JPH04300099A - Method and device for controlling machine tool of press machine, and the like - Google Patents

Method and device for controlling machine tool of press machine, and the like

Info

Publication number
JPH04300099A
JPH04300099A JP6505691A JP6505691A JPH04300099A JP H04300099 A JPH04300099 A JP H04300099A JP 6505691 A JP6505691 A JP 6505691A JP 6505691 A JP6505691 A JP 6505691A JP H04300099 A JPH04300099 A JP H04300099A
Authority
JP
Japan
Prior art keywords
light
moving body
measured
load
press machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6505691A
Other languages
Japanese (ja)
Inventor
Fuminori Okamoto
岡本 文則
Kenji Shimamura
嶋村 健児
Hiroshi Tamura
寛 田村
Yoji Moriwaki
森脇 洋治
Saburo Numata
沼田 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMAGUCHI PREF GOV SANGYO GIJUTSU KAIHATSU KIKO
Original Assignee
YAMAGUCHI PREF GOV SANGYO GIJUTSU KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMAGUCHI PREF GOV SANGYO GIJUTSU KAIHATSU KIKO filed Critical YAMAGUCHI PREF GOV SANGYO GIJUTSU KAIHATSU KIKO
Priority to JP6505691A priority Critical patent/JPH04300099A/en
Publication of JPH04300099A publication Critical patent/JPH04300099A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position Or Direction (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)
  • Control Of Presses (AREA)

Abstract

PURPOSE:To discriminate the reference position or the moving state of the bottom dead center, etc., of the moving body and to surely control by utilizing the interference measure of length with the laser beam for the measure of the motion distance of the moving body of the die, etc. CONSTITUTION:When the laser beam is oscillated from the laser oscillator 1 parallel with the drive of the press machine, and irradiates the laser beam is divided to the reference light 14 and the light 15 to be measured with the beam splitter 16 of the interference device 10 of the optical system 2. The light 15 to be measured is reflected parallel to the light 15 to be measured through the right angle reflecting mirror 12 attached to the lower die 21, as the reflecting light to be measured 18 at the corner cube 17 provided on the upper die 23, the direction is changed through the right angle reflecting mirror 12, the interference light 19 is made by being composed with the reference light 14 whose direction is changed at the beam slitter again through the corner cube 13. Before composing, the half of the reflecting light to be measured 18 is divided to two beams having the phase difference at the wave length plate 11, changed to the optical signal with phase difference, so the advance of the moving body can be distinguished.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プレス機等の工作機械
の制御方法と装置に係り、より詳細には、例えば、プレ
ス機における上型等の移動体における下死点等の移動点
位置の測定と制御を容易に行え、品質にバラツキの少な
い加工製品を生産できるようにしたリニア運動をするプ
レス機等の工作機械の制御方法と装置に関する。
[Field of Industrial Application] The present invention relates to a control method and apparatus for a machine tool such as a press machine, and more specifically, for example, the position of a moving point such as the bottom dead center of a moving body such as an upper mold in a press machine. The present invention relates to a method and device for controlling machine tools such as presses that perform linear motion, which makes it possible to easily measure and control machine tools and produce processed products with little variation in quality.

【0002】0002

【従来の技術】従来、例えば、プレス機により『曲げ』
『絞り』等の可塑加工をする場合、金型等の加工工具よ
りなる移動体の下死点等の位置設定により最適加工条件
を想定し、加工後の試作製品の品質からのフィード・バ
ックにより下死点等の基準位置の変更・修正を行い、該
基準位置への制御を行っている。
[Prior art] Conventionally, for example, "bending" was performed using a press machine.
When performing plastic processing such as drawing, the optimum processing conditions are assumed by setting the bottom dead center of a moving object such as a processing tool such as a mold, and based on feedback from the quality of the prototype product after processing. The reference position such as bottom dead center is changed or corrected, and control is performed to the reference position.

【0003】しかし、プレス機等の工作機械は、経時的
変化、急激な温度変化等によって、該稼働中に、その基
準位置に変位が生じる場合がある。このような場合は、
加工時の実際の下死点位置を測定し、その変位量が一定
値以上であれば、その変位を調整して予め設定している
基準下死点位置に機械補正するようにしている。
However, during operation of machine tools such as presses, displacement may occur in the reference position due to changes over time, rapid temperature changes, and the like. In such a case,
The actual bottom dead center position during machining is measured, and if the amount of displacement is greater than a certain value, the displacement is adjusted and mechanically corrected to a preset reference bottom dead center position.

【0004】ところで、このような移動体の下死点位置
の変位は、通常、渦電流式センサー等の近接センサーが
用いられている。
By the way, a proximity sensor such as an eddy current sensor is usually used to measure the displacement of the bottom dead center position of a moving body.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した構成
の場合、次のような問題がある。すなわち、■  正確
な下死点位置を測定するには、測定点を上金具等の加工
工具の先端表面としなければならず、センサ等の装着場
所が制約される。■測定範囲が短い(約1mm程度)た
め、稼働中の全動的工程の変化が把握できない。すなわ
ち、金型等の加工工具ならびに機械の振動状態の影響や
、機械の停止時における上金型等の停止位置の把握がで
きない。■  機械本体の異常による製品品質への影響
が監視できない。■  金型等の加工工具の磨耗による
影響あるいは寿命等が予測できない。■  機械の稼働
中における金型等の加工工具ならびに機械本体への負荷
の把握ができない。等の問題がある。
[Problems to be Solved by the Invention] However, the above configuration has the following problems. That is, (1) In order to accurately measure the bottom dead center position, the measurement point must be set at the tip surface of a processing tool such as an upper metal fitting, which limits the mounting location of a sensor or the like. ■Due to the short measurement range (approximately 1 mm), changes in the fully dynamic process during operation cannot be ascertained. That is, it is not possible to grasp the influence of the vibration state of machining tools such as molds and machines, and the stopping position of upper molds and the like when the machine is stopped. ■ The impact on product quality due to abnormalities in the machine itself cannot be monitored. ■ It is impossible to predict the effects of wear and service life of machining tools such as molds. ■ It is not possible to grasp the load on machining tools such as molds and the machine itself while the machine is in operation. There are other problems.

