JPH04299541A - Structure and method for performing die bonding - Google Patents

Structure and method for performing die bonding

Info

Publication number
JPH04299541A
JPH04299541A JP3087656A JP8765691A JPH04299541A JP H04299541 A JPH04299541 A JP H04299541A JP 3087656 A JP3087656 A JP 3087656A JP 8765691 A JP8765691 A JP 8765691A JP H04299541 A JPH04299541 A JP H04299541A
Authority
JP
Japan
Prior art keywords
die
bonding
base material
oxide
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3087656A
Other languages
Japanese (ja)
Other versions
JP2831484B2 (en
Inventor
Hiroyuki Hebiguchi
広行 蛇口
Takemi Akimoto
秋元 丈美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP3087656A priority Critical patent/JP2831484B2/en
Publication of JPH04299541A publication Critical patent/JPH04299541A/en
Application granted granted Critical
Publication of JP2831484B2 publication Critical patent/JP2831484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To fix a die with high accuracy by forming a joining section which fixes the die to a base by joining the surfaces of the die and base to each other by anode connection, with the surface of a die or base being composed of an oxide which can form an oxide and the surface of the base or die being composed of the oxide. CONSTITUTION:An IC chip 1 is provided with a circuit formed on the surface side 9 of a rectangular silicon substrate 7, bump 5 formed on the surface side 9 of the substrate 7 along the lengthdirection side of the substrate 1, and glass layer 8 for junction which is formed of lead glass at the central part of the substrate 7. On the rear surface side of the substrate 7, in addition, a contact pad 11 used for applying an voltage at the time of processing anode connection is provided with an impurity diffusion layer 10 for ohmic contact in between and a metallic layer 12 for junction of Al is formed on the surface of the layer 12. The metallic layer 12 is provided at the location where the glass layer 8 is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ICチップやLSIチ
ップ等のダイをガラス基板やパッケージ等の基材に固定
するためのボンディング構造およびボンディング方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonding structure and bonding method for fixing a die such as an IC chip or an LSI chip to a base material such as a glass substrate or a package.

【0002】0002

【従来の技術】ICチップを基板に固定するには、従来
、ダイと基材との間に銀ペーストや接着剤、あるいはS
i−Auの共晶接合を介在させて行っていた。
[Prior Art] Conventionally, in order to fix an IC chip to a substrate, silver paste, adhesive, or S
This was done by interposing i-Au eutectic bonding.

【0003】0003

【発明が解決しようとする課題】液晶パネル等において
ICチップ実装のために占有される面積を小さくするた
めには、画素ピッチPpとボンディングピッチPbを等
しくして、ICチップの長辺に沿って出力端子を設ける
とよい。図4(a)(c)に示すように、PpがPbよ
り大であっても小であっても、PpとPbの差を解消す
るためには配線を引き回す必要があり、この配線引き回
し部20のためにかなりの面積が占有される。これに対
して図4(b)に示すように、Pp=Pbにすると配線
の引き回しが不要となり、実装のために占有される面積
が小となる。
[Problems to be Solved by the Invention] In order to reduce the area occupied by IC chip mounting in a liquid crystal panel, etc., it is necessary to make the pixel pitch Pp and the bonding pitch Pb equal, and to It is recommended to provide an output terminal. As shown in FIGS. 4(a) and 4(c), whether Pp is larger or smaller than Pb, it is necessary to route the wiring in order to eliminate the difference between Pp and Pb. 20 occupies a considerable area. On the other hand, as shown in FIG. 4(b), when Pp=Pb, there is no need to route the wiring, and the area occupied for mounting becomes small.

【0004】ところで、画素ピッチPpが数10から1
00μmと高密度化が進んだ液晶パネルやプリンターヘ
ッドにICチップを実装する際には、前記のようにPp
=Pbとすると、ICチップと基材の位置を正確に合わ
せて固定する必要が生じる。
By the way, the pixel pitch Pp is from several tens to 1
When mounting IC chips on liquid crystal panels and printer heads, which have a high density of 00 μm, as mentioned above, Pp
=Pb, it becomes necessary to accurately align and fix the IC chip and the base material.

【0005】ところが、前述のように接着剤等を用いて
ICチップと基材とを固定すると、接着時には接着界面
部分が一時流動状態を経るため、接着界面が固化するま
での間に、図5に示すようにICチップ1が位置ずれし
易く、位置合わせ精度を高く維持することが難しい。
However, when the IC chip and the base material are fixed using an adhesive or the like as described above, the adhesive interface part temporarily goes through a fluid state during adhesion, so that the adhesive interface part is temporarily in a fluid state until the adhesive interface solidifies. As shown in FIG. 2, the IC chip 1 is easily misaligned, and it is difficult to maintain high alignment accuracy.

