JPH04302118A - Chip type laminated capacitor - Google Patents

Chip type laminated capacitor

Info

Publication number
JPH04302118A
JPH04302118A JP3091421A JP9142191A JPH04302118A JP H04302118 A JPH04302118 A JP H04302118A JP 3091421 A JP3091421 A JP 3091421A JP 9142191 A JP9142191 A JP 9142191A JP H04302118 A JPH04302118 A JP H04302118A
Authority
JP
Japan
Prior art keywords
protective
electrodes
dielectric layer
chip
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3091421A
Other languages
Japanese (ja)
Other versions
JP2874380B2 (en
Inventor
Haruki Iwamizu
岩水 治樹
Koichiro Yoshimoto
幸一郎 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14025911&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04302118(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3091421A priority Critical patent/JP2874380B2/en
Publication of JPH04302118A publication Critical patent/JPH04302118A/en
Application granted granted Critical
Publication of JP2874380B2 publication Critical patent/JP2874380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain at low cost a highly reliable chip type laminated ceramic capacitor having both high voltage-withstand characteristics, especially the suppressing performance of creeping discharge, when the AC current is applied and high humidity resistance and load life characteristics, and also having no electrochemical deterioration for the ceramic dielectric layer between an inner electrode and a terminal electrode. CONSTITUTION:Protective dielectric layers 16 and 17 are laminated on the outermost ceramic dielectric layer 13a and 13g, protective electrodes 16a, 16b, 17a and 17b are formed by printing on the surface of the protective dielectric layers 16 and 17 opposing to the enveloping part of the bare chip end part of the terminal electrodes 12a and 12b, and the protective electrodes 16a, 16b, 17a and 17b are connected to the terminal electrode in such a manner that they become equipotential to the terminal electrodes 12a and 12b.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は面実装用のチップ型積層
セラミックコンデンサに関する。更に詳しくは積層セラ
ミックコンデンサの内部電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip type multilayer ceramic capacitor for surface mounting. More specifically, the present invention relates to internal electrodes of multilayer ceramic capacitors.

【0002】0002

【従来の技術】チップ型積層セラミックコンデンサは、
基板等の表面に直接実装される面実装用電子部品として
広く用いられている。このコンデンサは、内部電極とセ
ラミック誘電体とを交互に積層することにより複数の内
部電極同士が対向するベアチップを形成し、このベアチ
ップの端部に内部電極が取出され、この取出された部分
を含むベアチップの端部を包込むように覆って外部接続
用の端子電極を形成して作られる。一方、近年積層セラ
ミックコンデンサの技術開発が進み、従来はタンタルコ
ンデンサや電解コンデンサが用いられた分野にまで積層
セラミックコンデンサが使用され始めている。例えばス
イッチング電源の平滑用コンデンサ等が挙げられる。こ
のような用途ではコンデンサは大容量で高耐圧であるこ
とが要求され、しかも交流での耐電圧特性及び交流での
耐湿負荷寿命特性が重要となっている。
[Prior art] Chip type multilayer ceramic capacitors are
It is widely used as a surface-mounted electronic component that is directly mounted on the surface of a substrate or the like. This capacitor forms a bare chip in which a plurality of internal electrodes face each other by alternately stacking internal electrodes and a ceramic dielectric, and the internal electrode is taken out at the end of this bare chip, and the taken out part is included in the capacitor. It is made by covering the ends of a bare chip to form terminal electrodes for external connection. On the other hand, the technological development of multilayer ceramic capacitors has progressed in recent years, and multilayer ceramic capacitors are beginning to be used in fields where tantalum capacitors and electrolytic capacitors have traditionally been used. Examples include smoothing capacitors for switching power supplies. In such applications, capacitors are required to have large capacity and high withstand voltage, and in addition, withstand voltage characteristics under alternating current and moisture resistance and load life characteristics under alternating current are important.