【0006】そこで、本発明者は、以上の点に対し、種
々、研究検討した結果、レーザ干渉測長機の原理を、プ
レス機等の工作機械の上型等の移動体の運動測定に利用
することで、上述した問題が解消できることを究明した
。すなわち、代表的なレーザ干渉測長機(2周波数を用
いた構成)は、図5に示すように、レーザ発振器aで発
振・照射されたレーザ・ビームを半透明鏡bによって、
基準信号と被測定光とに分割され、該被測定光は偏向プ
リズムcで被測定光と参照光とに分割され、該被測定光
は移動反射鏡(コーナーキューブ)dで反射され、ドプ
ラー効果による周波数偏移を受け、また参照光は固定反
射鏡(コーナーキューブ)eで反射され、上記被測定光
と干渉し、該干渉光(縞)が演算回路fで長さに変換さ
れ、移動距離を測定できる構成とされている。
[0006] Therefore, as a result of various research studies regarding the above-mentioned points, the present inventor utilized the principle of a laser interferometric length measuring machine to measure the motion of a moving body such as an upper mold of a machine tool such as a press machine. We have found that the above-mentioned problems can be resolved by doing so. That is, a typical laser interferometric length measuring machine (configuration using two frequencies), as shown in FIG.
The light to be measured is divided into a reference signal and the light to be measured, the light to be measured is split into the light to be measured and the reference light by a deflection prism c, and the light to be measured is reflected by a moving reflecting mirror (corner cube) d, and the Doppler effect The reference light is reflected by a fixed reflecting mirror (corner cube) e and interferes with the measured light, and the interference light (fringe) is converted into a length by an arithmetic circuit f, and the distance traveled is calculated by It is designed to be able to measure.

【0007】そして、このレーザ干渉測長機の場合、移
動距離が一定波長でだけ変化し、そのたび毎に強度変化
のピークが繰り返し現れ、このピークを計数することで
精密な距離計測ができることより、工作機械の移動体に
移動反射鏡を配設することにより、同様にして精密な距
離測定が行えると言える。
[0007] In the case of this laser interferometric length measuring machine, the moving distance changes only at a certain wavelength, and a peak of intensity change appears repeatedly each time, and precise distance measurement can be performed by counting these peaks. It can be said that accurate distance measurement can be similarly performed by disposing a movable reflector on the moving body of a machine tool.

【0008】本発明は、上述した点に対処して創案した
ものであって、その目的とする処は、上型等の移動体の
全運動中の位置測定が容易に行え、連続する全加工工程
中の加工負荷の変動状態を確認でき、該移動体を運動最
適条件への制御が容易に行えるプレス機等の工作機械の
制御方法と装置を提供することにある。
The present invention was devised in response to the above-mentioned points, and its purpose is to easily measure the position of a moving body such as an upper mold during the entire movement, and to perform all continuous machining. It is an object of the present invention to provide a control method and apparatus for a machine tool such as a press machine, which allows checking the fluctuation state of the processing load during a process and easily controls the moving body to the optimum motion condition.

【0009】[0009]

【課題を解決するための手段】そして、上記課題を解決
するための手段としての本発明のプレス機等の工作機械
の制御方法は、レーザ・ビームによる干渉測長を利用し
、下型等の固定体に対面する上型等の移動体の負荷時の
運動軌跡と無負荷時の運動軌跡を計測し、該両運動軌跡
を比較し、該移動体の実加工時における下死点等の基準
位置や運動状態を制御するようにした構成よりなるもの
である。
[Means for Solving the Problems] As a means for solving the above problems, the method of controlling a machine tool such as a press machine of the present invention uses interferometric length measurement using a laser beam to Measure the locus of motion under load and the locus of motion when no load is applied to a movable body such as an upper die facing a fixed body, compare the two loci of motion, and determine the standards such as bottom dead center during actual machining of the movable body. It consists of a configuration that controls the position and state of movement.

【0010】また、本発明の他のプレス機等の工作機械
の制御方法は、プレス機等の工作機械における下型等の
固定体に対面する上型等の移動体の下死点等の基準位置
や運動状態を制御するための方法であって、レーザ・ビ
ームによる干渉測長を利用し、上記移動体の負荷時の基
準運動軌跡と無負荷時の運動軌跡を計測して該両運動軌
跡を比較し、加工負荷量を得て基準加工負荷量とし、ま
た実加工時における上記移動体の運動軌跡を計測し、上
記無負荷時の運動軌跡と比較して実加工負荷量を得て、
上記基準加工負荷量と実加工負荷量とを比較することで
、上記移動体の下死点等の基準位置や運動状態の制御を
行うようにしたた構成よりなる。ここで、本発明の他の
プレス機の制御方法は、上記構成において、加工負荷量
を、移動体の加速度によって検出した構成も含む。
In addition, another method of controlling a machine tool such as a press machine according to the present invention is based on a reference such as the bottom dead center of a movable body such as an upper die facing a fixed body such as a lower die in a machine tool such as a press machine. A method for controlling the position and motion state, which uses interferometric length measurement using a laser beam to measure the reference motion trajectory of the moving body under load and the motion trajectory when no load is applied, and calculates both motion trajectories. , obtain the machining load amount and use it as the reference machining load amount, measure the motion trajectory of the moving body during actual machining, and compare it with the motion trajectory when no load is applied to obtain the actual machining load amount.
By comparing the reference machining load amount and the actual machining load amount, the reference position such as the bottom dead center of the movable body and the motion state are controlled. Here, another press machine control method of the present invention includes a configuration in which the processing load amount is detected by the acceleration of the moving body in the above configuration.