【0006】なお図5中符号2は基材、符号3は基材側
電極、符号4はチップ側電極、符号5はバンプである。 そして図5(a)はワイヤー6によってICチップ1の
電極4と基材2の電極3とを電気的に接続するタイプ、
図5(b)はフェイスダウンによってICチップ1のバ
ンプ5を基材2の電極3に接続するタイプを示している
In FIG. 5, reference numeral 2 represents a base material, reference numeral 3 represents an electrode on the base material side, reference numeral 4 represents an electrode on the chip side, and reference numeral 5 represents a bump. FIG. 5(a) shows a type in which the electrode 4 of the IC chip 1 and the electrode 3 of the base material 2 are electrically connected by the wire 6.
FIG. 5(b) shows a type in which the bumps 5 of the IC chip 1 are connected to the electrodes 3 of the base material 2 by face-down.

【0007】本発明は前記事情に鑑みてなされたもので
、高い精度でダイを固定できるダイボンディング構造及
び方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a die bonding structure and method that can secure a die with high precision.

【0008】[0008]

【課題を解決するための手段】本発明のダイボンディン
グ構造は、ダイを基材に固定するダイボンディング構造
において、ダイまたは基材の一方の少なくとも表面が酸
化物を形成し得る導体であり、他方の少なくとも表面が
酸化物であり、これらの表面が陽極接合されてダイと基
材を固定する接合部を形成していることを特徴とする。
Means for Solving the Problems The die bonding structure of the present invention is a die bonding structure for fixing a die to a base material, in which at least the surface of either the die or the base material is a conductor capable of forming an oxide, and the other surface is a conductor capable of forming an oxide. At least the surface of the die is an oxide, and these surfaces are anodically bonded to form a joint that fixes the die and the base material.

【0009】この酸化物としては、鉛ガラスや、硼ケイ
酸ガラス、パイレックスガラス等各種のガラスおよびL
iNbO3、水晶等の単結晶を利用できるが、導体との
接合処理を低温で行える点で鉛ガラス、硼ケイ酸ガラス
等の低温で変形し易い低融点ガラスを利用することが望
ましい。
[0009] Examples of this oxide include lead glass, borosilicate glass, Pyrex glass, etc., and various types of glass.
Although single crystals such as iNbO3 and quartz can be used, it is preferable to use low-melting point glasses that are easily deformed at low temperatures, such as lead glass and borosilicate glass, since the bonding process with the conductor can be performed at low temperatures.

【0010】酸化物を成膜した基材を用いる場合、酸化
物の膜厚は、通常5000オンク゛ストローム以上で有
れば良いが、接合処理作業での歩留まりが高いという点
で4μm程度に設定されることが望ましい。
[0010] When using a base material on which an oxide film is formed, the thickness of the oxide film should normally be 5000 angstroms or more, but it is set to about 4 μm from the viewpoint of high yield in bonding processing work. This is desirable.

【0011】導体としては、シリコン(Si)やガリウ
ムひ素(GaAs)、アルミニウム(Al)、インジウ
ム錫酸化物(ITO)など各種の導体を利用できるが、
接合し易さの点で、Al,Siが適している。
Various conductors such as silicon (Si), gallium arsenide (GaAs), aluminum (Al), and indium tin oxide (ITO) can be used as the conductor.
Al and Si are suitable from the viewpoint of ease of joining.

【0012】前記接合部は、ダイの長さ方向の中央部の
みに設けられることが望ましい。また接合部の大きさは
、熱応力を小さく抑えるために強度上の問題がない限り
、できるだけ小さい方が良い。
[0012] It is preferable that the joint portion is provided only at a central portion in the length direction of the die. Furthermore, the size of the joint is preferably as small as possible in order to keep thermal stress to a minimum unless there is a problem with strength.

【0013】このようなダイボンディングを行う方法と
しては、ダイまたは基材の一方を酸化可能な導体からな
る基材又は酸化可能な導体を成膜した基材とし、他方を
酸化物からなる基材又は酸化物を成膜した基材とし、こ
れらを重ね合わせて酸化物側がマイナス、導体側がプラ
スとなるように両者間に電圧を印加して陽極接合する。   酸化物を成膜する方法としては、スパッタ法、蒸着
法、ガスデポジション、印刷ー焼成法など各種の方法を
採用できる。
[0013] As a method for performing such die bonding, one of the die and the base material is a base material made of an oxidizable conductor or a base material on which a film of an oxidizable conductor is formed, and the other is a base material made of an oxide. Alternatively, a base material on which an oxide film is formed is used, and these are stacked and anodic bonded by applying a voltage between them so that the oxide side becomes negative and the conductor side becomes positive. Various methods can be used to form the oxide film, such as sputtering, vapor deposition, gas deposition, and printing-baking.