【0003】0003

【発明が解決しようとする課題】しかし、チップ型積層
セラミックコンデンサでは端子電極に含まれるガラスフ
リット中のガラス成分がチップのセラミック誘電体層に
拡散して電気的に弱い部分を形成し易いため、端子電極
部分に水分が浸入した状態で交流を印加してコンデンサ
に常に電流を流すと、端子電極近傍の誘電体層では電気
化学的な劣化又は腐食が起きることがあった。特に最外
層の内部電極が形成されていない部分と端子電極のベア
チップ端部の包込み部分との間のセラミック誘電体層に
おいてその傾向が顕著でこの誘電体層で絶縁不良を引起
こす恐れがあった。またチップ型積層セラミックコンデ
ンサに空気中で高電圧を印加した場合、沿面放電と呼ば
れる現象が起きる。これはコンデンサ表面の誘電体層中
の端子電極とそれに対向する内部電極の最外層の間で、
コロナ放電が起き、電流が流れる現象である。この現象
は交流で特に顕著に起き、500Vrms程度で発生す
るため、電源用途などでは大きな問題となる。コロナ発
生電圧以上の電圧を印加すると、コロナは大きくなり、
最終的には対向する端子電極間で放電を起こすに至り、
絶縁不良又は誘電体層の絶縁破壊を引起こす恐れがあっ
た。従来のコンデンサはこの沿面放電を防止するために
コンデンサ表面に絶縁性のオイルを塗布したり、回路全
体を樹脂で封止する処理がなされているが、オイル塗布
工程や樹脂封止工程が更に必要となる不具合があった。
[Problems to be Solved by the Invention] However, in chip-type multilayer ceramic capacitors, the glass components in the glass frit contained in the terminal electrodes tend to diffuse into the ceramic dielectric layer of the chip and form electrically weak parts. If an alternating current is applied to a capacitor with moisture infiltrating the terminal electrode portion, and a current is constantly passed through the capacitor, electrochemical deterioration or corrosion may occur in the dielectric layer near the terminal electrode. This tendency is particularly noticeable in the ceramic dielectric layer between the outermost layer where no internal electrode is formed and the terminal electrode wrapped around the bare chip end, and there is a risk of insulation failure in this dielectric layer. Ta. Furthermore, when a high voltage is applied to a chip-type multilayer ceramic capacitor in air, a phenomenon called creeping discharge occurs. This is between the terminal electrode in the dielectric layer on the surface of the capacitor and the outermost layer of the internal electrode facing it.
This is a phenomenon in which corona discharge occurs and current flows. This phenomenon occurs particularly markedly with alternating current, and occurs at about 500 Vrms, and therefore becomes a big problem in power supply applications. When a voltage higher than the corona generation voltage is applied, the corona becomes larger,
Eventually, a discharge will occur between the opposing terminal electrodes,
There was a risk of insulation failure or dielectric breakdown of the dielectric layer. To prevent this creeping discharge, conventional capacitors are coated with insulating oil on the surface of the capacitor or sealed with resin for the entire circuit, but additional oil coating and resin sealing processes are required. There was a problem.

【0004】本発明の目的は、交流が印加されたときの
耐電圧特性及び交流での耐湿負荷寿命特性がそれぞれ高
く、しかも内部電極と端子電極間のセラミック誘電体層
が電気化学的に劣化することのないチップ型積層セラミ
ックコンデンサを提供することにある。更に本発明の目
的は、沿面放電を本質的に防止し、表面処理を必要とし
ないチップ型積層セラミックコンデンサを提供すること
にある。
The object of the present invention is to have high withstand voltage characteristics when alternating current is applied and moisture resistance load life characteristics under alternating current, and also to prevent electrochemical deterioration of the ceramic dielectric layer between the internal electrode and the terminal electrode. Our objective is to provide a chip-type multilayer ceramic capacitor that never fails. A further object of the present invention is to provide a chip-type multilayer ceramic capacitor that essentially prevents creeping discharge and does not require surface treatment.

【0005】[0005]