【0011】更に、本発明のプレス機等の工作機械の制
御装置は、プレス機等の工作機械における下型等の固定
体に対面する上型等の移動体の下死点等の基準位置や運
動状態を制御するための装置であって、主光ビームを発
振・照射するレーザ発振部と、該レーザ発振部より照射
されたレーザ・ビームを参照光と被測定光に分割し、該
被測定光を上記プレス機の固定体に設けた固定反射鏡を
介し、移動体に設けた移動反射鏡に反射させ、該固定反
射鏡を介して被測定反射光を得て、該被測定反射光と上
記参照光とを干渉させる光学系部と、該光学系部による
該被測定反射光と参照光との干渉光を検出して検出信号
を得る干渉光検出部と、該干渉光検出部で検出・変換さ
れた検出信号をカウントして上記移動体の位置または運
動軌跡を測定する測長演算部とを有する構成よりなる。 ここで、本発明のプレス機等の工作機械の制御装置は、
上記構成において、測長演算部よりの測定データよりプ
レス加工中の負荷を算出する負荷演算部を有し、該測長
演算部で得た負荷データにより、該移動体の下死点等の
基準位置や運動状態の制御を行う制御部を有する構成も
含む。
Furthermore, the control device for a machine tool such as a press machine according to the present invention can be used to control the reference position such as the bottom dead center of a movable body such as an upper die facing a fixed body such as a lower die in a machine tool such as a press machine. A device for controlling the motion state, which includes a laser oscillation unit that oscillates and irradiates a main light beam, and a laser beam irradiated from the laser oscillation unit that is divided into a reference light and a measured light, The light is reflected through a fixed reflecting mirror provided on a fixed body of the press machine and onto a movable reflecting mirror provided on a moving body, and a reflected light to be measured is obtained via the fixed reflecting mirror, and the reflected light to be measured and the reflected light to be measured are an optical system unit that interferes with the reference light; an interference light detection unit that detects the interference light between the reflected light to be measured and the reference light by the optical system unit and obtains a detection signal; and an interference light detection unit that obtains a detection signal; - A length measurement calculation section that measures the position or motion trajectory of the moving body by counting the converted detection signals. Here, the control device for a machine tool such as a press machine of the present invention includes:
In the above configuration, there is provided a load calculation unit that calculates the load during press processing from measurement data from the length measurement calculation unit, and the load data obtained by the length measurement calculation unit is used to determine a reference point such as the bottom dead center of the moving body. It also includes a configuration having a control unit that controls the position and movement state.

【0012】0012

【作用】そして、本発明のプレス機等の工作機械の制御
方法と装置は、金型等の移動体の運動距離計測を、レー
ザ・ビームによる干渉測長を利用していることより、精
密な計測が行え、また該移動体の運動位置測定を全加工
工程で検出しているので、該移動体の全運動軌跡を得る
ことができるので、該移動体の連続する全加工工程中の
加工負荷の変動状態を確認でき、該移動体を運動最適条
件への制御が容易に行えるように作用する。
[Operation] The method and device for controlling machine tools such as press machines of the present invention uses interferometric length measurement using a laser beam to measure the movement distance of a moving object such as a mold, thereby achieving more precise measurement. Since the movement position of the moving body is detected during all machining processes, the entire motion trajectory of the movable body can be obtained, so the machining load during all continuous machining processes of the movable body can be measured. This function allows the user to check the state of fluctuation in the moving body, and to easily control the moving body to the optimum condition.

【0013】以上のように、本発明のプレス機等の工作
機械の制御方法と装置は、該プレス等の工作機械の移動
体の移動位置測定にレーザ・ビームによる干渉測長を利
用した点に特徴を有し、この特徴点によって、該移動体
の下死点等の基準位置や運動状態の判別や、その制御を
正確かつ確実に行えるという格別な作用を奏するもので
ある。
As described above, the method and apparatus for controlling a machine tool such as a press according to the present invention utilizes interferometric length measurement using a laser beam to measure the moving position of a moving body of a machine tool such as a press. This feature provides a special function in that the reference position such as the bottom dead center of the moving body and the state of movement can be determined and the control can be performed accurately and reliably.

【0014】[0014]

【実施例】以下、図面を参照しながら、本発明を具体化
した実施例について説明する。ここに、図1〜図4は、
本発明の一実施例を示し、図1は制御装置の概略構成図
、図2は無負荷時に想定される移動体の運動軌跡の説明
図、図3は実際の加工時における移動体の運動軌跡の説
明図、図4は加工負荷量の説明図である。
Embodiments Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. Here, FIGS. 1 to 4 are
An embodiment of the present invention is shown in which FIG. 1 is a schematic configuration diagram of a control device, FIG. 2 is an explanatory diagram of a movement trajectory of a moving body assumed when no load is applied, and FIG. 3 is a movement trajectory of a moving body during actual machining. FIG. 4 is an explanatory diagram of the machining load amount.

【0015】本実施例は、プレス機の制御装置であって
、概略すると、レーザ発振部1、光学系部2、プレス機
本体部3、干渉光検出部4、測長演算部5、加工負荷演
算部6、および制御部7の七つの部分より構成されてい
る。
This embodiment is a control device for a press machine, and roughly speaking, it includes a laser oscillation section 1, an optical system section 2, a press main body section 3, an interference light detection section 4, a length measurement calculation section 5, and a processing load. It is composed of seven parts: a calculation section 6 and a control section 7.

