JPH04300209A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH04300209A
JPH04300209A JP3066275A JP6627591A JPH04300209A JP H04300209 A JPH04300209 A JP H04300209A JP 3066275 A JP3066275 A JP 3066275A JP 6627591 A JP6627591 A JP 6627591A JP H04300209 A JPH04300209 A JP H04300209A
Authority
JP
Japan
Prior art keywords
superconductor
layer
block layer
oxide
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3066275A
Other languages
Japanese (ja)
Other versions
JP2906711B2 (en
Inventor
Hideaki Adachi
秀明 足立
Seiji Adachi
成司 安達
Hiroshi Ichikawa
洋 市川
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3066275A priority Critical patent/JP2906711B2/en
Publication of JPH04300209A publication Critical patent/JPH04300209A/en
Application granted granted Critical
Publication of JP2906711B2 publication Critical patent/JP2906711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a new structure Pb oxide superconductor having a higher critical temperature than those of conventional Pb oxide superconductors by synthesizing a structure in which three CuO2 surfaces are disposed in a Perovskite type layer. CONSTITUTION:In a crystal structure, CuO5 pyramids 11 in a Perovskite type block layer 15 are faced to each other through a CuO2 surface 13 and A elements 14 in single atom layers on both the sides.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高臨界温度をもつ新し
い結晶構造の鉛系酸化物超伝導体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-based oxide superconductor having a new crystal structure and having a high critical temperature.

【0002】0002

【従来の技術】高温超伝導体として、ミューラー(Mu
ller)等によりペロブスカイト類型構造の酸化物超
伝導体が発見された。それ以後、種々の酸化物系で超伝
導性の確認が為され、主体成分が、鉛,アルカリ土類元
素,希土類元素,銅の酸化物からなるPb系超伝導体は
、70K程度の超伝導臨界温度をもつということが発見
された。[R. J. ケイハ゛(Cava) 他, 
ネイチャー (Nature), Vol.336, 
211−214 (1988)]詳細な解析の結果、こ
の物質は他の高温酸化物超伝導体と同様に層状構造をと
り、1原子層のA元素を介して向かい合ったCuO5ピ
ラミッドおよびピラミッドの頂点に隣接したB元素から
なるペロブスカイト類型層(B2ACu2O6層)が、
隣接するPbO−Cu−PbOブロック層で挟まれた構
造となっている。化学式はPb2B2ACu3O8と表
わされる。ここでA元素は少なくとも一種類以上のアル
カリ土類元素および希土類元素の混合からなる元素、B
元素は少なくとも一種類以上のアルカリ土類元素からな
る元素を示す。この構造ではペロブスカイト類型層中に
2面のCuO2面が存在する。このような超伝導体、す
なわちPbおよびCuを主体成分とする酸化物ブロック
層と、ペロブスカイト類型構造をとるブロック層とが、
交互に積層された結晶構造をもつ超伝導体をPb系超伝
導体といい、CuO2の2面構造の他に1面構造が見つ
かっている。
[Prior Art] As a high-temperature superconductor, Mueller (Mu
An oxide superconductor with a perovskite-type structure was discovered by Robert Ller et al. Since then, superconductivity has been confirmed in various oxide systems, and Pb-based superconductors whose main components are lead, alkaline earth elements, rare earth elements, and copper oxides have superconductivity of about 70K. It was discovered that it has a critical temperature. [R. J. Cava et al.
Nature, Vol. 336,
211-214 (1988)] As a result of detailed analysis, this material has a layered structure similar to other high-temperature oxide superconductors, with CuO5 pyramids facing each other via one atomic layer of the A element and the apex of the pyramid. A perovskite type layer (B2ACu2O6 layer) consisting of adjacent B elements is
It has a structure sandwiched between adjacent PbO--Cu--PbO block layers. The chemical formula is expressed as Pb2B2ACu3O8. Here, element A is an element consisting of a mixture of at least one alkaline earth element and rare earth element, and B
The element refers to an element consisting of at least one kind of alkaline earth element. In this structure, two CuO2 planes exist in the perovskite type layer. Such a superconductor, that is, an oxide block layer mainly composed of Pb and Cu, and a block layer having a perovskite-type structure,
A superconductor with a crystal structure in which layers are alternately stacked is called a Pb-based superconductor, and in addition to the two-sided structure of CuO2, a one-sided structure has been found.