【課題を解決するための手段】本発明者らは、従来のコ
ンデンサに交流を印加したときに生じる端子電極とこれ
に対向する内部電極間での絶縁不良の要因がガラスフリ
ットの誘電体層への拡散、水分及び電流の3点であって
、このうちの1点でも除去すれば、問題を解決できるこ
とを知見した。この中で誘電体層に拡散しないようにガ
ラスフリットの組成を決めることは端子電極の機械的特
性及びはんだ付け性等に大きく影響するため、最適なそ
の組成を見出すことは容易でなく、また水分の存在も不
可避であることから、誘電体層における電流を阻止する
ことにより、本発明に到達した。また本発明者らは、コ
ロナ放電が端子電極と、それに対向する内部電極間にか
かる電界に沿って発生していることを知見した。そこで
コロナ放電の発生を防止し、沿面放電の発生を避けるた
めには、上述と同様に誘電体層における電流を阻止すれ
ば良く、そのために端子電極が包込む誘電体層に電界が
かからない構造を考察して、本発明に到達した。即ち、
本発明は、図1及び図2に示すように層表面に内部電極
14が印刷された複数のセラミック誘電体層13a〜1
3gを積層することにより内部電極同士が対向しかつ端
部11a,11bに内部電極14が取出されたベアチッ
プ11と、ベアチップの端部11a,11bを包込むよ
うに覆って内部電極14に接続された一対の端子電極1
2a,12bとを備えたチップ型積層セラミックコンデ
ンサ10の改良である。その特徴ある構成は、最外層の
セラミック誘電体層13a,13gに保護誘電体層16
,17が積層され、保護誘電体層16,17の層表面に
端子電極12a,12bのベアチップ端部の包込み部分
に対向して保護電極16a,16b,17a,17bが
印刷形成され、保護電極16a,16b,17a,17
bは端子電極12a,12bと等電位となるように端子
電極に接続されたことにある。
[Means for Solving the Problems] The present inventors have discovered that the cause of poor insulation between the terminal electrode and the opposing internal electrode, which occurs when alternating current is applied to a conventional capacitor, is due to the dielectric layer of the glass frit. It has been found that the problem can be solved by removing at least one of the following three points: diffusion, moisture, and electric current. Determining the composition of the glass frit so that it does not diffuse into the dielectric layer greatly affects the mechanical properties and solderability of the terminal electrode, so it is not easy to find the optimal composition, and The present invention was achieved by blocking the current flow in the dielectric layer, since the presence of the dielectric layer is unavoidable. The present inventors also discovered that corona discharge occurs along the electric field applied between the terminal electrode and the internal electrode facing thereto. Therefore, in order to prevent the occurrence of corona discharge and avoid the occurrence of creeping discharge, it is sufficient to block the current in the dielectric layer as described above, and for this purpose, a structure is created in which no electric field is applied to the dielectric layer that the terminal electrode surrounds. After some consideration, we arrived at the present invention. That is,
As shown in FIGS. 1 and 2, the present invention provides a plurality of ceramic dielectric layers 13a to 1 having internal electrodes 14 printed on their surfaces.
3g are stacked so that the internal electrodes face each other and the bare chip 11 has the internal electrodes 14 taken out at the ends 11a and 11b. A pair of terminal electrodes 1
2a and 12b. Its characteristic structure is that the outermost ceramic dielectric layers 13a and 13g are covered with a protective dielectric layer 16.
, 17 are laminated, and protective electrodes 16a, 16b, 17a, 17b are printed on the surfaces of the protective dielectric layers 16, 17, facing the wrapped portions of the bare chip ends of the terminal electrodes 12a, 12b. 16a, 16b, 17a, 17
b is connected to the terminal electrodes so as to have the same potential as the terminal electrodes 12a and 12b.

【0006】[0006]

【作用】内部電極のダミー電極として、保護電極16a
,16b,17a,17bを最外層の内部電極14a,
14gが取出されていない部分の近傍に設けることによ
り、コンデンサに交流を印加したときに、この内部電極
14a,14gが取出されていない部分と端子電極12
a,12bのベアチップ端部の包込み部分との間の誘電
体層には電界がかからなくなる。これにより、ベアチッ
プ端部の端子電極12a,12bが包込まれる部分に対
向する誘電体層にガラスフリットの拡散層や水分が存在
していても、この誘電体層には電流そのものの流れが阻
止されるため電気化学的な腐食は生じなくなる。また、
電界がかからないことにより、コロナ放電は発生せず、
コンデンサに表面処理を施さなくても沿面放電を防止す
ることができる。
[Operation] Protective electrode 16a serves as a dummy electrode for internal electrodes.
, 16b, 17a, 17b as the outermost internal electrode 14a,
By providing the internal electrodes 14a and 14g near the unextracted portion, when alternating current is applied to the capacitor, the internal electrodes 14a and 14g are connected to the unextracted portion and the terminal electrode 12.
No electric field is applied to the dielectric layer between a and 12b and the wrapped portion of the end of the bare chip. As a result, even if there is a glass frit diffusion layer or moisture in the dielectric layer facing the part where the terminal electrodes 12a and 12b are wrapped at the end of the bare chip, the flow of current itself is blocked in this dielectric layer. electrochemical corrosion will no longer occur. Also,
Since no electric field is applied, no corona discharge occurs,
Creeping discharge can be prevented without surface treatment of the capacitor.