【0014】[0014]

【作用】本発明のダイボンディング構造では、接着剤等
を介さず酸化物を形成し得る導体と酸化物とを直接陽極
接合でき、導体と酸化物の酸素との間で強固に化学結合
するため、信頼性の高いダイボンディンク゛が可能にな
る。この陽極接合は接合界面が固相状態のままで行われ
るため、位置合わせ精度を高く保ことができる。
[Operation] In the die bonding structure of the present invention, a conductor capable of forming an oxide and an oxide can be directly anodically bonded without using an adhesive or the like, and a strong chemical bond is formed between the conductor and the oxygen in the oxide. This enables highly reliable die bonding. Since this anodic bonding is performed while the bonding interface remains in a solid state, high alignment accuracy can be maintained.

【0015】前記接合部をダイの長さ方向の中央部のみ
に設けると、接合後温度変化があった場合にダイと基材
の熱膨張の差によって接合部分に生じる熱応力を小さく
抑えることができる。しかも接合部を中央部に設けると
、固定されている接合部からダイの端部までの距離が短
くなるので、ダイと基材との熱膨張の差によって、ダイ
端部に顕著にあらわれる基板側電極とダイ側電極との位
置ずれも小さくでき、信頼性が向上する。
[0015] When the joint portion is provided only at the center portion of the die in the length direction, it is possible to suppress thermal stress generated in the joint portion due to the difference in thermal expansion between the die and the base material to a small level when there is a temperature change after joining. can. Moreover, if the joint is located in the center, the distance from the fixed joint to the edge of the die becomes shorter, so the difference in thermal expansion between the die and the base material causes the substrate side to appear more prominently at the die end. Misalignment between the electrode and the die-side electrode can also be reduced, improving reliability.

【0016】また本発明のダイボンディング方法では、
酸化物側がマイナス、導体側がプラスとなるように両者
間に電圧を印加するので、酸化物中のアルカリイオンな
どの可動イオンがマイナス極側に移動し、これに伴い酸
化物と導体との間に大きな静電引力が生じる。また界面
の部分で酸化物中の酸素と導体の化学結合が生じて酸化
物と導体とが強固に接合する。このとき酸化物と接合用
導体との界面が流動状態になることはなく、位置合わせ
精度を高く保つことができる。
[0016] Furthermore, in the die bonding method of the present invention,
Since a voltage is applied between the two so that the oxide side is negative and the conductor side is positive, mobile ions such as alkali ions in the oxide move to the negative electrode side, and as a result, a voltage is applied between the oxide and the conductor. A large electrostatic attraction occurs. Further, a chemical bond occurs between oxygen in the oxide and the conductor at the interface, and the oxide and the conductor are firmly bonded. At this time, the interface between the oxide and the bonding conductor does not enter a fluid state, and high alignment accuracy can be maintained.

【0017】[0017]

【実施例】以下、図面を参照して本発明のダイボンディ
ング構造と方法を詳しく説明する。なお前記従来例と同
一構成部分には、同一符号を付して説明を簡略化する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The die bonding structure and method of the present invention will be explained in detail below with reference to the drawings. Note that the same components as those in the conventional example are given the same reference numerals to simplify the explanation.

【0018】(実施例1)図1は、本発明のダイボンデ
ィング構造によって接合されたガラス製の基材2とIC
チップ1を示している。ICチップ1は長方形状のシリ
コン基板7の表面側9に回路が形成されたものである。 さらにこのシリコン基板7の表面側には、長手方向に延
びる辺に沿ってバンプ5が設けられている。
(Example 1) FIG. 1 shows a glass substrate 2 and an IC bonded by the die bonding structure of the present invention.
Chip 1 is shown. The IC chip 1 has a circuit formed on the front side 9 of a rectangular silicon substrate 7. Furthermore, bumps 5 are provided on the front side of the silicon substrate 7 along the sides extending in the longitudinal direction.

【0019】このシリコン基板7の表面側9にはさらに
接合用ガラス層8が形成されている。接合用ガラス層8
は、鉛ガラスによって形成されている。この接合用ガラ
ス層8は、直径2mmに形成されており、シリコン基板
7の中央部に配置されている。この接合用ガラス層の直
径は熱応力を小さく抑えるために、強度上の問題がない
限り、できるだけ小さい方が良く、2mm以下が良い。 この接合用ガラス層8の厚さは、約4μmである。
A bonding glass layer 8 is further formed on the front side 9 of this silicon substrate 7. Bonding glass layer 8
is made of lead glass. This bonding glass layer 8 is formed to have a diameter of 2 mm and is placed at the center of the silicon substrate 7. In order to suppress thermal stress, the diameter of this bonding glass layer is preferably as small as possible, preferably 2 mm or less, unless there is a problem with strength. The thickness of this bonding glass layer 8 is approximately 4 μm.