【0016】レーザ発振部1は、レーザ発振器8と発振
用電源9とより構成されている。ここで、レーザ発振器
8は、He−Neレーザ発振器が用いられ、レーザ・ビ
ームが発振・照射できるように構成されている。そして
、発振・照射されたレーザ・ビームは、光学系部2に入
る。
The laser oscillation section 1 is composed of a laser oscillator 8 and an oscillation power supply 9. Here, a He-Ne laser oscillator is used as the laser oscillator 8, and is configured to oscillate and irradiate a laser beam. The oscillated and irradiated laser beam then enters the optical system section 2.

【0017】光学系部2は、干渉計10と波長板11と
直角反射鏡12およびコーナーキューブ13とより構成
されている。干渉計10は、レーザ発振部1で発振・照
射されたレーザ・ビームを参照光14と被測定光15と
に分割するビームスプリッター16と固定反射鏡である
コーナーキューブ17とを有している。そして、干渉計
10は、被測定光15を直角反射鏡12を介して移動反
射鏡であるコーナーキューブ13で反射させ被測定反射
光18として、直角反射鏡12を介して波長板11を通
り、参照光14と合成させ、干渉光19とし、干渉光検
出部4で検出させるように配置されている。
The optical system section 2 is composed of an interferometer 10, a wavelength plate 11, a right-angle reflecting mirror 12, and a corner cube 13. The interferometer 10 includes a beam splitter 16 that splits a laser beam oscillated and irradiated by the laser oscillation unit 1 into a reference beam 14 and a measured beam 15, and a corner cube 17 that is a fixed reflecting mirror. The interferometer 10 then reflects the light to be measured 15 via the right-angle reflecting mirror 12 on a corner cube 13 which is a moving reflecting mirror, and passes through the wavelength plate 11 via the right-angled reflecting mirror 12 as reflected light to be measured 18. It is arranged so that it is combined with the reference light 14 to form interference light 19, which is detected by the interference light detection section 4.

【0018】プレス機本体部3は、固定体を形成するプ
レス機ボルスター20と下金型21と、移動体を形成す
るプレス機スライダー22と上金型23とを有している
。そして、下金型21には光学系部2の直角反射鏡12
が、また上金型23にはコーナーキューブ13が装着さ
れている。すなわち、直角反射鏡12は、干渉計10を
出た被測定光15が所定角度(45度)で入射しコーナ
ーキューブ13に向かって反射するように下金型21に
装着されていて、またコーナーキューブ13は直角反射
鏡12からの被測定光15の光路上に位置するように上
金型23に装着されている。
The press body 3 has a press bolster 20 and a lower die 21 forming a fixed body, and a press slider 22 and an upper die 23 forming a moving body. The right angle reflecting mirror 12 of the optical system section 2 is placed in the lower mold 21.
However, a corner cube 13 is also attached to the upper mold 23. That is, the right-angle reflecting mirror 12 is attached to the lower mold 21 so that the measured light 15 that has exited the interferometer 10 is incident at a predetermined angle (45 degrees) and is reflected toward the corner cube 13. The cube 13 is attached to the upper mold 23 so as to be located on the optical path of the light to be measured 15 from the right-angle reflecting mirror 12.

【0019】干渉光検出部4は、干渉光(縞)を受光す
る受光体により構成されている。また測長演算部5は、
アップダウンカウンター24と距離演算回路25とより
構成されていて、干渉光検出部4で受光された信号をア
ップダウンカウンター24で移動体(上金型21)の運
動軌跡と、駆動範囲でのピーク時のカウント数をカウン
ト・記憶すると共に、距離演算回路25で、レーザ・ビ
ームの波長を測定基準としてアップダウンカウンター2
4でのカウント数値を基にして距離の算出・換算を行え
るように構成されている。また、加工負荷演算部6は、
測長演算部5で得られた測定データより、また加速度が
移動点の変位に比例することより、該移動点の加速度で
加工負荷(実負荷)を演算する構成とされている。更に
、制御部7は、加工負荷演算部6で得られた加工時にお
ける加工負荷(実負荷)データと、予め記憶させている
各種材料や加工方法に対する最適加工負荷量や最大加工
負荷値等のデータよりなる基準加工負荷データとを比較
し、両者間に開きがある場合に移動体の運動速度や下死
点位置等を修正制御させ得る構成とされている。
The interference light detection section 4 is constituted by a photoreceptor that receives interference light (fringes). In addition, the length measurement calculation section 5
It is composed of an up-down counter 24 and a distance calculation circuit 25, and the up-down counter 24 converts the signal received by the interference light detection unit 4 into the motion trajectory of the moving object (upper mold 21) and the peak in the drive range. In addition to counting and storing the number of hours, the distance calculation circuit 25 also uses the up-down counter 2 using the wavelength of the laser beam as a measurement standard.
The configuration is such that the distance can be calculated and converted based on the count value in step 4. In addition, the machining load calculation unit 6
Based on the measurement data obtained by the length measurement calculating section 5 and since the acceleration is proportional to the displacement of the moving point, the machining load (actual load) is calculated using the acceleration of the moving point. Furthermore, the control unit 7 calculates the machining load (actual load) data during machining obtained by the machining load calculation unit 6 and the optimum machining load amount and maximum machining load value for various materials and machining methods stored in advance. The structure is such that the moving body's motion speed, bottom dead center position, etc. can be corrected and controlled by comparing the data with reference machining load data and if there is a difference between the two.