【0007】以下、本発明を詳述する。図1及び図2に
示すように、チップ型積層セラミックコンデンサ10は
ベアチップ11とこのベアチップ11の両端部11a,
11bに一対の端子電極12a,12bとを備える。図
ではベアチップ11は、7層のセラミック誘電体層13
a〜13gと、上から2層目の保護誘電体層16と、最
下層の保護誘電体層17と、最上層のカバー誘電体層1
8からなる合計10層を積層することにより形成される
。なお、本発明のコンデンサの誘電体層の積層数は10
層に限定されない。これらの誘電体層13a〜13g及
び16〜18はいずれも鉛ペロブスカイト系、又はチタ
ン酸バリウム系その他のセラミック誘電体からなる。 7層のセラミック誘電体層13a〜13gの各層表面に
はAg,Ag/Pd,Pt等の貴金属、或いはNi,F
e,Co等の卑金属を含む導電性ペーストが塗布されて
内部電極14a〜14gがそれぞれ印刷形成される。ま
た2層の保護誘電体層16,17の各層表面にも誘電体
層13a〜13gと同一の導電性ペーストが塗布されて
一対の保護電極16a,16b及び17a,17bがそ
れぞれ印刷形成される。これらの保護電極16a,16
b及び17a,17bは誘電体層16及び17のそれぞ
れ両端部に取出される。これらの内部電極14a〜14
gのうちセラミック誘電体層13a〜13gの奇数番目
の内部電極14a,14c,14e,14gは誘電体層
13a,13c,13e,13gの端部の右側に取出さ
れる。またセラミック誘電体層13a〜13gの偶数番
目の内部電極14b,14d,14fは誘電体層13b
,13d,13fの端部の左側に取出される。最外層の
セラミック誘電体層13a,13gの内部電極14a,
14gの取出し部近傍の保護電極16bと17bはこれ
らの取出し部がそれぞれ同等の役割を果すため設けなく
てもよいが、保護電極の印刷パターンを左右対称として
設けた方が、保護誘電体層16,17の生産管理及びそ
の積層工程を簡略化でき、好ましい。
The present invention will be explained in detail below. As shown in FIGS. 1 and 2, the chip-type multilayer ceramic capacitor 10 includes a bare chip 11, both ends 11a of the bare chip 11,
11b is provided with a pair of terminal electrodes 12a and 12b. In the figure, the bare chip 11 has seven ceramic dielectric layers 13
a to 13g, the second protective dielectric layer 16 from the top, the bottom protective dielectric layer 17, and the top cover dielectric layer 1.
It is formed by laminating a total of 10 layers consisting of 8 layers. Note that the number of laminated dielectric layers in the capacitor of the present invention is 10.
Not limited to layers. These dielectric layers 13a to 13g and 16 to 18 are all made of lead perovskite, barium titanate, or other ceramic dielectrics. The surface of each of the seven ceramic dielectric layers 13a to 13g is coated with noble metals such as Ag, Ag/Pd, and Pt, or Ni and F.
A conductive paste containing base metals such as E and Co is applied, and internal electrodes 14a to 14g are formed by printing, respectively. Further, the same conductive paste as that for the dielectric layers 13a to 13g is applied to the surfaces of the two protective dielectric layers 16 and 17, and pairs of protective electrodes 16a and 16b and 17a and 17b are formed by printing, respectively. These protective electrodes 16a, 16
b, 17a, and 17b are taken out at both ends of the dielectric layers 16 and 17, respectively. These internal electrodes 14a to 14
Odd-numbered internal electrodes 14a, 14c, 14e, and 14g of the ceramic dielectric layers 13a to 13g are taken out to the right of the ends of the dielectric layers 13a, 13c, 13e, and 13g. Furthermore, even-numbered internal electrodes 14b, 14d, and 14f of the ceramic dielectric layers 13a to 13g are connected to the dielectric layer 13b.
, 13d, and 13f. The inner electrode 14a of the outermost ceramic dielectric layer 13a, 13g,
It is not necessary to provide the protective electrodes 16b and 17b near the lead-out portion of 14g because these lead-out portions play the same roles, but it is better to provide the protective electrodes with a symmetrical printed pattern, since the protective dielectric layer 16 , 17 and its lamination process can be simplified, which is preferable.

【0008】セラミック誘電体層13a〜13gと保護
誘電体層16,17は所定の大きさに打抜かれ、最上層
のカバー誘電体層18とともに圧着される。圧着体は所
定のチップのサイズに切断された後、焼成されてベアチ
ップ11となる。このベアチップ11の端部11a,1
1bは端子電極12a,12bと確実に接続するために
バレル研磨される。研磨後、端部11a,11bを包込
むようにAg,Pd,Pt,Cuを1種又は2種以上を
含む導電性ペーストがそれぞれ塗布される。
The ceramic dielectric layers 13a to 13g and the protective dielectric layers 16 and 17 are punched out to a predetermined size and are press-bonded together with the uppermost cover dielectric layer 18. After the crimped body is cut into a predetermined chip size, it is fired to become a bare chip 11. End portions 11a, 1 of this bare chip 11
1b is barrel-polished to ensure reliable connection with terminal electrodes 12a, 12b. After polishing, a conductive paste containing one or more of Ag, Pd, Pt, and Cu is applied so as to wrap around the ends 11a and 11b.