【0003】Pb系超伝導体は、従来のものより合成温
度が低いという特長があり、また焼成中の酸素をあまり
必要としないので、作製時の取り扱いが容易であり実用
に向いている。
Pb-based superconductors have the advantage of having a lower synthesis temperature than conventional ones, and do not require much oxygen during firing, making them easy to handle during production and suitable for practical use.

【0004】0004

【発明が解決しようとする課題】しかしながらこのPb
系超伝導体を実際に応用する場合に、超伝導臨界温度が
低いという欠点があった。安価な液体窒素を冷却媒体と
して使うには、少なくとも80K以上の臨界温度が必要
とされるが、Pb系超伝導体の臨界温度は70〜80K
といわれており、再現性よく液体窒素温度で使用するに
は臨界温度の向上が望まれていた。
[Problem to be solved by the invention] However, this Pb
When actually applying superconductors, there is a drawback that the superconducting critical temperature is low. To use inexpensive liquid nitrogen as a cooling medium, a critical temperature of at least 80K is required, but the critical temperature of Pb-based superconductors is 70-80K.
Therefore, it was desired to improve the critical temperature in order to use it at liquid nitrogen temperatures with good reproducibility.

【0005】[0005]

【課題を解決するための手段】本発明は、Pb系超伝導
体の結晶構造が、PbとCuの酸化物からなるブロック
層と、1枚のCuO2面および両側の1原子層のA元素
を介して向かい合ったCuO5ピラミッドおよびピラミ
ッドの頂点に隣接したB元素からなるペロブスカイト類
型ブロック層(B2A2Cu3O8層)とが、交互に積
層された構造をとるものである。ここでA元素は少なく
とも一種類以上のアルカリ土類元素および希土類元素の
混合からなる元素、B元素は少なくとも一種類以上のア
ルカリ土類元素からなる元素を示す。
[Means for Solving the Problems] The present invention provides that the crystal structure of a Pb-based superconductor includes a block layer made of oxides of Pb and Cu, one CuO2 surface and one atomic layer of A element on both sides. It has a structure in which CuO5 pyramids facing each other with a perovskite type block layer (B2A2Cu3O8 layer) made of B element adjacent to the apex of the pyramid are stacked alternately. Here, element A is an element consisting of a mixture of at least one kind of alkaline earth element and rare earth element, and element B is an element consisting of at least one kind of alkaline earth element.

【0006】[0006]

【作用】上記構造をとるPb系超伝導体は、PbとCu
の酸化物より構成されるブロック層に挟まれたペロブス
カイト類型ブロック層中に、3面のCuO2面をもつ。 Pb系超伝導体では従来1面、2面構造は見つかってい
たが、3面構造は未だ実現されていなかった。本発明者
らは上記構造の物質の作製に成功し、その超伝導臨界温
度が従来のPb系超伝導体より高いという発見に基づき
、本発明に至った。この場合、CuO2の3面構造が1
、2面構造より臨界温度が高い理由は明らかでないが、
他の酸化物超伝導体(ビスマス系、タリウム系)の場合
にもこの関係は成り立っており、銅酸化物超伝導体の発
現機構となんらかの関係があるものと考えられる。
[Operation] The Pb-based superconductor with the above structure is composed of Pb and Cu.
The perovskite-type block layer sandwiched between block layers composed of oxides has three CuO2 planes. In Pb-based superconductors, one-plane and two-plane structures have been discovered, but a three-plane structure has not yet been realized. The present inventors succeeded in producing a material with the above structure, and based on the discovery that its superconducting critical temperature is higher than that of conventional Pb-based superconductors, the present invention was achieved. In this case, the three-sided structure of CuO2 is
Although it is not clear why the critical temperature is higher than that of the two-sided structure,
This relationship also holds true in the case of other oxide superconductors (bismuth-based, thallium-based), and it is thought that there is some connection with the expression mechanism of cuprate superconductors.

