超伝導体領域
によるブリッジは、そのブリッジ長が絶縁膜の膜厚によ
って決まり、しかも超伝導体薄膜としてNb等を用いた場
合に要求されるブリッジ長は数百Å程度と、良好な制御
性のもとに再現性よく作成可能な膜厚であるため、所望
のブリッジ長を持つ高精度のジョセフソン素子を再現性
よく得ることが可能となり、トンネル接合型のジョセフ
ソン接合に比して素子の作成が容易で、しかも、絶縁膜
の膜厚を厚くできる分だけ、接合容量を減少させること
ができ、この点においてもSQUID等のデバイスへの
応用に際して大きな利点となる。
The bridge length of the superconductor region formed in the insulating film is determined by the thickness of the insulating film, and the bridge length required when Nb or the like is used as the superconductor thin film. Is a few hundred Å, which is a film thickness that can be created with good reproducibility under good controllability, so it is possible to obtain a high-precision Josephson element with the desired bridge length with good reproducibility. Compared to the junction-type Josephson junction, it is easier to fabricate the element, and the junction capacitance can be reduced by increasing the thickness of the insulating film. In this respect, application to devices such as SQUID is also possible. This is a great advantage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的な実施例の構成を示す模式的断
面図
FIG. 1 is a schematic sectional view showing the configuration of a basic embodiment of the present invention.

【図2】その製造方法の手順の説明図であり、(A)は
平面図で(B)はそのB−B断面図
2A and 2B are explanatory views of the procedure of the manufacturing method, in which FIG. 2A is a plan view and FIG.

【図3】同じく平面図(A)とそのB−B断面図(B)
で示す本発明の基本的な実施例の製造方法の手順の説明
FIG. 3 is a plan view (A) and a cross-sectional view (B) taken along line BB of FIG.
Illustration of the procedure of the manufacturing method of the basic embodiment of the present invention shown in

【図4】同じく平面図(A)とそのB−B断面図(B)
で示す本発明の基本的な実施例の製造方法の手順説明図
FIG. 4 is a plan view (A) and a cross-sectional view (B) taken along line BB of FIG.
Step explanatory drawing of the manufacturing method of the basic embodiment of the present invention shown in

【図5】本発明をDC−SQUIDリングに適用した実
施例の全体構成を示す平面図(A)とそのB部の拡大図
(B)
FIG. 5 is a plan view (A) showing an overall configuration of an embodiment in which the present invention is applied to a DC-SQUID ring and an enlarged view of a portion B thereof (B).

【図6】本発明の他の実施例の構成を示す模式的断面図FIG. 6 is a schematic cross-sectional view showing the configuration of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 下部電極(Nb超伝導体薄膜) 2 上部電極(Nb超伝導体薄膜) 3 絶縁膜(Nb2O5 ) 4 超伝導体領域(Nb) 10 基板 20 レジストパターン 60 微小Auパターン1 Lower electrode (Nb superconductor thin film) 2 Upper electrode (Nb superconductor thin film) 3 Insulating film (Nb 2 O 5 ) 4 Superconductor region (Nb) 10 Substrate 20 Resist pattern 60 Small Au pattern

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 2つの超電導体薄膜が、超電導体薄膜の
酸化物もしくは窒化物からなる絶縁膜を介して積層され
ているとともに、その絶縁膜には、部分的に酸化または
窒化されていない超電導体領域が形成され、その絶縁膜
の超電導体領域によって上記2つの超電導体薄膜が相互
に接合されてなるジョセフソン素子。
1. A superconducting thin film, wherein two superconducting thin films are laminated via an insulating film made of an oxide or a nitride of the superconducting thin film, and the insulating film is not partially oxidized or nitrided. A Josephson device in which a body region is formed, and the two superconductor thin films are joined to each other by the superconductor region of the insulating film.
JP7013652A 1995-01-31 1995-01-31 Josephson element Pending JPH08204245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013652A JPH08204245A (en) 1995-01-31 1995-01-31 Josephson element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7013652A JPH08204245A (en) 1995-01-31 1995-01-31 Josephson element

Publications (1)

Publication Number Publication Date
JPH08204245A true JPH08204245A (en) 1996-08-09

Family

ID=11839161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013652A Pending JPH08204245A (en) 1995-01-31 1995-01-31 Josephson element

Country Status (1)

Country Link
JP (1) JPH08204245A (en)

Similar Documents

Publication Publication Date Title
JP2780473B2 (en) DC-SQUID element and method of manufacturing the same
JPH08204245A (en) Josephson element
JPH11186623A (en) Magnetic sensor
KR20010050950A (en) SQUID elements
JP3319205B2 (en) Method of manufacturing Josephson junction device
JPH0766462A (en) Superconducting circuit
JPH0323684A (en) Josephson junction element
JPH0432275A (en) Stepped region type josephson junction element
JPH02249284A (en) Josephson element
JPH04302180A (en) Superconductive connecting structure
JPS63306675A (en) Josephson junction element
JPS6257263A (en) Manufacture of josephson integrated circuit
JP3084043B2 (en) Elements using superconductivity
JPS61144892A (en) Production of josephson integrated circuit
JP2976388B2 (en) Josephson junction element and method of forming Josephson junction
JP2564246B2 (en) SQUID magnetic sensor
JPH04252087A (en) Manufacture of josephson junction element
JPH04116989A (en) Superconducting quantum interference device and manufacture of the same
JPH0613672A (en) Manufacture of josephson junction device
JPH06140679A (en) Dc-squid
JPS6257262A (en) Manufacture of josephson junction element
JPS59101884A (en) Manufacture of thin film point contact element
JPH04302181A (en) Manufacture of quasi-plane josephson junction element
JPS605231B2 (en) Manufacturing method of Josephson device
JPH0282586A (en) Manufacture of superconducting device