【0020】またシリコン基板7の裏面側には、後述す
る陽極接合処理時に電圧を印加するために用いるコンタ
クトパッド11が、オーミックコンタクト用不純物拡散
層10を介して設けられている。
Further, on the back side of the silicon substrate 7, a contact pad 11 used for applying a voltage during an anodic bonding process, which will be described later, is provided through an impurity diffusion layer 10 for ohmic contact.

【0021】基材2はガラス製のもので、その表面には
Al製の接合用金属層12が設けられている。この接合
用金属層12は、前記接合用ガラス層8と一致する箇所
に設けられている。またこの接合用金属層12は、通常
は厚さ1.0μm程度に形成されているが、表面粗さが
Rmax≦0.05μmであれば、厚さは特に問わない
。。
The base material 2 is made of glass, and a bonding metal layer 12 made of Al is provided on its surface. This bonding metal layer 12 is provided at a location that coincides with the bonding glass layer 8. Further, the bonding metal layer 12 is usually formed to have a thickness of about 1.0 μm, but the thickness is not particularly limited as long as the surface roughness is Rmax≦0.05 μm. .

【0022】この接合用金属層12には、後述する陽極
接合処理時に利用する配線13が連接されている。
[0022] This bonding metal layer 12 is connected with a wiring 13 to be used during an anodic bonding process, which will be described later.

【0023】前記ICチップ1に設けられた接合用ガラ
ス層8と基材2に設けられた接合用金属層12は陽極接
合されて、接合部14を形成している。この状態でIC
チップ1のバンプ5と基材2の基板側電極3は電気的に
接続されている。そしてICチップ1と基材2との間隙
は封止剤15によって密封されている。
The bonding glass layer 8 provided on the IC chip 1 and the bonding metal layer 12 provided on the base material 2 are anodically bonded to form a bonding portion 14. In this state, the IC
The bumps 5 of the chip 1 and the substrate-side electrodes 3 of the base material 2 are electrically connected. The gap between the IC chip 1 and the base material 2 is sealed with a sealant 15.

【0024】次に前記のようにICチップ1と基材2を
ダイボンデイングする方法を説明する。この方法では、
まず基材2の表面にAlをスパッタして接合用金属層1
2と電極13を形成した。他方ICチップ1のシリコン
基板7にも、鉛ガラスをスパッタして接合用ガラス層8
を形成した。
Next, a method of die bonding the IC chip 1 and the base material 2 as described above will be explained. in this way,
First, Al is sputtered on the surface of the base material 2 to form a bonding metal layer 1.
2 and an electrode 13 were formed. On the other hand, a bonding glass layer 8 is also formed on the silicon substrate 7 of the IC chip 1 by sputtering lead glass.
was formed.

【0025】ついでICチップ1と基材2を重ねて位置
合わせし、接合用ガラス層8と接合用金属層12を重ね
合わせ、ICチップ1側のコンタクトパッド11を電源
21のマイナス極に接続し、基材2側の配線13をプラ
ス極に接続して、接合用ガラス層8にマイナス、接合用
金属層12にプラスの電圧を印加した。この時加えた電
圧は数10Vであった。この様に電圧を印加したところ
、前記接合用ガラス層8と接合用金属層12は陽極接合
された。この作業は、室温下で行った。
Next, the IC chip 1 and the base material 2 are overlapped and aligned, the bonding glass layer 8 and the bonding metal layer 12 are overlapped, and the contact pad 11 on the IC chip 1 side is connected to the negative pole of the power source 21. The wiring 13 on the base material 2 side was connected to the positive electrode, and a negative voltage was applied to the bonding glass layer 8 and a positive voltage was applied to the bonding metal layer 12. The voltage applied at this time was several tens of volts. When voltage was applied in this way, the bonding glass layer 8 and the bonding metal layer 12 were anodic bonded. This work was performed at room temperature.

【0026】この後、接合されたICチップ1と基材2
との間に封止機能と接着機能を有する樹脂を塗布したあ
と真空容器に入れたことろ、ICチップ1と基材2との
間に樹脂が行き渡り、これらをしっかり封止、接合でき
た。
After that, the joined IC chip 1 and base material 2
After applying a resin having a sealing function and an adhesive function between the IC chip 1 and the base material 2, the resin was spread between the IC chip 1 and the base material 2, and the IC chip 1 and the base material 2 were firmly sealed and bonded.

【0027】この実施例のダイボンディング構造では、
基材2に接合用金属層12を設け、ICチップ1に接合
用ガラス層8設けたので、これらの接合用層8,12を
陽極接合することによってICチップ1と基材2を固定
できる。接合用金属層12と接合用ガラス層8との間は
、金属−酸素間の化学結合によって接合している。この
陽極接合は接合処理時に接合界面が液相になることがな
く固相状態のままで行なわれるので、このダイボンディ
ング構造によれば、ICチップ1と基材2とを位置合わ
せした状態を保ちつつ接合処理できる。ICチップ1と
基材2を位置精度良く固定できる。
In the die bonding structure of this example,
Since the bonding metal layer 12 is provided on the base material 2 and the bonding glass layer 8 is provided on the IC chip 1, the IC chip 1 and the base material 2 can be fixed by anodic bonding these bonding layers 8 and 12. The bonding metal layer 12 and the bonding glass layer 8 are bonded by a metal-oxygen chemical bond. This anodic bonding is performed while the bonding interface does not become a liquid phase during the bonding process and remains in a solid phase, so according to this die bonding structure, the IC chip 1 and the base material 2 can be maintained in an aligned state. It can also be bonded. The IC chip 1 and the base material 2 can be fixed with high positional accuracy.

【0028】またこの実施例のダイボンディング構造で
は、接合用ガラス層8を鉛ガラスで形成したので、接合
用ガラス層8と接合用金属層12の陽極接合処理を室温
で行うことができる。従ってこの実施例のダイボンディ
ング構造では、接合処理の時と処理後とでのICチップ
1及び基材2の寸法変化を回避でき、接合による残留応
力の発生を防止できる。
Furthermore, in the die bonding structure of this embodiment, since the bonding glass layer 8 is formed of lead glass, the anodic bonding process between the bonding glass layer 8 and the bonding metal layer 12 can be performed at room temperature. Therefore, in the die bonding structure of this embodiment, it is possible to avoid dimensional changes in the IC chip 1 and the base material 2 between the time of the bonding process and after the process, and generation of residual stress due to bonding can be prevented.

【0029】さらにこの実施例のダイボンディング構造
では、接合部14をICチップ1の長さ方向の中央部の
みに設け、他の部分を封止材15で接合したので、接合
部14が狭くICチップ1と基材2との熱膨張の差によ
って接合部14に生じる熱応力を小さく抑えることがで
きる。他の部分における熱膨張の差は、樹脂製の封止材
15の変形により吸収できる。加えて接合部14を中央
部に設けたので、接合部14からICチップ1の端部ま
での最長距離が短くなり、ICチップ1と基材2との熱
膨張の差によるバンプ5,基板側電極3の位置づれが小
さくなる。従って、この実施例のダイボンディング構造
によれば、ICチップ1と基材2との位置合わせ精度を
高く保ちつつ、熱応力も緩和することができる。そして
ICチップ1を長くしてチップ1の実装数を減らし、作
業性を向上することが可能となる。
Furthermore, in the die bonding structure of this embodiment, the bonding portion 14 is provided only at the center portion in the length direction of the IC chip 1, and the other portions are bonded with the sealing material 15. Therefore, the bonding portion 14 is narrow and the IC chip 1 is Thermal stress generated in the joint portion 14 due to the difference in thermal expansion between the chip 1 and the base material 2 can be suppressed to a small level. Differences in thermal expansion in other parts can be absorbed by deformation of the resin sealing material 15. In addition, since the joint part 14 is provided in the center, the longest distance from the joint part 14 to the end of the IC chip 1 is shortened, and the difference in thermal expansion between the IC chip 1 and the base material 2 causes bumps 5 and the substrate side. The positional deviation of the electrode 3 is reduced. Therefore, according to the die bonding structure of this embodiment, thermal stress can be alleviated while maintaining high alignment accuracy between the IC chip 1 and the base material 2. It is also possible to increase the length of the IC chip 1, reduce the number of chips 1 mounted, and improve work efficiency.

【0030】またこの実施例のダイボンディング方法で
は、接合用ガラス層8がマイナス、接合用金属層12が
プラスとなるように両者間に電圧を印加したので、ガラ
ス内でのアルカリイオンの移動に伴い、ガラスと金属と
の間に大きな静電気引力が生じる。また界面の部分でガ
ラス中の酸素と金属との化学結合が生じ、接合用ガラス
層8と接合用金属層12とを強固に接合することができ
た。しかもこの接合処理は接合用ガラス層8と接合用金
属層12との界面が固相の状態で行われ、接合界面が流
動状態になることはない。従ってこのダイボンディング
方法によれば、ICチップ1と基材2を位置合わせした
時の状態を保ったまま接合することができ、これらを正
確に固定できる。
Furthermore, in the die bonding method of this embodiment, since a voltage was applied between the bonding glass layer 8 and the bonding metal layer 12 so that the voltage was negative and the bonding metal layer 12 was positive, the movement of alkali ions within the glass was prevented. Accordingly, a large electrostatic attraction occurs between the glass and the metal. Further, a chemical bond was formed between the oxygen in the glass and the metal at the interface, and the bonding glass layer 8 and the bonding metal layer 12 could be firmly bonded. Moreover, this bonding process is performed while the interface between the bonding glass layer 8 and the bonding metal layer 12 is in a solid state, and the bonding interface is not in a fluid state. Therefore, according to this die bonding method, it is possible to bond the IC chip 1 and the base material 2 while maintaining their alignment, and it is possible to accurately fix them.

【0031】なお前記実施例では、ICチップ1のシリ
コン基板7に接合用ガラス層8を直接設けたが、シリコ
ン基板7と接合用ガラス層8との間には両者に密着性の
よい金属を介在させてもよい。
In the above embodiment, the bonding glass layer 8 was directly provided on the silicon substrate 7 of the IC chip 1, but a metal with good adhesion between the silicon substrate 7 and the bonding glass layer 8 was used. It is also possible to intervene.

【0032】(実施例2)図2は、本発明のダイボンデ
ィング構造の第2実施例を示すもので、前記実施例と同
一構成部分には、同一符号を付して説明を簡略化する。
(Embodiment 2) FIG. 2 shows a second embodiment of the die bonding structure of the present invention, and the same components as in the previous embodiment are given the same reference numerals to simplify the explanation.

【0033】この例のダイボンディング構造が前記実施
例1と異なる点は、ガラス製の基材2側に接合用ガラス
層8を設け、ICチップ1のシリコン基板7側に接合用
金属層12を設けた点である。また接合用ガラス層8は
、この接合用ガラス層8に電圧を印加するための電極1
3の上に設けられている。この電極13は、基材2と接
合用ガラス層8の両方に密着性のよい導電材料で形成さ
れている。
The die bonding structure of this example is different from the first embodiment described above in that a bonding glass layer 8 is provided on the glass base material 2 side, and a bonding metal layer 12 is provided on the silicon substrate 7 side of the IC chip 1. This is the point I made. Further, the bonding glass layer 8 has an electrode 1 for applying a voltage to the bonding glass layer 8.
It is placed on top of 3. This electrode 13 is made of a conductive material that has good adhesion to both the base material 2 and the bonding glass layer 8.

【0034】この実施例のダイボンディングにおいても
前記実施例1と同様の作用効果が得られる。
In the die bonding of this embodiment, the same effects as in the first embodiment can be obtained.

【0035】なおこの実施例ではシリコン基板7に別途
、接合用金属層12を設けたが、シリコン基板7自体を
接合用金属層12として用いてもよい。
In this embodiment, the bonding metal layer 12 is separately provided on the silicon substrate 7, but the silicon substrate 7 itself may be used as the bonding metal layer 12.

【0036】(実施例3)この発明のダイボンディング
構造は、図3に示すように、ICチップ1のチップ側電
極4と基材2の基材側電極3とをワイヤー6を用いて接
続するワイヤーボンド技術においても利用できる。
(Embodiment 3) As shown in FIG. 3, the die bonding structure of the present invention connects the chip side electrode 4 of the IC chip 1 and the base material side electrode 3 of the base material 2 using a wire 6. It can also be used in wire bond technology.

【0037】[0037]

【発明の効果】以上説明したように本発明のダイボンデ
ィング構造においては、ダイまたは基材の一方の少なく
とも表面が酸化物を形成し得る導体であり、他方の少な
くとも表面が酸化物であり、これらの表面が陽極接合さ
れてダイと基材を固定する接合部を形成しているので、
導体と酸化物との間は、金属−酸素間の化学結合によっ
て接合している。この陽極接合は接合処理時に接合界面
が液相になることがなく固相状態のままで行なわれるの
で、ダイと基材とを位置合わせした状態を維持して接合
処理できる。よってこのダイボンディング構造によれば
、ダイと基材を位置精度良く固定できる。
As explained above, in the die bonding structure of the present invention, at least the surface of one of the die or the base material is a conductor capable of forming an oxide, and at least the surface of the other is a conductor capable of forming an oxide. The surface of the die is anodically bonded to form the joint that fixes the die and the substrate.
The conductor and the oxide are bonded by a metal-oxygen chemical bond. This anodic bonding is performed while the bonding interface does not become a liquid phase during the bonding process and remains in a solid state, so that the bonding process can be performed while maintaining the aligned state of the die and the base material. Therefore, according to this die bonding structure, the die and the base material can be fixed with high positional accuracy.