【0007】[0007]

【実施例】本発明のPb系超伝導体は、図1の結晶構造
、すなわち対向するCuO5ピラミッド11およびピラ
ミッドの頂点に隣接したB元素12の間にさらに1枚の
CuO2面13とその両側のA元素1原子層14を挟ん
だブロック層15と、鉛と銅の酸化物からなるブロック
層16とが、交互に積層された構造をもち、Pb系層状
物質において従来にないCuO2面の3面構造を実現し
たものである。この結果、他の酸化物超伝導体のように
1、2面構造より超伝導臨界温度の高い物質が実現した
[Example] The Pb-based superconductor of the present invention has the crystal structure shown in FIG. It has a structure in which a block layer 15 sandwiching a single atomic layer 14 of element A and a block layer 16 made of lead and copper oxide are laminated alternately. This is the realization of the structure. As a result, a material with a higher superconducting critical temperature than the one- and two-sided structures like other oxide superconductors was realized.

【0008】本発明のPbとCuの酸化物ブロック層と
しては、Pb−Cu−Pbの順序で酸化物が積み重ねら
れた3層ブロック層、PbとCuがほぼ1対1でランダ
ムに2層重なった2層ブロック層、PbとCuがほぼ1
対1でランダムに1層ならんだ単層ブロック層などがあ
り、どの場合においてもCuO2の3面構造が作製でき
る。特にPb−Cu−Pb酸化物で構成された3層ブロ
ック層の場合には、中間のCuイオンの価数が低いため
、合成雰囲気に酸素をほとんど必要とせず、作製が容易
である。
The Pb and Cu oxide block layer of the present invention includes a three-layer block layer in which oxides are stacked in the order of Pb-Cu-Pb, and two layers in which Pb and Cu are stacked randomly in an approximately 1:1 ratio. Two-layer block layer, Pb and Cu are approximately 1
There are monolayer block layers arranged randomly in a pair-one manner, and a three-sided structure of CuO2 can be produced in any case. In particular, in the case of a three-layer block layer composed of Pb--Cu--Pb oxide, since the valence of the intermediate Cu ion is low, almost no oxygen is required in the synthesis atmosphere, and production is easy.

【0009】また本発明の結晶構造は、特に薄膜の形態
において多くの割合で存在することが確認された。この
理由としては、薄膜作製プロセスが非熱平衡過程である
場合が多く、この種の準安定相の合成に向いているため
であると考えられる。特にスパッタリング法などのイオ
ン衝撃蒸着が本発明の結晶構造の構築に有効であること
も、本発明者らは合わせて確認した。
It has also been confirmed that the crystal structure of the present invention exists in a large proportion, especially in the form of a thin film. The reason for this is thought to be that the thin film fabrication process is often a non-thermal equilibrium process, which is suitable for synthesizing this type of metastable phase. The present inventors have also confirmed that ion bombardment deposition such as sputtering is particularly effective for constructing the crystal structure of the present invention.

【0010】本発明のより詳しい理解のために、詳細な
実施例により以下に説明を行なう。高周波マグネトロン
スパッタ装置を用い、Pb系酸化物超伝導体の薄膜作製
を行なった。直径80mmで任意の割合を持つPb−S
r−Y−Ca−Cu−O焼成酸化物をスパッタリングタ
ーゲットとした。580℃に加熱したMgO単結晶(1
00)面基体上に、アルゴン0.5Paのスパッタガス
のもと、100Wのスパッタリング放電を行ない、約3
0分で2000Å程度の薄膜を形成した。膜組成がPb
:Sr:Y:Ca:Cu=2:2:0.5:0.5:3
近傍の時には従来のCuO2面の2面構造が合成された
が、この組成よりCaとCuを多くした場合、従来の構
造の他にさらに長周期の構造が得られた。膜組成がPb
:Sr:Y:Ca:Cu=2:2:0.5:1.5:4
の薄膜のX線回折パターンを図2に示す。回折パターン
はc軸配向膜が形成されていることを示しており、三角
印で示された従来のPb系超伝導体のパターンの他に丸
印で示されている新しいパターンが現われている。新し
い相のc軸長は19.0Åと見積られ、従来のPb系物
質より3Å程度の長周期であった。この相の結晶構造は
図1の結晶構造においてPbとCuの酸化物層がPbO
−Cu−PbOの3層ブロック層になっており、従来の
構造に比べてCuO2面とA元素イオンがCuO5ピラ
ミッド間に挿入されてCuO23面構造となっているこ
とが判った。
[0010] For a more detailed understanding of the invention, the following description is provided by detailed examples. A thin film of a Pb-based oxide superconductor was fabricated using a high-frequency magnetron sputtering device. Pb-S with arbitrary proportions with a diameter of 80 mm
An r-Y-Ca-Cu-O fired oxide was used as a sputtering target. MgO single crystal (1
00) Sputtering discharge of 100 W was performed on the surface substrate under sputtering gas of 0.5 Pa of argon, and the
A thin film of about 2000 Å was formed in 0 minutes. Film composition is Pb
:Sr:Y:Ca:Cu=2:2:0.5:0.5:3
In the vicinity, a conventional two-plane structure of CuO2 planes was synthesized, but when Ca and Cu were increased from this composition, a structure with an even longer period was obtained in addition to the conventional structure. Film composition is Pb
:Sr:Y:Ca:Cu=2:2:0.5:1.5:4
The X-ray diffraction pattern of the thin film is shown in Figure 2. The diffraction pattern shows that a c-axis oriented film is formed, and in addition to the conventional Pb-based superconductor pattern shown by triangles, a new pattern shown by circles appears. The c-axis length of the new phase was estimated to be 19.0 Å, which was about 3 Å longer period than the conventional Pb-based material. The crystal structure of this phase is that in the crystal structure of Figure 1, the Pb and Cu oxide layer is PbO
It was found that it has a three-layer block layer of -Cu-PbO, and compared to the conventional structure, the CuO2 plane and A element ions are inserted between the CuO5 pyramids, resulting in a CuO23 plane structure.

【0011】この新構造Pb系超伝導体は、大概的にC
aとCuが膜中に多いほど合成され易い事が判った。P
b系超伝導セラミックスの合成においては、通常はCa
量が希土類元素Rの量より少なく(R/Ca>0.5)
、Ca量が希土類元素Rの量より多い場合、結晶構造中
に取り込まれず未反応物として析出する。本実施例のよ
うな薄膜の形態にする事により、Pb系超伝導体におい
てCa量がR量より多い、すなわちR/Ca<0.5が
実現された。微細組成分析により調べたところ、特にC
uO23面構造の結晶粒の組成はR/Ca<1/3とな
っていることが判った。  また他の元素の割合も分析
した結果、本実施例で得られたPb系超伝導体はPb2
Sr2(RxCa1−x)2Cu4O10なる化学式で
表わされる物質であった。ただしxは0.25以下の数
である。
[0011] This new structure Pb-based superconductor is mostly composed of C
It was found that the more a and Cu are in the film, the easier it is to synthesize. P
In the synthesis of b-based superconducting ceramics, Ca
The amount is less than the amount of rare earth element R (R/Ca>0.5)
When the amount of Ca is larger than the amount of rare earth element R, it is not incorporated into the crystal structure and precipitates as an unreacted substance. By forming a thin film as in this example, the amount of Ca was greater than the amount of R in the Pb-based superconductor, that is, R/Ca<0.5 was realized. When investigated by microcomposition analysis, it was found that especially C
It was found that the composition of the crystal grains having the uO23 plane structure was R/Ca<1/3. Furthermore, as a result of analyzing the proportions of other elements, it was found that the Pb-based superconductor obtained in this example was Pb2
It was a substance represented by the chemical formula Sr2(RxCa1-x)2Cu4O10. However, x is a number of 0.25 or less.

【0012】新しい結晶構造が出現した膜の超伝導特性
を測定した。そのままの状態でも薄膜は超伝導転移を示
したが、空気中で300℃,30分間熱処理を加えるこ
とにより再現性および特性が向上した。図3に作製され
た薄膜の電気抵抗の温度特性を示す。図のように、オン
セット超伝導転移温度100Kを示し、92Kでゼロ抵
抗になる超伝導転移をみせた。この温度は従来のCuO
2面が2面構造の鉛系超伝導体の超伝導転移温度に比べ
て10K以上高いものである。すなわち3面構造が部分
的に合成されて混在することにより、超伝導転移温度の
高い3面構造の特性が支配的に現われたものと解釈され
る。3面構造の割合が多いほど、超伝導転移は急峻であ
り、従来の2面構造が支配的になるほど転移は散漫にな
って2段転移の様相を示し、ゼロ抵抗温度は従来のPb
系超伝導体程度に低下した。
[0012] The superconducting properties of the film in which a new crystal structure had appeared were measured. Although the thin film showed superconducting transition even in its original state, the reproducibility and properties improved by heat treatment at 300° C. for 30 minutes in air. FIG. 3 shows the temperature characteristics of the electrical resistance of the fabricated thin film. As shown in the figure, it exhibited an onset superconducting transition temperature of 100K, and a superconducting transition with zero resistance at 92K. This temperature is the same as that of conventional CuO
The superconducting transition temperature is 10 K or more higher than the superconducting transition temperature of a lead-based superconductor with a two-sided structure. In other words, it is interpreted that the characteristics of the three-sided structure, which has a high superconducting transition temperature, appeared dominantly because the three-sided structure was partially synthesized and coexisted. The higher the proportion of the three-plane structure, the steeper the superconducting transition, and the more the conventional two-plane structure becomes dominant, the more the transition becomes diffuse, showing the appearance of a two-step transition, and the zero resistance temperature is lower than that of the conventional Pb.
It has decreased to the level of a system superconductor.