【0009】塗布されたペーストはベアチップ11の端
部11a,11bに焼付けられる。これにより端子電極
12a,12bがベアチップ11の端部11a,11b
を包込むように覆いかつ内部電極14に接続される。保
護電極16a,16b及び17a,17bは端子電極1
2a,12bのベアチップ端部の包込み部分に対向する
。端子電極12aには保護電極16a,17a及び内部
電極14b,14d,14fが接続され、端子電極12
bには保護電極16b,17b及び内部電極14a,1
4c,14e,14gが接続される。端子電極12a,
12bの表面には、必要に応じて電気めっき層、例えば
Niめっき層、Sn/Pbめっき層を形成してもよい。 なお、図示しないが、内部電極の取出し部を誘電体層の
積層順にベアチップの一方の端部の左側部分及び右側部
分に交互に設け、左側部分及び右側部分をそれぞれ包込
むように覆って一対の端子電極を形成するチップ型積層
セラミックコンデンサにも本発明の保護電極を同様に設
けることができる。
The applied paste is baked onto the ends 11a and 11b of the bare chip 11. As a result, the terminal electrodes 12a, 12b are connected to the ends 11a, 11b of the bare chip 11.
and is connected to the internal electrode 14. Protective electrodes 16a, 16b and 17a, 17b are terminal electrodes 1
It faces the wrapped portion of the bare chip ends of 2a and 12b. Protective electrodes 16a, 17a and internal electrodes 14b, 14d, 14f are connected to the terminal electrode 12a.
Protective electrodes 16b, 17b and internal electrodes 14a, 1
4c, 14e, and 14g are connected. terminal electrode 12a,
An electroplating layer, such as a Ni plating layer or a Sn/Pb plating layer, may be formed on the surface of the layer 12b, if necessary. Although not shown, the extraction parts of the internal electrodes are provided alternately on the left and right parts of one end of the bare chip in the order in which the dielectric layers are stacked, and a pair of lead-out parts are provided so as to wrap around the left and right parts, respectively. The protective electrode of the present invention can be similarly provided on a chip-type multilayer ceramic capacitor forming a terminal electrode.

【0010】0010

【発明の効果】以上述べたように、本発明によれば、保
護誘電体層の層表面に端子電極のベアチップ包込み部分
に対向して保護電極をダミー電極として印刷形成し、保
護電極を端子電極と等電位となるように端子電極に接続
することにより、コンデンサに交流を印加したときに、
この内部電極が取出されていない部分と端子電極のベア
チップ端部の包込み部分との間の誘電体層には電界がか
からなくなる。これにより、ベアチップ端部の端子電極
が包込まれる部分に対向する誘電体層にガラスフリット
の拡散層や水分が存在していても、この誘電体層には電
流そのものの流れが阻止されるため電気化学的な腐食は
起らない。またこの誘電体層に電界がかかっていないた
め、コロナ放電の発生が抑えられ、沿面放電の発生を防
止することができる。この結果、極めて信頼性の高い積
層セラミックコンデンサが得られ、かつコンデンサの表
面処理を不要とすることができる。特に、本発明のコン
デンサは、その誘電体材料、端子電極材料に従来のもの
を使用でき、かつ保護電極層を除いて積層工程も従来の
工程と同一であるため、低コストで量産することができ
る利点もある。
As described above, according to the present invention, a protective electrode is printed as a dummy electrode on the layer surface of a protective dielectric layer, facing the bare chip encasing portion of the terminal electrode, and the protective electrode is attached to the terminal electrode. By connecting the terminal electrode so that it has the same potential as the electrode, when alternating current is applied to the capacitor,
No electric field is applied to the dielectric layer between the portion from which the internal electrode is removed and the portion of the terminal electrode that wraps around the bare chip end. As a result, even if there is a glass frit diffusion layer or moisture in the dielectric layer facing the part of the bare chip end where the terminal electrode is wrapped, the current itself will not flow through this dielectric layer. No electrochemical corrosion occurs. Further, since no electric field is applied to this dielectric layer, the occurrence of corona discharge can be suppressed, and the occurrence of creeping discharge can be prevented. As a result, an extremely reliable multilayer ceramic capacitor can be obtained, and surface treatment of the capacitor can be made unnecessary. In particular, the capacitor of the present invention can use conventional dielectric materials and terminal electrode materials, and the lamination process is the same as the conventional process except for the protective electrode layer, so it can be mass-produced at low cost. There are some advantages to doing so.

【0011】[0011]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例>セラミック誘電体層、保護誘電体層、カバー
誘電体層を構成する誘電体としていずれも鉛ペロブスカ
イト系のものを用いた。セラミック誘電体層は層間が8
0μmで、静電容量が47.3nFになるように構成し
た。内部電極及び保護電極はAg/Pdペーストを図2
に示すように各誘電体層の表面に塗布して形成した。ま
たベアチップの両端部にはAg/Pdペーストを図1に
示すように塗布した後、焼付け端子電極を形成した。こ
のセラミックコンデンサは長さが4.5mmで、幅が3
.3mmで、厚みが1.7mmであり、JIS−R特性
を有した。 <比較例>保護誘電体層を積層せず、保護電極を設けな
い以外は実施例と同様にしてセラミックコンデンサを作
製した。
EXAMPLES Next, examples of the present invention will be explained together with comparative examples. <Example> Lead perovskite-based dielectrics were used for the ceramic dielectric layer, the protective dielectric layer, and the cover dielectric layer. The ceramic dielectric layer has an interlayer spacing of 8
It was configured so that the capacitance was 47.3 nF at 0 μm. The internal electrodes and protective electrodes are made of Ag/Pd paste in Figure 2.
It was formed by coating the surface of each dielectric layer as shown in FIG. Furthermore, after applying Ag/Pd paste to both ends of the bare chip as shown in FIG. 1, baked terminal electrodes were formed. This ceramic capacitor is 4.5mm long and 3mm wide.
.. It had a thickness of 3 mm and a thickness of 1.7 mm, and had JIS-R characteristics. <Comparative Example> A ceramic capacitor was produced in the same manner as in the example except that a protective dielectric layer was not laminated and a protective electrode was not provided.

【0012】<試験方法>実施例及び比較例のセラミッ
クコンデンサについて、次の2種類の試験を行った。括
弧内の数値nは試験した試料数である。 (a) 交流耐湿負荷試験(n=30)85℃の温度で
85%の相対湿度下、250Vrmsで50Hzの交流
電圧を印加して1000時間後と10000時間経過ま
での劣化又は破壊の有無を調べた。 (b) 交流耐電圧試験(n=30) 空気中及びシリコーン油中で、昇圧速度100Vrms
/secで50Hzの交流電圧を印加して放電を開始す
る電圧を測定した。上記(a)及び(b)の結果を表1
に示す。
<Test Methods> The following two types of tests were conducted on the ceramic capacitors of Examples and Comparative Examples. The number n in parentheses is the number of samples tested. (a) AC humidity resistance load test (n = 30) At a temperature of 85°C and a relative humidity of 85%, an AC voltage of 50 Hz at 250 Vrms was applied, and the presence or absence of deterioration or destruction was examined after 1,000 hours and up to 10,000 hours. Ta. (b) AC withstand voltage test (n=30) Pressure increase rate 100Vrms in air and silicone oil
An alternating current voltage of 50 Hz was applied at a speed of 50 Hz/sec, and the voltage at which discharge started was measured. Table 1 shows the results of (a) and (b) above.
Shown below.

【0013】<試験結果と評価>交流耐湿負荷試験では
、保護電極を形成した実施例は保護電極を形成しない比
較例より耐湿性が大幅に改善され、1000時間経過し
た時点で破壊したコンデンサはなかった。これに対して
比較例のコンデンサは数10時間で破壊するものが現れ
、300時間経過するまでに全体の10%に当る3個が
破壊した。交流耐電圧試験では、保護電極を形成した実
施例は空気中でも沿面放電の発生はなく、かつ破壊電圧
のばらつきが小さくなり、結果的に平均値は比較例より
向上した。また実施例のコンデンサでは破壊は全て内部
電極部分で発生したが、比較例のコンデンサでは空気中
で試験した場合、沿面放電を起こすものがあった。以上
のことから、実施例は比較例に比べて極めて高い信頼性
を有することが判った。
<Test Results and Evaluation> In the AC humidity resistance load test, the humidity resistance of the example in which a protective electrode was formed was significantly improved compared to the comparative example in which no protective electrode was formed, and no capacitors broke down after 1000 hours. Ta. On the other hand, some of the capacitors in the comparative example broke down after several tens of hours, and three, or 10% of the capacitors, broke down by the time 300 hours had passed. In the AC withstand voltage test, the example in which the protective electrode was formed did not cause creeping discharge even in the air, and the variation in breakdown voltage was reduced, and as a result, the average value was improved compared to the comparative example. Furthermore, in the capacitors of the examples, all of the destruction occurred in the internal electrode portions, but in the capacitors of the comparative examples, some creeping discharge occurred when tested in air. From the above, it was found that the example had extremely high reliability compared to the comparative example.

【0014】[0014]

【表1】[Table 1]

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のチップ型積層セラミックコンデンサの
断面図。
FIG. 1 is a sectional view of a chip-type multilayer ceramic capacitor of the present invention.

【図2】その保護誘電体層及びセラミック誘電体層の積
層状況を示す斜視図。
FIG. 2 is a perspective view showing how the protective dielectric layer and ceramic dielectric layer are stacked.

【符号の説明】[Explanation of symbols]

10  チップ型積層セラミックコンデンサ11  ベ
アチップ 11a,11b  ベアチップの端部 12a,12b  一対の端子電極 13a〜13g  セラミック誘電体層14a〜14g
  内部電極 16,17  保護誘電体層
10 Chip type multilayer ceramic capacitor 11 Bare chips 11a, 11b Bare chip ends 12a, 12b Pair of terminal electrodes 13a to 13g Ceramic dielectric layers 14a to 14g
Internal electrodes 16, 17 Protective dielectric layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  層表面に内部電極(14)が印刷形成
された複数のセラミック誘電体層(13a〜13g)を
積層することにより前記内部電極同士が対向しかつ端部
(11a,11b)に前記内部電極(14)が取出され
たベアチップ(11)と、前記ベアチップの端部(11
a,11b)を包込むように覆って前記内部電極(14
)に接続された一対の端子電極(12a,12b)とを
備えたチップ型積層セラミックコンデンサ(10)にお
いて、最外層の前記セラミック誘電体層(13a,13
g)に保護誘電体層(16,17)が積層され、前記保
護誘電体層(16,17)の層表面に前記端子電極(1
2a,12b)のベアチップ端部の包込み部分に対向し
て保護電極(16a,16b,17a,17b)が印刷
形成され、前記保護電極(16a,16b,17a,1
7b)は前記端子電極(12a,12b)と等電位とな
るように前記端子電極に接続されたことを特徴とするチ
ップ型積層セラミックコンデンサ。
1. By laminating a plurality of ceramic dielectric layers (13a to 13g) each having internal electrodes (14) printed on the layer surface, the internal electrodes face each other and are located at the ends (11a, 11b). A bare chip (11) from which the internal electrode (14) has been taken out, and an end portion (11) of the bare chip.
a, 11b) so as to wrap around the internal electrodes (14).
), the chip-type multilayer ceramic capacitor (10) includes a pair of terminal electrodes (12a, 12b) connected to the outermost ceramic dielectric layers (13a, 13).
g) protective dielectric layers (16, 17) are laminated, and the terminal electrode (1) is formed on the surface of the protective dielectric layer (16, 17).
Protective electrodes (16a, 16b, 17a, 17b) are printed and formed opposite to the wrapped portions of the bare chip ends of 2a, 12b).
7b) is a chip-type multilayer ceramic capacitor, characterized in that it is connected to the terminal electrodes (12a, 12b) so as to have the same potential.
【請求項2】  保護電極(16a,16b,17a,
17b)がベアチップの両端部(12a,12b)の包
込み部分に対向して保護誘電体層(16,17)の表面
に印刷された請求項1記載のチップ型積層セラミックコ
ンデンサ。
[Claim 2] Protective electrodes (16a, 16b, 17a,
17b) is printed on the surface of the protective dielectric layer (16, 17) opposite to the enclosing portions of both ends (12a, 12b) of the bare chip.
【請求項3】  最外層のセラミック誘電体層(13a
,13g)の内部電極(14a,14g)の取出し部と
反対側のベアチップの端部(12a)の包込み部分に対
向して保護電極(16a,17a)が保護誘電体層(1
6,17)の表面に印刷された請求項1記載のチップ型
積層セラミックコンデンサ。
[Claim 3] The outermost ceramic dielectric layer (13a
, 13g), the protective electrodes (16a, 17a) are placed on the protective dielectric layer (1
6, 17) The chip type multilayer ceramic capacitor according to claim 1, wherein the chip type multilayer ceramic capacitor is printed on the surface of the chip type multilayer ceramic capacitor.
JP3091421A 1991-03-28 1991-03-28 Chip type multilayer ceramic capacitor Expired - Lifetime JP2874380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3091421A JP2874380B2 (en) 1991-03-28 1991-03-28 Chip type multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091421A JP2874380B2 (en) 1991-03-28 1991-03-28 Chip type multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH04302118A true JPH04302118A (en) 1992-10-26
JP2874380B2 JP2874380B2 (en) 1999-03-24

Family

ID=14025911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091421A Expired - Lifetime JP2874380B2 (en) 1991-03-28 1991-03-28 Chip type multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2874380B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394643B2 (en) 2005-01-31 2008-07-01 Tdk Corporation Laminated electronic component
JP2009527919A (en) * 2006-02-22 2009-07-30 ヴィシャイ スプレイグ,インコーポレイテッド Improved high voltage capacitor
JP2010147169A (en) * 2008-12-17 2010-07-01 Tdk Corp Multilayer ceramic electronic component
JP2011014698A (en) * 2009-07-01 2011-01-20 Murata Mfg Co Ltd Electronic component
US8213152B2 (en) * 2008-06-20 2012-07-03 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component including dummy conductors
US8238075B2 (en) 2006-02-22 2012-08-07 Vishay Sprague, Inc. High voltage capacitors
US20130341082A1 (en) * 2012-06-22 2013-12-26 Murata Manufacturing Co., Ltd. Ceramic electronic component and ceramic electronic apparatus
JP2014103371A (en) * 2012-11-20 2014-06-05 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor, circuit board packaging structure of multilayer ceramic capacitor, and packaging body of multilayer ceramic capacitor
US20140226255A1 (en) * 2013-02-13 2014-08-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic device and method for manufacturing the same
US11037733B2 (en) * 2018-10-11 2021-06-15 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor having dummy pattern
US11232909B2 (en) * 2018-08-23 2022-01-25 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116176A (en) 2019-09-19 2019-10-14 삼성전기주식회사 Multi-layered ceramic electroic components

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170924A (en) * 1984-02-16 1985-09-04 松下電器産業株式会社 Laminated ceramic condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170924A (en) * 1984-02-16 1985-09-04 松下電器産業株式会社 Laminated ceramic condenser

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394643B2 (en) 2005-01-31 2008-07-01 Tdk Corporation Laminated electronic component
JP2009527919A (en) * 2006-02-22 2009-07-30 ヴィシャイ スプレイグ,インコーポレイテッド Improved high voltage capacitor
US8238075B2 (en) 2006-02-22 2012-08-07 Vishay Sprague, Inc. High voltage capacitors
US8213152B2 (en) * 2008-06-20 2012-07-03 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component including dummy conductors
JP2010147169A (en) * 2008-12-17 2010-07-01 Tdk Corp Multilayer ceramic electronic component
JP2011014698A (en) * 2009-07-01 2011-01-20 Murata Mfg Co Ltd Electronic component
US20130341082A1 (en) * 2012-06-22 2013-12-26 Murata Manufacturing Co., Ltd. Ceramic electronic component and ceramic electronic apparatus
US9646767B2 (en) * 2012-06-22 2017-05-09 Murata Manufacturing Co., Ltd. Ceramic electronic component and ceramic electronic apparatus including a split inner electrode
JP2014103371A (en) * 2012-11-20 2014-06-05 Samsung Electro-Mechanics Co Ltd Multilayer ceramic capacitor, circuit board packaging structure of multilayer ceramic capacitor, and packaging body of multilayer ceramic capacitor
US9099249B2 (en) 2012-11-20 2015-08-04 Samsung Electro-Mechanics Co., Ltd. Multilayered ceramic capacitor, mounting structure of circuit board having multilayered ceramic capacitor thereon, and packing unit for multilayered ceramic capacitor
JP2018085517A (en) * 2012-11-20 2018-05-31 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayered ceramic capacitor, mounting structure of circuit board having multilayered ceramic capacitor thereon, and packing unit for multilayered ceramic capacitor
US20140226255A1 (en) * 2013-02-13 2014-08-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic device and method for manufacturing the same
US9455085B2 (en) * 2013-02-13 2016-09-27 Samsung Electro-Mechanics Co., Ltd Multilayer ceramic device having a crack guide pattern
US11232909B2 (en) * 2018-08-23 2022-01-25 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
US11037733B2 (en) * 2018-10-11 2021-06-15 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor having dummy pattern

Also Published As

Publication number Publication date
JP2874380B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
CN108400014B (en) Multilayer ceramic capacitor and board having the same
CN108682556B (en) Multilayer ceramic capacitor and board having the same
KR101952860B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR101514607B1 (en) Multi-layered ceramic capacitor and board for mounting the same
US7420795B2 (en) Multilayer capacitor
TWI739987B (en) Multilayer ceramic electronic parts
KR20150101920A (en) Multi-layered ceramic capacitor and board for mounting the same
US11735366B2 (en) Multilayer ceramic electronic component and method for manufacturing the same
KR102483618B1 (en) Multi-layered ceramic capacitor and board for mounting the same
JP7302940B2 (en) multilayer ceramic electronic components
JP7182926B2 (en) multilayer ceramic electronic components
CN112542316A (en) Multilayer capacitor
JP2015088747A5 (en)
JPH04302118A (en) Chip type laminated capacitor
US11776746B2 (en) Multilayer capacitor
KR102460760B1 (en) Multilayered capacitor
KR101532149B1 (en) Multi-layered ceramic capacitor, manufacturing method thereof and board having the same mounted thereon
JP4953989B2 (en) Multilayer capacitor and capacitor mounting board
KR20150008632A (en) Embedded multi-layered ceramic electronic component
WO2023243160A1 (en) Laminated ceramic capacitor
JPH04278508A (en) Chip type stacked ceramic capacitor
KR20200138117A (en) Multilayered capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981215