【0020】次に、上述した実施例のプレス機の制御装
置を用いて、その制御方法について説明する。まず、制
御部7に、プレスしようとする材料、加工方法について
予め設定して得た基準加工負荷データを記憶させておく
。該基準加工負荷データは、無負荷時の移動体の運動軌
跡(図2参照)と、負荷時(加工時)を想定する運動軌
跡(図3参照)とを得て、該両運動軌跡より求められる
移動体の加速度を演算し、加工負荷量を得て(図4参照
)、この加工負荷量(加工負荷の面積A)よりなる基準
データを求める。該基準データは、計算によって算出し
ても、あるいはプレス機を実際に作動させて得たデータ
であってもよい。
Next, a control method will be explained using the press machine control device of the above-described embodiment. First, the control unit 7 is made to store reference machining load data obtained by setting in advance the material to be pressed and the machining method. The reference machining load data is obtained by obtaining the motion trajectory of the moving object under no load (see Figure 2) and the motion trajectory assuming a load (during machining) (see Figure 3), and calculating from both motion trajectories. The acceleration of the moving body is calculated to obtain the machining load amount (see FIG. 4), and reference data consisting of this machining load amount (area A of the machining load) is determined. The reference data may be calculated or may be data obtained by actually operating the press.

【0021】そして、プレスしようとする材料を所定位
置に載置し、通常の場合と同様にして可塑加工を行う。 すなわち、プレス機スライダー22を駆動させて上金型
23を移動させ、プレス機ボルスター20に設けられて
いる下金型21とで、上記材料をプレスする。
[0021] Then, the material to be pressed is placed in a predetermined position, and plastic working is performed in the same manner as in the usual case. That is, the press slider 22 is driven to move the upper die 23, and the material is pressed with the lower die 21 provided on the press bolster 20.

【0022】ここで、プレス機の駆動と並行して、レー
ザ発振部1よりレーザ・ビームを発振・照射すると、該
レーザ・ビームは光学系部2の干渉計10のビームスプ
リッター16で参照光14と被測定光15に分割され、
該被測定光15が下金型21に装着されている直角反射
鏡12を介して上金型23に装着されているコーナーキ
ューブ17で、被測定反射光18として、被測定光15
と平行に反射され、直角反射鏡12を介して向きを変え
られ、再度、干渉計10のビームスプリッター16で、
コーナーキューブ(固定)13を介して向きを変えられ
た参照光14と合成された干渉光19として、干渉光検
出部3の受光体に受光される。
Here, in parallel with the driving of the press machine, when a laser beam is emitted and irradiated from the laser oscillation section 1, the laser beam is converted into a reference beam 14 by the beam splitter 16 of the interferometer 10 in the optical system section 2. and the light to be measured 15,
The light to be measured 15 passes through the right angle reflector 12 mounted to the lower mold 21 and is reflected by the corner cube 17 mounted on the upper mold 23 as reflected light 18 to be measured.
It is reflected parallel to , is changed direction via the right-angle reflector 12 , and is again directed by the beam splitter 16 of the interferometer 10 .
The interference light 19 combined with the reference light 14 whose direction has been changed via the corner cube (fixed) 13 is received by the light receiving body of the interference light detection section 3 .

【0023】なお、被測定反射光18は、参照光14と
合成される前に、波長板11で、被測定反射光18の半
分が位相差をもつ2つのビームに分割され、参照光14
と干渉し、2個の光電素子によって、位相差のある光信
号に変換される。この信号は、移動体(上金型23)に
装着されているコーナーキューブ17がλ/4ごとの移
動に対して発され、位相差により移動体の進行方向を判
別できる。
Note that before the reflected light 18 to be measured is combined with the reference light 14, half of the reflected light 18 to be measured is split into two beams having a phase difference by a wavelength plate 11, and the reflected light 18 is divided into two beams having a phase difference.
and is converted into an optical signal with a phase difference by two photoelectric elements. This signal is emitted when the corner cube 17 attached to the moving body (upper mold 23) moves every λ/4, and the traveling direction of the moving body can be determined based on the phase difference.

【0024】そして、干渉光検出部3よりの信号は、測
長演算部5におけるアップダウンカウンター24でカウ
ントされ、プレス機の移動体(上金型23)の運動軌跡
並びに駆動範囲でのピーク時のカウント数を記憶され、
また測長演算回路25でレーザの波長を測定基準として
アップダウンカウンター24でのカウント数値を基にし
て移動体と固定体との距離の算出され、図3に示すよう
な負荷時における運動軌跡が得られる。そして、この測
定データは、加工負荷演算部6に送られ、予め記憶させ
ている無負荷時における運動軌跡(図2参照)と比較さ
れ、実際の加工負荷量(図4参照)が算出される。なお
、これらのデータは、原則として、加工の1サイクル、
例えば、上死点から上死点までを基準として比較しする
The signal from the interference light detection unit 3 is counted by the up/down counter 24 in the length measurement calculation unit 5, and the signal is counted by the up/down counter 24 in the length measurement calculation unit 5, and the signal is counted by the up/down counter 24 in the length measurement calculation unit 5, and the signal is counted by the up/down counter 24 in the length measurement calculation unit 5, and the motion trajectory of the moving body (upper die 23) of the press machine and the peak time in the drive range are calculated. The count number of is memorized,
In addition, the length measurement calculation circuit 25 calculates the distance between the moving object and the fixed object based on the count value of the up-down counter 24 using the laser wavelength as a measurement standard, and the motion trajectory under load as shown in FIG. 3 is calculated. can get. This measurement data is then sent to the machining load calculation unit 6, where it is compared with a pre-stored motion trajectory at no-load (see Fig. 2), and the actual machining load amount (see Fig. 4) is calculated. . In principle, these data are based on one cycle of processing,
For example, comparison is made using the distance from top dead center to top dead center as a reference.