【0013】このように従来には得られないPb系超伝
導体のCuO23面構造が得られたのは、スパッタリン
グのような非熱平衡過程の薄膜プロセスによるところが
大きいと考えられる。すなわちスパッタリングのような
イオン衝撃蒸着が、本発明の新Pb系超伝導体の合成に
適している。またPb系超伝導体の一種なので形成温度
も従来の酸化物超伝導体より50〜100℃程度低く、
酸素をあまり必要としないので、実用的に優れた材料で
ある。
[0013] The reason why the CuO23 plane structure of the Pb-based superconductor, which could not be obtained conventionally, was obtained is considered to be largely due to the non-thermal equilibrium thin film process such as sputtering. That is, ion bombardment deposition such as sputtering is suitable for synthesizing the new Pb-based superconductor of the present invention. In addition, since it is a type of Pb-based superconductor, the formation temperature is about 50 to 100 degrees Celsius lower than that of conventional oxide superconductors.
It is an excellent material for practical use because it does not require much oxygen.

【0014】なお本実施例では、非超伝導層の一原子層
の希土類元素がYで構成される材料を用いたが、Gd、
Eu、Ybなどの多くの他の希土類元素を用いたもので
も、同様に良好な超伝導体が実現できること勿論である
。またアルカリ土類元素の組合せも、本実施例以外の組
合せが幾つかあること勿論である。
In this example, a material in which the rare earth element in one atomic layer of the non-superconducting layer was composed of Y was used, but Gd,
Of course, similarly good superconductors can be realized using many other rare earth elements such as Eu and Yb. Furthermore, it goes without saying that there are several combinations of alkaline earth elements other than those in this example.

【0015】[0015]

【発明の効果】本発明による超伝導体は、Pb系酸化物
超伝導体の新規の結晶構造を持つ高臨界温度の物質を実
現したものである。この結果Pb系超伝導体が液体窒素
温度で安定に使用できるようになった。特にこの種の材
料は、非熱平衡の薄膜プロセスにおいてよく合成される
ため薄膜の形態で存在し易い。また低温で作製可能で酸
化プロセスに気を使う必要ないので、膜形成プロセスの
取り扱いが容易である。従って、デバイス応用上最適な
超伝導材料を提供するもので、本発明の工業的価値は大
きい。
The superconductor according to the present invention is a high critical temperature material having a novel crystal structure of a Pb-based oxide superconductor. As a result, Pb-based superconductors can now be used stably at liquid nitrogen temperatures. In particular, this type of material is often synthesized in a non-thermal equilibrium thin film process and therefore tends to exist in the form of a thin film. Furthermore, since it can be produced at low temperatures and there is no need to pay attention to the oxidation process, the film formation process is easy to handle. Therefore, the present invention has great industrial value because it provides a superconducting material that is optimal for device applications.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例におけるPb系超伝導体の結晶
構造図。
FIG. 1 is a crystal structure diagram of a Pb-based superconductor in an example of the present invention.

【図2】本発明の一実施例におけるPb−Sr−Y−C
a−Cu−O薄膜のX線回折パターン図。
FIG. 2: Pb-Sr-Y-C in one embodiment of the present invention
FIG. 3 is an X-ray diffraction pattern diagram of a-Cu-O thin film.

【図3】本発明の実施例で得た薄膜における電気抵抗の
温度特性の図である。
FIG. 3 is a diagram showing the temperature characteristics of electrical resistance in a thin film obtained in an example of the present invention.

【符号の説明】[Explanation of symbols]

11  CuO5ピラミッド 12  B元素 13  CuO2面 14  A元素 11 CuO5 pyramid 12 B element 13 CuO2 side 14 Element A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  鉛系酸化物超伝導体の結晶構造が、P
bとCuの酸化物からなるブロック層と、1枚のCuO
2面および両側の1原子層のA元素を介して向かい合っ
たCuO5ピラミッドおよびピラミッドの頂点に隣接し
たB元素からなるペロブスカイト類型ブロック層とが、
交互に積層された構造であることを特徴とする超伝導体
。 ここでA元素は少なくとも一種類以上のアルカリ土類元
素および希土類元素の混合からなる元素、B元素は少な
くとも一種類以上のアルカリ土類元素からなる元素を示
す。
[Claim 1] The crystal structure of the lead-based oxide superconductor is P
A block layer consisting of oxides of b and Cu, and one sheet of CuO
A perovskite-type block layer consisting of a CuO5 pyramid facing one atomic layer of A element on two sides and one atomic layer on both sides, and an element B adjacent to the apex of the pyramid,
A superconductor characterized by a structure in which layers are alternately stacked. Here, element A is an element consisting of a mixture of at least one kind of alkaline earth element and rare earth element, and element B is an element consisting of at least one kind of alkaline earth element.
【請求項2】  A元素中の希土類元素(R)とアルカ
リ土類元素(E)の元素比率がR/E < 1/3であ
ることを特徴とする請求項1記載の超伝導体。
2. The superconductor according to claim 1, wherein the element ratio of rare earth element (R) to alkaline earth element (E) in element A is R/E < 1/3.
【請求項3】  PbとCuの酸化物からなるブロック
層が、Pb−Cu−Pbからなる3層の酸化物で構成さ
れたことを特徴とする請求項1記載の超伝導体。
3. The superconductor according to claim 1, wherein the block layer made of oxides of Pb and Cu is composed of three layers of oxides made of Pb-Cu-Pb.
【請求項4】  A元素がSrで構成され、B元素が希
土類(R)元素とCaの混合で構成され、Pb2Sr2
(RxCa1−x)2Cu4O10なる化学式を持つ請
求項3記載の超伝導体。ただしxは、0.25以下の数
を示す。
4. Element A is composed of Sr, element B is composed of a mixture of a rare earth (R) element and Ca, and Pb2Sr2
The superconductor according to claim 3, having the chemical formula (RxCa1-x)2Cu4O10. However, x indicates a number of 0.25 or less.
JP3066275A 1991-03-29 1991-03-29 Superconductor Expired - Fee Related JP2906711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066275A JP2906711B2 (en) 1991-03-29 1991-03-29 Superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066275A JP2906711B2 (en) 1991-03-29 1991-03-29 Superconductor

Publications (2)

Publication Number Publication Date
JPH04300209A true JPH04300209A (en) 1992-10-23
JP2906711B2 JP2906711B2 (en) 1999-06-21

Family

ID=13311128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066275A Expired - Fee Related JP2906711B2 (en) 1991-03-29 1991-03-29 Superconductor

Country Status (1)

Country Link
JP (1) JP2906711B2 (en)

Also Published As

Publication number Publication date
JP2906711B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US6027826A (en) Method for making ceramic-metal composites and the resulting composites
JP2664066B2 (en) Superconducting thin film and method for producing the same
WO2000022652A2 (en) Superconducting structure including mixed rare earth barium-copper compositions
JP2933225B2 (en) Metal oxide material
JPH01278423A (en) Superconductor of bismuth oxide and apparatus made of the superconductor
JP2939544B1 (en) Mg-doped low-anisotropic high-temperature superconductor and method for producing the same
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPS63242532A (en) Super conductor and its manufacture
US5100863A (en) Superconducting ceramics manufacturing method
JPH04300209A (en) Superconductor
JP2501620B2 (en) Preparation method of superconducting thin film
JPH04132611A (en) Superconductor
JPH04300211A (en) Superconductor
JPH02273418A (en) Manufacture of oxide superconductive conductor
JP3251093B2 (en) Superconductor and method of manufacturing the same
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2603688B2 (en) Superconducting material reforming method
JPS6161555B2 (en)
JP2666978B2 (en) Superconducting element
JP3059464B2 (en) Oxide material
JP2781033B2 (en) Metal oxide material
JPH07206437A (en) Superconductor and its production
JP3284010B2 (en) Metal oxide material and superconducting device using the same
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JPH0446098A (en) Superconducting member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees