JPH04300287A - Diamond film - Google Patents

Diamond film

Info

Publication number
JPH04300287A
JPH04300287A JP8777591A JP8777591A JPH04300287A JP H04300287 A JPH04300287 A JP H04300287A JP 8777591 A JP8777591 A JP 8777591A JP 8777591 A JP8777591 A JP 8777591A JP H04300287 A JPH04300287 A JP H04300287A
Authority
JP
Japan
Prior art keywords
diamond film
film
diamond
hydrogen atoms
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8777591A
Other languages
Japanese (ja)
Other versions
JP3071854B2 (en
Inventor
Toru Inoue
亨 井上
Shinya Sumino
真也 角野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3087775A priority Critical patent/JP3071854B2/en
Publication of JPH04300287A publication Critical patent/JPH04300287A/en
Application granted granted Critical
Publication of JP3071854B2 publication Critical patent/JP3071854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To improve adhesive strength of a substrate to a diamond film. CONSTITUTION:The concentration of hydrogen atoms contained in a diamond film is controlled and reduced by external parameters such as film-forming conditions in preparing the diamond film by using a reaction gas containing hydrogen and the hydrogen atoms in a chemical vapor deposition(CVD) method. Thereby, the diamond film having an increased adhesive strength to a substrate is adopted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【発明上の利用分野】本発明は、ダイヤモンド膜作製に
関して、該ダイヤモンド膜中に含まれている水素原子量
とダイヤモンド膜の基板に対する密着強度に関する。
FIELD OF THE INVENTION The present invention relates to the production of a diamond film, and relates to the amount of hydrogen atoms contained in the diamond film and the adhesion strength of the diamond film to a substrate.

【0002】0002

【従来の技術】従来、ダイヤモンド膜をCVD法、例え
ばマイクロ波プラズマCVD法や熱フィラメントCVD
法などによって作製する際に、水素で炭素原子を含む原
料ガスを希釈することによって質の良い膜が得られるこ
とが知られている。例えば、水素を希釈ガスとしてメタ
ンを炭素原子を含む原料ガスとして用いるのであれば、
0.5〜1.5 %が最も膜質の良いダイヤモンド膜を
得ることができるメタン濃度である。炭素原料がアルコ
ール類であれば10%以上のアルコール濃度であっても
良質の膜が得られることが知られている。
[Prior Art] Conventionally, diamond films have been formed using CVD methods, such as microwave plasma CVD and hot filament CVD.
It is known that a high-quality film can be obtained by diluting a raw material gas containing carbon atoms with hydrogen when fabricating the film by a method such as a method. For example, if hydrogen is used as a diluent gas and methane is used as a raw material gas containing carbon atoms,
The methane concentration at which a diamond film with the best quality can be obtained is 0.5 to 1.5%. It is known that if the carbon raw material is an alcohol, a good quality film can be obtained even at an alcohol concentration of 10% or more.

【0003】また、従来では、基板とダイヤモンド膜の
密着強度向上のために、基板とダイヤモンド膜の界面に
着目して基板の前処理で酸処理を用いたり、ダイヤモン
ド膜作製時の成膜条件の最適化などが行われてきた。
[0003] Conventionally, in order to improve the adhesion strength between the substrate and the diamond film, acid treatment has been used in the pretreatment of the substrate, focusing on the interface between the substrate and the diamond film, and film forming conditions have been changed during the production of the diamond film. Optimizations have been made.

【0004】0004

【発明が解決しようとする課題】しかし、従来の方法で
はダイヤモンド膜と基板の間で十分な密着力を得ること
ができず、なかには自然剥離を起こすダイヤモンド膜さ
えも存在した。さらにはダイヤモンド膜のどのような物
性が基板との密着力に影響を与えているのかはっきりし
なかった。それゆえ、成膜条件の最適化には困難をとも
なっていた。
[Problems to be Solved by the Invention] However, with the conventional methods, it was not possible to obtain sufficient adhesion between the diamond film and the substrate, and some diamond films even peeled off naturally. Furthermore, it was not clear what physical properties of the diamond film affected its adhesion to the substrate. Therefore, it has been difficult to optimize the film forming conditions.

【0005】[0005]

【課題を解決するための手段】そこで、本発明では、C
VD法によるダイヤモンド膜が水素希釈によって作製さ
れていることに着目し、ダイヤモンド膜の物性値として
、膜中に含まれている水素原子濃度と、ダイヤモンド膜
と基板の密着強度の関係を調べることにより、ダイヤモ
ンド膜と基板の間で十分な密着力を得ることができるよ
うになった。
[Means for solving the problem] Therefore, in the present invention, C
Focusing on the fact that diamond films made by the VD method are produced by hydrogen dilution, we investigated the relationship between the hydrogen atom concentration contained in the film and the adhesion strength between the diamond film and the substrate as physical properties of the diamond film. , it became possible to obtain sufficient adhesion between the diamond film and the substrate.

【0006】すなわち、ダイヤモンド膜中に含まれてい
る水素原子濃度が低くなれば、基板に対する密着強度が
向上することがわかった。しかしながら、ダイヤモンド
膜中から水素原子を全く除去することは不可能であった
。ダイヤモンド膜中の水素原子がダイヤモンド膜中のど
の部分に含まれているかはわからなかったが、ダイヤモ
ンド膜が多結晶であれば粒界に多く含まれていると思わ
れ、これはダイヤモンド膜中の内部応力と関係している
と考えられる。
That is, it has been found that the lower the concentration of hydrogen atoms contained in the diamond film, the better the adhesion strength to the substrate. However, it has been impossible to completely remove hydrogen atoms from the diamond film. It was not known in which part of the diamond film the hydrogen atoms were contained, but if the diamond film was polycrystalline, it was thought that they were mostly contained in the grain boundaries. This is thought to be related to internal stress.

【0007】ダイヤモンド膜中から、水素原子を除去す
るための方法としては希釈濃度を高くして水素濃度を反
応ガス中で低くする方法がある。また、OH基が反応ガ
ス中に存在するような成膜条件でダイヤモンド膜を作製
し、該ダイヤモンド膜中から水素原子の脱離を行えば良
い。
One method for removing hydrogen atoms from a diamond film is to increase the dilution concentration to lower the hydrogen concentration in the reaction gas. Alternatively, a diamond film may be formed under film forming conditions such that OH groups are present in the reaction gas, and hydrogen atoms may be eliminated from the diamond film.

【0008】以下に実施例を示し、さらに本発明を説明
する。
[0008] The present invention will be further explained by showing examples below.

【0009】[0009]

【実施例】本実施例では図1に示す有磁場マイクロ波プ
ラズマCVD装置を用いた。反応ガスはメタノールと水
素の混合ガスを用いて、反応圧力およびガス混合比(メ
タノール流量/総流量の%表示)の変化によるダイヤモ
ンド膜中の水素原子濃度の変化を調べた。そのときの、
ダイヤモンド膜と基板との密着強度を評価した。メタノ
ールを用いたのはOH基を持っているのでダイヤモンド
膜中の水素原子除去に有効であると考えたからである。 他の成膜条件を以下に示す。基板はφ100mmSiウ
ェハーを用いた。基板温度は 800℃、マイクロ波(
 2.45GHz)出力は4kW、成膜時間は4hr、
最大磁場強度は2kGaussとした。
EXAMPLE In this example, a magnetic field microwave plasma CVD apparatus shown in FIG. 1 was used. A mixed gas of methanol and hydrogen was used as the reaction gas, and changes in the hydrogen atom concentration in the diamond film due to changes in the reaction pressure and gas mixture ratio (methanol flow rate/% of total flow rate) were investigated. At that time,
The adhesion strength between the diamond film and the substrate was evaluated. Methanol was used because it was thought to be effective in removing hydrogen atoms from the diamond film since it has an OH group. Other film forming conditions are shown below. A Si wafer with a diameter of 100 mm was used as the substrate. The substrate temperature was 800℃, microwave (
2.45GHz) output is 4kW, film formation time is 4hr,
The maximum magnetic field strength was 2 kGauss.

【0010】ダイヤモンド針をダイヤモンド膜表面に接
触させて該ダイヤモンド針に荷重を加えダイヤモンド膜
が剥離した荷重で密着力を評価した。すなわち、剥離発
生荷重が高いダイヤモンド膜ほど密着強度が強いことを
意味している。
A diamond needle was brought into contact with the surface of the diamond film, a load was applied to the diamond needle, and the adhesion was evaluated based on the load at which the diamond film peeled off. In other words, this means that the diamond film with a higher peeling generation load has a stronger adhesion strength.