【0025】ここで、運動軌跡について説明すると、図
3において、無負荷時と同じ運動軌跡からの離脱の始ま
りが実加工の開始を示し、またピーク下死点位置が加工
の終了時点を示す。また、図4において、加工開始から
終了までの運動軌跡の離脱により発生する面積Aとその
軌跡が、加工時の加工負荷状況を示している。従って、
この移動体の運動軌跡、加工負荷量により、実際での加
工状況を把握できることになる。
Now, to explain the motion trajectory, in FIG. 3, the beginning of departure from the same motion trajectory as when no load is applied indicates the start of actual machining, and the peak bottom dead center position indicates the end of machining. Further, in FIG. 4, the area A generated by the deviation of the motion trajectory from the start to the end of machining and its trajectory indicate the machining load situation during machining. Therefore,
The actual machining situation can be grasped from the motion trajectory of the moving body and the machining load amount.

【0026】また、加工負荷演算部6で得られた加工時
における加工負荷(実負荷)データは、制御部7で、予
め記憶させている各種材料や加工方法に対する最適加工
負荷量や最大加工負荷値等のデータよりなる基準加工負
荷データとを比較され、両者間に開きがある場合に移動
体の運動速度や下死点位置等を、予め設定した基準加工
負荷データに基づいて修正・制御させる。
Furthermore, the machining load (actual load) data during machining obtained by the machining load calculation unit 6 is used in the control unit 7 to calculate the optimum machining load amount and maximum machining load for various materials and machining methods stored in advance. The data is compared with standard machining load data consisting of data such as values, and if there is a discrepancy between the two, the motion speed and bottom dead center position of the moving object are corrected and controlled based on the preset standard machining load data. .

【0027】ところで、加工負荷量A、運動軌跡は、下
死点位置、加工材料の厚さ、材質、加工方法(切断、曲
げ、絞り、切削等)、振動、温度、リニア運動体のスピ
ード等により変化する。従って、検出した運動軌跡や加
工負荷量に変動が生じた場合は、速やかに、移動体の調
整を行うことにする。そして、本実施例によれば、移動
体と固定体との関係を、その距離を縦軸、時間を横軸と
する連続した運動軌跡として測定でき、予め設定した基
準データと比較し、変動が生じた場合、その変動を速や
かに検出できるように作用する。
By the way, the machining load amount A and the motion trajectory depend on the bottom dead center position, the thickness of the material to be processed, the material, the processing method (cutting, bending, drawing, cutting, etc.), vibration, temperature, speed of the linear moving body, etc. Varies depending on Therefore, if a change occurs in the detected motion trajectory or processing load amount, the moving body will be adjusted immediately. According to this embodiment, the relationship between the moving object and the fixed object can be measured as a continuous motion trajectory with the distance as the vertical axis and the time as the horizontal axis, and the fluctuation can be determined by comparing with preset reference data. When a change occurs, it acts so that the change can be detected immediately.

【0028】また、従来例と比較して、次のような作用
を奏する。すなわち、■実際の下死点である移動体(金
型等の加工工具)の先端を必ずしも測定する必要がない
ので、装着場所の制約が極めて少なくなる。■  機械
自体の振動等による影響を除去できるので、より高度な
品質保証ができる。■  測定範囲が従来の1mm程度
から200mm程度まで拡大可能であるので、加工対象
物の厚さ変動にも広範囲で対応できる。■  温度によ
るプレス機自体、金型等の加工工具、被加工対象物への
影響による変位が補正される。■  機械の停止時、あ
るいは始動時における金型等の位置が全工程にて把握で
きる。■  稼働中の金型等の加工工具の破損やプレス
機自体の異常等の監視が可能となる。■  長期的な加
工負荷変動の監視により、金型等の加工工具の寿命予測
が可能となる。■  実際の加工負荷の把握ができるた
め、プレス機の障害の予知診断が可能となる。
[0028] Furthermore, compared to the conventional example, the following effects are achieved. That is, (1) it is not necessary to measure the tip of the moving body (processing tool such as a mold), which is the actual bottom dead center, so there are extremely few restrictions on the mounting location. ■ The effects of vibrations from the machine itself can be removed, allowing for a higher level of quality assurance. - The measurement range can be expanded from the conventional approximately 1 mm to approximately 200 mm, so it can respond to a wide range of changes in the thickness of the workpiece. ■ Displacement due to the influence of temperature on the press itself, processing tools such as molds, and the workpiece is corrected. ■ The position of molds, etc. can be grasped during the entire process when the machine is stopped or started. ■ It becomes possible to monitor damage to processing tools such as molds and abnormalities in the press itself during operation. ■ By monitoring long-term machining load fluctuations, it is possible to predict the lifespan of machining tools such as molds. ■ Since the actual processing load can be grasped, predictive diagnosis of press machine failures is possible.

【0029】なお、本発明は上述した実施例に限定され
るものでなく、本発明の要旨を変更しない範囲内で変形
実施できるものを含む。因みに、上述した実施例におい
てはプレス機について説明したが、他の工作機械におい
ても同様に実施できることは当然である。また、レーダ
干渉測長器の構成については、この構成に限られるもの
でなく、他の構成としてもよい。更に、移動体、固定体
への反射鏡の装着は、金型でなく、該金型を装着するプ
レス機や工作機械の本体に装着するようにした構成等と
してもよい。
It should be noted that the present invention is not limited to the above-described embodiments, but includes modifications that can be made without departing from the gist of the present invention. Incidentally, in the above-mentioned embodiments, a press machine was explained, but it goes without saying that other machine tools can be similarly implemented. Further, the configuration of the radar interferometric length measuring device is not limited to this configuration, and may be other configurations. Furthermore, the reflecting mirror may be attached to the movable body or the fixed body, not to the mold, but to the main body of a press machine or machine tool to which the mold is mounted.

【0030】[0030]

【発明の効果】以上の説明より明らかなように、本発明
のプレス機等の工作機械の制御方法と装置によれば、プ
レス等の工作機械の移動体の移動位置測定にレーザ・ビ
ームによる干渉測長を利用していることより、該移動体
の下死点等の基準位置や運動状態の容易に判別でき、該
基準位置や運動状態の変動を検出することで、その制御
を正確かつ確実に行えるという効果を有する。
Effects of the Invention As is clear from the above explanation, according to the control method and apparatus for a machine tool such as a press machine of the present invention, interference by a laser beam can be avoided in measuring the moving position of a moving body of a machine tool such as a press machine. By using length measurement, the reference position such as the bottom dead center of the moving object and the state of motion can be easily determined, and by detecting fluctuations in the reference position and state of movement, its control can be performed accurately and reliably. This has the effect that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の一実施例を示す制御装置の概略構
成図である。
FIG. 1 is a schematic configuration diagram of a control device showing an embodiment of the present invention.

【図2】  無負荷時に想定される移動体の運動軌跡の
説明図である。
FIG. 2 is an explanatory diagram of a motion trajectory of a moving body assumed when there is no load.

【図3】  実際の加工時における移動体の運動軌跡の
説明図である。
FIG. 3 is an explanatory diagram of a motion trajectory of a moving body during actual machining.

【図4】  加工負荷量の説明図である。FIG. 4 is an explanatory diagram of processing load amount.

【図5】  レーザ干渉測長器の概略構成図である。FIG. 5 is a schematic configuration diagram of a laser interferometric length measuring device.

【符号の説明】[Explanation of symbols]

1・・・レーザ発振部、2・・・光学系部、3・・・プ
レス機本体部、4・・・干渉光検出部、5・・・測長演
算部、6・・・加工負荷演算部、7・・・制御部、8・
・・レーザ発振器、9・・・発振用電源、10・・・干
渉計、11・・・波長板、12・・・直角反射鏡、13
・・・コーナーキューブ、14・・・参照光、15・・
・被測定光、16・・・ビームスプリッター、17・・
・コーナーキューブ、18・・・被測定反射光、19・
・・干渉光、20・・・プレス機ボルスター、21・・
・下金型、22・・・プレス機スライダー、23・・・
上金型、24・・・アップダウンカウンター、25・・
・距離演算回路
DESCRIPTION OF SYMBOLS 1... Laser oscillation part, 2... Optical system part, 3... Press machine main body part, 4... Interference light detection part, 5... Length measurement calculation part, 6... Machining load calculation Part, 7... Control part, 8.
... Laser oscillator, 9... Power source for oscillation, 10... Interferometer, 11... Wave plate, 12... Right angle reflecting mirror, 13
...Corner cube, 14...Reference light, 15...
・Measurement light, 16...Beam splitter, 17...
・Corner cube, 18... Reflected light to be measured, 19・
...Interference light, 20...Press machine bolster, 21...
・Lower mold, 22...Press machine slider, 23...
Upper mold, 24...Up-down counter, 25...
・Distance calculation circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  レーザ・ビームによる干渉測長を利用
し、下型等の固定体に対面する上型等の移動体の負荷時
の運動軌跡と無負荷時の運動軌跡を計測し、該両運動軌
跡を比較し、該移動体の実加工時における下死点等の基
準位置や運動状態を制御するようにしたことを特徴とす
るプレス機等の工作機械の制御方法。
Claim 1: Utilizing interferometric length measurement using a laser beam, the locus of motion under load and the locus of motion under no load of a movable body such as an upper die facing a fixed body such as a lower die are measured, and both A method for controlling a machine tool such as a press machine, comprising comparing motion trajectories and controlling a reference position such as a bottom dead center and a motion state during actual machining of the movable body.
【請求項2】  プレス機等の工作機械における下型等
の固定体に対面する上型等の移動体の下死点等の基準位
置や運動状態を制御するための方法であって、レーザ・
ビームによる干渉測長を利用し、上記移動体の負荷時の
基準運動軌跡と無負荷時の運動軌跡を計測して該両運動
軌跡を比較し、加工負荷量を得て基準加工負荷量とし、
また実加工時における上記移動体の運動軌跡を計測し、
上記無負荷時の運動軌跡と比較して実加工負荷量を得て
、上記基準加工負荷量と実加工負荷量とを比較すること
で、上記移動体の下死点等の基準位置や運動状態の制御
を行うことを特徴とするプレス機等の工作機械の制御方
法。
2. A method for controlling the reference position such as the bottom dead center and the movement state of a moving body such as an upper die facing a fixed body such as a lower die in a machine tool such as a press machine, the method comprising:
Using interferometric length measurement with a beam, measure a reference motion trajectory under load and a motion trajectory under no load of the moving body, compare the two motion trajectories, obtain a machining load amount, and use it as a reference machining load amount;
We also measure the motion trajectory of the moving object during actual machining,
The actual machining load amount is obtained by comparing the above-mentioned no-load motion trajectory, and by comparing the above-mentioned standard machining load amount and the actual machining load amount, the reference position such as the bottom dead center of the moving body, the movement state, etc. A control method for a machine tool such as a press machine, characterized by controlling a machine tool such as a press machine.
【請求項3】  加工負荷量を、移動体の加速度によっ
て検出している請求項2に記載のプレス機等の工作機械
の制御方法。
3. The method of controlling a machine tool such as a press machine according to claim 2, wherein the processing load amount is detected by the acceleration of the moving body.
【請求項4】  プレス機等の工作機械における下型等
の固定体に対面する上型等の移動体の下死点等の基準位
置や運動状態を制御するための装置であって、主光ビー
ムを発振・照射するレーザ発振部と、該レーザ発振部よ
り照射されたレーザ・ビームを参照光と被測定光に分割
し、該被測定光を上記プレス機の固定体に設けた固定反
射鏡を介し、移動体に設けた移動反射鏡に反射させ、該
固定反射鏡を介して被測定反射光を得て、該被測定反射
光と上記参照光とを干渉させる光学系部と、該光学系部
による該被測定反射光と参照光との干渉光を検出して検
出信号を得る干渉光検出部と、該干渉光検出部で検出・
変換された検出信号をカウントして上記移動体の位置ま
たは運動軌跡を得る測長演算部を有することを特徴とす
るプレス機等の工作機械の制御装置。
4. A device for controlling the reference position such as the bottom dead center and the movement state of a moving body such as an upper die facing a fixed body such as a lower die in a machine tool such as a press machine, the device comprising: A laser oscillation unit that oscillates and irradiates a beam, a fixed reflecting mirror that divides the laser beam irradiated from the laser oscillation unit into a reference beam and a measured light, and that transmits the measured light to a fixed body of the press machine. an optical system unit that reflects the reflected light to a movable reflecting mirror provided on a moving body through the fixed reflecting mirror, obtains the reflected light to be measured via the fixed reflecting mirror, and causes the reflected light to be measured and the reference light to interfere with each other; An interference light detection unit detects the interference light between the reflected light to be measured and the reference light by the system unit to obtain a detection signal, and the interference light detection unit detects and obtains a detection signal.
A control device for a machine tool such as a press machine, comprising a length measurement calculation section that counts converted detection signals to obtain the position or motion trajectory of the moving body.
【請求項5】  測長演算部よりの測定データよりプレ
ス加工中の負荷を算出する加工負荷演算部と、該測長演
算部で得た負荷データにより移動体の下死点等の基準位
置や運動状態の制御を行う制御部を有する請求項4に記
載のプレス機等の工作機械の制御装置。
5. A processing load calculation unit that calculates the load during press working from measurement data from the length measurement calculation unit, and a reference position such as the bottom dead center of the moving body and the like based on the load data obtained by the length measurement calculation unit. 5. The control device for a machine tool such as a press machine according to claim 4, further comprising a control section that controls a motion state.
JP6505691A 1991-03-28 1991-03-28 Method and device for controlling machine tool of press machine, and the like Pending JPH04300099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6505691A JPH04300099A (en) 1991-03-28 1991-03-28 Method and device for controlling machine tool of press machine, and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6505691A JPH04300099A (en) 1991-03-28 1991-03-28 Method and device for controlling machine tool of press machine, and the like