【0038】また、接合部がダイの長さ方向の中央部の
みに設けられた請求項2のダイボンディング構造では、
接合部が狭くダイと基材との熱膨張の差による応力の発
生を小さく抑えることができる。加えて接合部を中央部
に設けたので、接合部からダイの端部までの最長距離が
短くなり、ダイと基材との熱膨張の差によるダイ側電極
と基材側電極の位置づれが最小となる。従って、このダ
イボンディング構造によれば、ダイと基材との位置合わ
せ精度を高く保ちつつ、熱応力も緩和できるので、ダイ
を長く形成してチップの実装数を減らし、作業性を向上
することが可能となる。
Further, in the die bonding structure according to claim 2, the bonding portion is provided only at the central portion in the length direction of the die,
Since the joint is narrow, the generation of stress due to the difference in thermal expansion between the die and the base material can be suppressed. In addition, since the joint is located in the center, the longest distance from the joint to the edge of the die is shortened, which reduces the positional deviation between the die side electrode and the base material side electrode due to the difference in thermal expansion between the die and the base material. Minimum. Therefore, according to this die bonding structure, thermal stress can be alleviated while maintaining high alignment accuracy between the die and the base material, so it is possible to form a long die, reduce the number of chips mounted, and improve workability. becomes possible.

【0039】請求項3のダイボンディング方法は、ダイ
または基材の一方を酸化可能な導体からなる基材あるい
は酸化可能な導体を成膜した基材とし、他方を酸化物か
らなる基材あるいは酸化物を成膜した基材とし、これら
を重ね合わせて酸化物側がマイナス、導体側がプラスと
なるように両者間に電圧を印加して陽極接合する方法な
ので、酸化物中のアルカリイオン等の可動イオンの移動
に伴い、酸化物と導体との間に大きな静電引力が生じる
と共に、界面の部分で酸化物中の酸素と導体との化学結
合が生じて酸化物と導体とを強固に接合することができ
る。しかもこの接合処理は酸化物と導体との界面が固相
の状態のままで行われ、接合界面が流動状態になること
はない。従ってこのダイボンディング方法によれば、ダ
イと基材を位置合わせした時の状態を保ったまま接合す
ることができ、これらを正確に固定できる。
In the die bonding method of claim 3, one of the die and the base material is a base material made of an oxidizable conductor or a base material on which an oxidizable conductor is formed, and the other is a base material made of an oxide or a base material made of an oxidized conductor. This is a method of anodic bonding by using a base material on which a film has been formed, stacking them and applying a voltage between them so that the oxide side is negative and the conductor side is positive, so mobile ions such as alkali ions in the oxide As the oxide moves, a large electrostatic attraction is generated between the oxide and the conductor, and a chemical bond is generated between the oxygen in the oxide and the conductor at the interface, which firmly bonds the oxide and the conductor. Can be done. Moreover, this bonding process is performed while the interface between the oxide and the conductor remains in a solid state, and the bonding interface does not become fluid. Therefore, according to this die bonding method, it is possible to bond the die and the base material while maintaining their alignment, and it is possible to accurately fix them.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例1のダイボンディング構造を示すもので
、(a)は平面図、(b)は(a)中I−I線に沿う断
面図。
FIG. 1 shows a die bonding structure of Example 1, in which (a) is a plan view and (b) is a cross-sectional view taken along line II in (a).

【図2】実施例2のダイボンディング構造を示す断面図
FIG. 2 is a cross-sectional view showing a die bonding structure of Example 2.

【図3】実施例3のダイボンディング構造を示すもので
、(a)は平面図、(b)は断面図。
FIG. 3 shows a die bonding structure of Example 3, in which (a) is a plan view and (b) is a cross-sectional view.

【図4】液晶表示パネルの画素ピッチPpとボンディン
グピチッチPbとの差によって生じる問題を説明するた
めの平面図。
FIG. 4 is a plan view for explaining a problem caused by a difference between a pixel pitch Pp and a bonding pitch Pb of a liquid crystal display panel.

【図5】従来のダイボンディング構造で生じる問題を説
明するためのめ平面図。
FIG. 5 is a plan view for explaining problems that occur in a conventional die bonding structure.

【符号の説明】[Explanation of symbols]

1  ICチップ 2  基材 3  基材側電極 4  チップ側電極 5  バンプ 6  ワイヤー 7  シリコン基板 8  接合用ガラス層 9  表面側 10  オーミックコンタクト用不純物拡散層11  
コンタクトパッド 12  接合用金属層 13  電極 14  接合部 15  封止剤
1 IC chip 2 Base material 3 Base material side electrode 4 Chip side electrode 5 Bump 6 Wire 7 Silicon substrate 8 Bonding glass layer 9 Surface side 10 Impurity diffusion layer 11 for ohmic contact
Contact pad 12 Bonding metal layer 13 Electrode 14 Bonding portion 15 Sealant

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  ダイを基材に固定するダイボンディン
グ構造において、ダイまたは基材の一方の少なくとも表
面が酸化物を形成し得る導体であり、他方の少なくとも
表面が酸化物であり、これらの表面が陽極接合されてダ
イと基材を固定する接合部を形成していることを特徴と
するダイボンディング構造。
Claim 1: In a die bonding structure for fixing a die to a base material, at least one surface of the die or the base material is a conductor capable of forming an oxide, and at least the surface of the other is an oxide, and these surfaces A die bonding structure characterized in that the two are anodically bonded to form a joint that fixes the die and the base material.
【請求項2】  前記接合部がダイの長さ方向の中央部
のみに設けられたことを特徴とする請求項1のダイボン
ディング構造。
2. The die bonding structure according to claim 1, wherein the bonding portion is provided only at a central portion of the die in the length direction.
【請求項3】  ダイまたは基材の一方の少なくとも表
面が酸化物を形成し得る導体であり、他方の少なくとも
表面が酸化物であり、これらを重ね合わせて、酸化物側
がマイナス、導体側がプラスとなるように両者間に電圧
を印加して陽極接合することを特徴とするダイボンディ
ング方法。
3. At least the surface of one of the die or the base material is a conductor capable of forming an oxide, and at least the surface of the other is an oxide, and these are stacked so that the oxide side is negative and the conductor side is positive. A die bonding method characterized by anodic bonding by applying a voltage between the two so as to achieve the following.
JP3087656A 1991-03-27 1991-03-27 Die bonding structure Expired - Fee Related JP2831484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3087656A JP2831484B2 (en) 1991-03-27 1991-03-27 Die bonding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3087656A JP2831484B2 (en) 1991-03-27 1991-03-27 Die bonding structure

Publications (2)

Publication Number Publication Date
JPH04299541A true JPH04299541A (en) 1992-10-22
JP2831484B2 JP2831484B2 (en) 1998-12-02

Family

ID=13921003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3087656A Expired - Fee Related JP2831484B2 (en) 1991-03-27 1991-03-27 Die bonding structure

Country Status (1)

Country Link
JP (1) JP2831484B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900671A (en) * 1994-07-12 1999-05-04 Mitsubishi Denki Kabushiki Kaisha Electronic component including conductor connected to electrode and anodically bonded to insulating coating
DE19525388B4 (en) * 1994-07-12 2005-06-02 Mitsubishi Denki K.K. Electronic component with anodically bonded lead frame
DE19549750B4 (en) * 1994-07-12 2005-07-14 Mitsubishi Denki K.K. Electronic component with anodisch gebontetem lead frame

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900671A (en) * 1994-07-12 1999-05-04 Mitsubishi Denki Kabushiki Kaisha Electronic component including conductor connected to electrode and anodically bonded to insulating coating
US6087201A (en) * 1994-07-12 2000-07-11 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing ball grid array electronic component
US6133069A (en) * 1994-07-12 2000-10-17 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing the electronic using the anode junction method
US6181009B1 (en) 1994-07-12 2001-01-30 Mitsubishi Denki Kabushiki Kaisha Electronic component with a lead frame and insulating coating
US6268647B1 (en) 1994-07-12 2001-07-31 Mitsubishi Denki Kabushiki Kaisha Electronic component with an insulating coating
US6310395B1 (en) 1994-07-12 2001-10-30 Mitsubishi Denki Kabushiki Kaisha Electronic component with anodically bonded contact
DE19525388B4 (en) * 1994-07-12 2005-06-02 Mitsubishi Denki K.K. Electronic component with anodically bonded lead frame
DE19549750B4 (en) * 1994-07-12 2005-07-14 Mitsubishi Denki K.K. Electronic component with anodisch gebontetem lead frame

Also Published As

Publication number Publication date
JP2831484B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
JP2596960B2 (en) Connection structure
JPS63119552A (en) Lsi chip
US4558346A (en) Highly reliable hermetically sealed package for a semiconductor device
JPH04299541A (en) Structure and method for performing die bonding
JP2977338B2 (en) Semiconductor module
JPH06120296A (en) Semiconductor integrated circuit device
JPH02266557A (en) Semiconductor device
JPS6235650A (en) Electrode structure of semiconductor device
JPH1058873A (en) Ic module
JPH0318826A (en) Liquid crystal display element
JPH1092875A (en) Semiconductor device
JPH07193160A (en) Chip carrier
JP2715556B2 (en) Liquid crystal device joining method
JPS62195137A (en) Semiconductor device
JP2798040B2 (en) Method for manufacturing semiconductor device
JPS6020936Y2 (en) semiconductor equipment
JPS6269564A (en) Semiconductor device
JP2539360B2 (en) Liquid crystal display
KR0138843B1 (en) Method for interconnection of optical device
JPH08250545A (en) Semiconductor device and manufacture thereof
JP2998507B2 (en) Method for manufacturing semiconductor device
JPS6086853A (en) Manufacture of semiconductor device
US20170323801A1 (en) Method of generating a power semiconductor module
JPH0158865B2 (en)
JPH10319424A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980901

LAPS Cancellation because of no payment of annual fees