【0011】上記成膜条件で作製したダイヤモンド膜の
剥離発生荷重と圧力およびガス混合比の関係を図2に示
す。反応圧力が高いほど密着強度の強いダイヤモンド膜
が作製され、ガス混合比が高いほど密着強度の強いダイ
ヤモンド膜が作製される。これらのダイヤモンド膜のラ
マンスペクトルを図3に示す。成膜圧力が低いほど膜質
が良くなり、またガス混合比が高いほど膜質がよくなっ
ていることがわかる。さらに、成膜の際にプラズマ発光
分光を行い、OHラジカル( 309nm)、Hα(6
56nm)、CH( 431nm)の強度比の変化を測
定し、プラズマ中の水素原子の存在を確認した。また、
このことから、プラズマ中の水素原子の存在量と、膜中
に取り込まれる水素原子の存在量の比較を行った。図4
にOHラジカル、Hα、CHの強度比と反応圧力および
ガス混合比の関係を示した。反応圧力が高くなるにつれ
てOH、Hαともに強度が強くなっているが、OH強度
のほうがHαの強度よりも増加率が高い。このことは、
圧力が高くなってくるとOH効果によりダイヤモンド膜
中からの水素原子引き抜き反応が大きくなっていること
を示している。ガス混合比が高くなるにつれてHαの強
度が減少しているが、OH強度が増加していることがわ
かる。すなわち、ガス混合比が高くなるにつれてOHの
ダイヤモンド膜中からの水素原子引き抜き反応が大きく
なることを示している。
FIG. 2 shows the relationship between the peeling load, pressure, and gas mixture ratio of the diamond film produced under the above film forming conditions. The higher the reaction pressure, the stronger the adhesive strength of the diamond film produced, and the higher the gas mixture ratio, the stronger the adhesive strength of the diamond film produced. The Raman spectra of these diamond films are shown in FIG. It can be seen that the lower the film forming pressure, the better the film quality, and the higher the gas mixture ratio, the better the film quality. Furthermore, plasma emission spectroscopy was performed during film formation to detect OH radicals (309 nm), Hα (6
The presence of hydrogen atoms in the plasma was confirmed by measuring the change in the intensity ratio of CH (431 nm) and CH (431 nm). Also,
Based on this, a comparison was made between the amount of hydrogen atoms present in the plasma and the amount of hydrogen atoms incorporated into the film. Figure 4
shows the relationship between the intensity ratio of OH radicals, Hα, and CH, reaction pressure, and gas mixture ratio. As the reaction pressure increases, both the OH and Hα intensities become stronger, but the OH intensity increases at a higher rate than the Hα intensity. This means that
This shows that as the pressure increases, the reaction of hydrogen atom extraction from the diamond film increases due to the OH effect. It can be seen that as the gas mixture ratio increases, the Hα intensity decreases, but the OH intensity increases. That is, it is shown that as the gas mixture ratio increases, the reaction of OH to extract hydrogen atoms from the diamond film increases.

【0012】図5にSIMS分析によるダイヤモンド膜
中の水素原子量の比較を行った。高圧合成のダイヤモン
ドはほとんど水素原子が含まれていないと考えてよいの
で、高圧合成ダイヤモンドの水素原子量がバック・グラ
ウンドである。そのため、他のダイヤモンド膜中の水素
原子濃度の大小関係は図5に示されているもので十分に
有意差があると考えられる。すなわち、反応圧力が高く
なるにつれて、ダイヤモンド膜中に含まれる水素原子濃
度は低下し、またガス混合比が高くなるにつれてダイヤ
モンド膜中に含まれる水素原子濃度は低下していること
がわかる。これは、プラズマ中に含まれる水素原子濃度
と同じ傾向を示している。すなわち、プラズマ中に水素
原子が増えれば膜中の水素原子も増えることを意味して
いる。このことから、プラズマ発光分光により、成膜さ
れるダイヤモンド膜の情報を前もって得ることができる
FIG. 5 shows a comparison of the amounts of hydrogen atoms in diamond films by SIMS analysis. It can be assumed that high-pressure synthesized diamond contains almost no hydrogen atoms, so the hydrogen atomic weight of high-pressure synthesized diamond is the background. Therefore, it is considered that the magnitude relationship of the hydrogen atom concentration in other diamond films as shown in FIG. 5 is sufficiently significant. That is, it can be seen that as the reaction pressure increases, the concentration of hydrogen atoms contained in the diamond film decreases, and as the gas mixture ratio increases, the concentration of hydrogen atoms contained in the diamond film decreases. This shows the same tendency as the concentration of hydrogen atoms contained in plasma. In other words, if the number of hydrogen atoms in the plasma increases, the number of hydrogen atoms in the film also increases. Therefore, information on the diamond film to be formed can be obtained in advance by plasma emission spectroscopy.