Publications (1)

Publication Number Publication Date
JPH04300099A true JPH04300099A (en) 1992-10-23

Family

ID=13275915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6505691A Pending JPH04300099A (en) 1991-03-28 1991-03-28 Method and device for controlling machine tool of press machine, and the like

Country Status (1)

Country Link
JP (1) JPH04300099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08328629A (en) * 1995-06-01 1996-12-13 Toshiba Mach Co Ltd Method for correcting moving position error and method for correcting and confirming moving position error for nc machine tool
JP2018062000A (en) * 2016-10-14 2018-04-19 日本電産株式会社 Die abnormality prediction system, press having the same, and die abnormality prediction method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08328629A (en) * 1995-06-01 1996-12-13 Toshiba Mach Co Ltd Method for correcting moving position error and method for correcting and confirming moving position error for nc machine tool
JP2018062000A (en) * 2016-10-14 2018-04-19 日本電産株式会社 Die abnormality prediction system, press having the same, and die abnormality prediction method

Similar Documents

Publication Publication Date Title
EP1898428B1 (en) Surface-profile measuring instrument
US6062948A (en) Apparatus and method for gauging a workpiece
US9895768B2 (en) Laser processing apparatus
US6628408B1 (en) Amplitude measurement for an ultrasonic horn
KR20220104819A (en) Method for measuring distance by OCT and related computer program product for focus control for laser processing of materials
Schmitt et al. Process monitoring in laser micro machining
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JPH04300099A (en) Method and device for controlling machine tool of press machine, and the like
KR20060101895A (en) Ground measurement system of cam grinding machine
KR20110010513A (en) Apparatus for alignment measuring of rolling roll using laser
KR101244264B1 (en) Form measurement device
JP3385039B2 (en) Thickness measuring method and measuring device in bender
KR100434445B1 (en) Tree demensional shape/surface illumination measuring apparatus
JP2003227707A (en) Thickness gauge
CN112912197B (en) Method and device for monitoring a machining process of a workpiece by means of a laser beam
JPH06190578A (en) Laser beam machine
JP6694473B2 (en) Measuring system, measuring method and measuring program
JP2003315027A (en) Hot dimension/shape measuring apparatus of h-steel
JPH10307008A (en) Thickness gage
KR20160116086A (en) Apparatus for measuring shearing position of plate
JP2571423B2 (en) Automatic slide position correction device for press
JPS63299899A (en) Press operating method and press apparatus
KR0183642B1 (en) Method and apparatus for sensing processing remainder of press
JPH084997B2 (en) Displacement measuring device in mechanical equipment
JPH0647540A (en) Method and device for detecting welding groove shape