【0013】一方、反応圧力が高くなるにつれて基板と
ダイヤモンド膜の密着強度は強くなり、またガス混合比
が高くなるにつれて基板とダイヤモンド膜の密着強度が
強くなっているので、ダイヤモンド膜中の水素原子が減
ってくると密着強度が強くなってくることがわかる。
On the other hand, as the reaction pressure increases, the adhesion strength between the substrate and the diamond film becomes stronger, and as the gas mixture ratio increases, the adhesion strength between the substrate and the diamond film becomes stronger. It can be seen that as the amount decreases, the adhesion strength becomes stronger.

【0014】また、図3のダイヤモンド膜のラマンスペ
クトルよりダイヤモンド膜中の水素原子濃度が低くなれ
ば膜質が良いと考えられる。
Further, as shown in the Raman spectrum of the diamond film shown in FIG. 3, it is considered that the film quality is good if the hydrogen atom concentration in the diamond film is lower.

【0015】[0015]

【発明の効果】以上のように、この発明によれば、ダイ
ヤモンド膜中の水素原子量を減ずることによって、基板
とダイヤモンド膜の密着強度を強くできるようになった
。また、ダイヤモンド膜が成膜される前にあらかじめプ
ラズマ発光分光によって、成膜されるダイヤモンド膜の
特性がわかるようになった。
As described above, according to the present invention, the adhesion strength between the substrate and the diamond film can be increased by reducing the amount of hydrogen atoms in the diamond film. In addition, the characteristics of the diamond film to be formed can now be determined by plasma emission spectroscopy before the diamond film is formed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本実験で用いた有磁場マイクロ波プラズマCV
D装置の概略図である。
[Figure 1] Magnetic field microwave plasma CV used in this experiment
It is a schematic diagram of D apparatus.

【図2】ダイヤモンド膜の剥離発生荷重と圧力およびガ
ス混合比の関係を表した図である。
FIG. 2 is a diagram showing the relationship between the load that causes peeling of a diamond film, pressure, and gas mixture ratio.

【図3】反応圧力およびガス混合比を変化させたときの
ダイヤモンド膜のラマンスペクトルを表した図である。
FIG. 3 is a diagram showing Raman spectra of a diamond film when the reaction pressure and gas mixture ratio are changed.

【図4】(A)OH、Hα、CHの強度比と反応圧力の
関係を表した図である。(B)OH、Hα、CHの強度
比とガス混合比の関係を表した図である。
FIG. 4 (A) is a diagram showing the relationship between the intensity ratio of OH, Hα, and CH and the reaction pressure. (B) A diagram showing the relationship between the intensity ratio of OH, Hα, and CH and the gas mixture ratio.

【図5】反応圧力およびガス混合比を変化させたときの
SIMS分析によるダイヤモンド膜中の水素原子量の関
係を表した図である。
FIG. 5 is a diagram showing the relationship between the amount of hydrogen atoms in a diamond film as determined by SIMS analysis when the reaction pressure and gas mixture ratio are changed.

【符号の説明】[Explanation of symbols]

2  ガス導入口 4  基板 5  排気 6  マイクロ波導波管 7  磁場コイル 8  浮遊電位 2 Gas inlet 4 Board 5 Exhaust 6 Microwave waveguide 7 Magnetic field coil 8 Floating potential

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】CVD法において、水素および水素原子を
含む反応ガスを用いてダイヤモンド膜を作製する際に、
膜中に水素原子が含まれていることを特徴とするダイヤ
モンド膜。
Claim 1: In the CVD method, when producing a diamond film using hydrogen and a reaction gas containing hydrogen atoms,
A diamond film that is characterized by containing hydrogen atoms.
【請求項2】請求項1記載のダイヤモンド膜の水素原子
濃度が低いことを特徴とするダイヤモンド膜。
2. A diamond film according to claim 1, wherein the diamond film has a low hydrogen atom concentration.
JP3087775A 1991-03-27 1991-03-27 Diamond film fabrication method and its evaluation method Expired - Fee Related JP3071854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087775A JP3071854B2 (en) 1991-03-27 1991-03-27 Diamond film fabrication method and its evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087775A JP3071854B2 (en) 1991-03-27 1991-03-27 Diamond film fabrication method and its evaluation method

Publications (2)

Publication Number Publication Date
JPH04300287A true JPH04300287A (en) 1992-10-23
JP3071854B2 JP3071854B2 (en) 2000-07-31

Family

ID=13924358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087775A Expired - Fee Related JP3071854B2 (en) 1991-03-27 1991-03-27 Diamond film fabrication method and its evaluation method

Country Status (1)

Country Link
JP (1) JP3071854B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420262A1 (en) * 1993-06-11 1994-12-15 Zexel Corp Amorphous hard carbon film and process for its production
AU2011230930B2 (en) * 2010-03-25 2013-11-21 National University Corporation Tokyo University Of Marine Science And Technology Method for engrafting germ cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4420262A1 (en) * 1993-06-11 1994-12-15 Zexel Corp Amorphous hard carbon film and process for its production
US5616374A (en) * 1993-06-11 1997-04-01 Zexel Corporation Method for deposition of amorphous hard carbon films
US5843571A (en) * 1993-06-11 1998-12-01 Zexel Corporation Amorphous hard carbon film
DE4420262C2 (en) * 1993-06-11 1999-07-22 Zexel Corp Amorphous hard carbon layer and process for its manufacture and use
AU2011230930B2 (en) * 2010-03-25 2013-11-21 National University Corporation Tokyo University Of Marine Science And Technology Method for engrafting germ cells

Also Published As

Publication number Publication date
JP3071854B2 (en) 2000-07-31

Similar Documents

Publication Publication Date Title
US4581249A (en) Photochemical vapor deposition method
Muranaka et al. Worldwide status of low temperature growth of diamond
KR101056300B1 (en) How to passivate semiconductor substrates
EP1547138A1 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
JP4555410B2 (en) Apparatus and method for forming oxide film on semiconductor
JP2003332333A (en) Low-temperature deposition of insulating film
Shah et al. Effect of oxygen on the nucleation and growth of diamond thin films
EP0470531B1 (en) Diamond synthesizing method
Meikle et al. Reactions of atomic nitrogen and trimethyl aluminum downstream from a nitrogen microwave plasma
JPH04300287A (en) Diamond film
Aono et al. Deposition of amorphous carbon nitride thin films using pressure-gradient RF magnetron sputtering and their chemical bonding structures
US6472299B2 (en) Method and apparatus for treating a substrate with hydrogen radicals at a temperature of less than 40 K
Hanaoka et al. In situ measurement of gas-phase reactions in metal-organic chemical vapor deposition of copper films by Fourier transform infrared spectroscopy
Li et al. Correlation study of photoluminescence properties and mechanism of hydrogenated amorphous silicon carbide films
JPH06151421A (en) Formation of silicon nitride thin film
JP2895179B2 (en) Vapor phase synthesis method of diamond single crystal thin film
JPH0587171B2 (en)
DE69129314T2 (en) CVD process for the production of diamond
Hur et al. Influence of Working Pressure on the Al 2 O 3 Film Properties in Plasma-Enhanced Atomic Layer Deposition
JP3093836B2 (en) Diamond film fabrication method
JPS62174378A (en) Formation of thin hard carbon film
JPS62123096A (en) Synthesis of diamond
JP3190100B2 (en) Carbon material production equipment
JPS63317675A (en) Plasma vapor growth device
JP2975971B2 (en) Carbon film formation method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees