JPH04299203A - Absolute length measurer - Google Patents

Absolute length measurer

Info

Publication number
JPH04299203A
JPH04299203A JP6508491A JP6508491A JPH04299203A JP H04299203 A JPH04299203 A JP H04299203A JP 6508491 A JP6508491 A JP 6508491A JP 6508491 A JP6508491 A JP 6508491A JP H04299203 A JPH04299203 A JP H04299203A
Authority
JP
Japan
Prior art keywords
wavelength
light source
absolute
lights
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6508491A
Other languages
Japanese (ja)
Inventor
Katsumi Isozaki
磯崎 克己
Katsuya Ikezawa
克哉 池澤
Shunji Hayashi
俊二 林
Yasuhito Kosugi
泰仁 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP6508491A priority Critical patent/JPH04299203A/en
Publication of JPH04299203A publication Critical patent/JPH04299203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize an absolute length measure being small-sized and inexpensive and having long lifetime. CONSTITUTION:An absolute length measurer measures an absolute distance by making a plurality of lights different in wavelength enter an interferometer section 6 for length measurement and by utilizing a phase difference between interference phase signals obtained from this interferemeter section 6 for length measurement. The measurer has a construction wherein an integrated multi- wavelength LD light source 1 constructed by integrating a plurality of LDs 11 to 13 including at least one variable-wavelength LD 13 and a beam combiner 16 formed of fibers 15a to 15c or optical waveguides for combining emission lights of these LDs in a plurality is employed for a light source emitting a plurality of lights being different in wavelength.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光の干渉を利用して物
体までの絶対距離を測定するアブソリュ−ト測長器に関
し、特に光源部に集積化した多波長レ−ザダイオ−ド(
以下、単にLDという)光源を使用して、小型かつ高信
頼性の装置を実現するものである。
[Industrial Field of Application] The present invention relates to an absolute length measuring device that measures the absolute distance to an object using optical interference, and in particular, a multi-wavelength laser diode (
By using a light source (hereinafter simply referred to as LD), a compact and highly reliable device is realized.

【0002】0002

【従来の技術】従来からアブソリュ−ト測長器に関する
様々な報告がされているが、未だに実用化されているも
のはない。その原因は、アブソリュ−ト測長を行うため
に必要な光源の構成が、非常に複雑になってしまうため
である。現在報告されている中で1×10−7以上の精
度を持つアブソリュ−ト測長器は、光源にCO2 (炭
酸ガス)レ−ザを用い、測長用干渉計部に異なる波長の
複数の光を順次選択して入射させ、得られる干渉位相の
差から絶対距離を求める端数法により実現している測長
器である。
2. Description of the Related Art Various reports have been made regarding absolute length measuring devices, but none have been put to practical use yet. The reason for this is that the configuration of the light source required to perform absolute length measurement becomes extremely complicated. The currently reported absolute length measuring device with an accuracy of 1 x 10-7 or higher uses a CO2 (carbon dioxide) laser as a light source, and has multiple measuring devices with different wavelengths in the length measuring interferometer. This is a length measuring device that uses the fractional method to sequentially select and inject light and determine the absolute distance from the difference in interference phase obtained.

【0003】しかしながら、CO2 レ−ザはガスレ−
ザであるため、装置が大型で短寿命、しかも高価である
などの課題を持っており、これらの要因がアブソリュ−
ト測長器が商品化されるまでに至っていない点である。
[0003] However, the CO2 laser is not a gas laser.
As a result, the equipment is large, has a short lifespan, and is expensive.
The point is that a length measuring device has not yet been commercialized.

【0004】0004

【発明が解決しようとする課題】本発明は上記従来技術
の課題を踏まえて成されたものであり、アブソリュ−ト
測長器の光源部に波長の異なる複数のLDを集積し、そ
の出力を合波して出射する多波長LD光源を用いること
により、小型、安価、長寿命の装置を提供することを目
的としたものである。
[Problems to be Solved by the Invention] The present invention has been made based on the above-mentioned problems of the prior art, and it integrates a plurality of LDs with different wavelengths in the light source section of an absolute length measuring device, and outputs them. The purpose of this invention is to provide a compact, inexpensive, and long-life device by using a multi-wavelength LD light source that combines and emits light.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成は、波長の異なる複数の光を測長用干渉
計部に入射し、この測長用干渉計部から得られる干渉位
相信号の位相差を利用して絶対距離を測定するアブソリ
ュ−ト測長器において、前記波長の異なる複数の光を出
射する光源に少なくとも一つの波長可変レ−ザダイオ−
ドを含む複数のレ−ザダイオ−ドとこの複数のレ−ザダ
イオ−ドの出射光を合波するためのファイバ若しくは光
導波路による合波器とを集積化した集積化多波長レ−ザ
ダイオ−ド光源を使用した構成としたことを特徴とする
ものである。
[Means for Solving the Problems] The structure of the present invention for solving the above problems is such that a plurality of lights having different wavelengths are incident on a length measurement interferometer section, and the interference obtained from the length measurement interferometer section is In an absolute length measuring device that measures absolute distance using the phase difference of phase signals, at least one wavelength tunable laser diode is used as a light source that emits a plurality of lights with different wavelengths.
An integrated multi-wavelength laser diode that integrates a plurality of laser diodes including a laser diode and a multiplexer using a fiber or optical waveguide for multiplexing the light emitted from the plurality of laser diodes. It is characterized by a configuration that uses a light source.

【0006】[0006]

【作用】本発明によれば、光源に波長の異なる複数のL
Dを集積し、その出力をファイバで合波した多波長LD
光源を用いている。したがって、小型、安価、長寿命の
アブソリュ−ト測長器を実現できる。
[Operation] According to the present invention, the light source includes a plurality of L having different wavelengths.
A multi-wavelength LD that integrates D and combines its output with a fiber.
A light source is used. Therefore, it is possible to realize a compact, inexpensive, and long-life absolute length measuring device.

【0007】[0007]

【実施例】以下、本発明を図面に基づいて説明する。図
1は本発明のアブソリュ−ト測長器の一実施例を示す構
成図である。図1において、1は集積化多波長LD光源
であり、この集積化多波長LD光源1は、2つの波長安
定化LD11,12と、アクティブ領域13a,位相調
整領域13b,波長可変領域13cから成る3電極波長
可変LD13を集積しており、波長安定化LD11,1
2および3電極波長可変LD13から出射される光をそ
れぞれ集光するファイバ入射用マイクロレンズ14a〜
14cにより集光された光を導くファイバ15a〜15
cと、ファイバ15a〜15cにより導かれた光を合波
するファイバ合波器16で構成される。2は波長安定化
LD11,12および3電極波長可変LD13の波長お
よび出力を制御するLD駆動用電流源、3は集積化多波
長LD光源1から出射された光をコリメ−トするコリメ
−ト用マイクロレンズ、4はハ−フミラ−、5はハ−フ
ミラ−4により分岐された一方の光が入射され、集積化
多波長LD光源1から合波されて出射した光の波長差を
モニタする光波長計である。6は一方の光路に1/8波
長板を備えたマイケルソン干渉計および偏光ビ−ムスプ
リッタで構成される位相差方式の測長用干渉計部であり
、この測長用干渉計部6は、ハ−フミラ−4により分岐
された他方の光が入射され、更に2つに分岐するハ−フ
ミラ−61と参照側の光路上に設置された1/8波長板
62および参照用コ−ナ−キュ−ブ63と測長側の光路
上に設置された測長用コ−ナ−キュ−ブ64から成るマ
イケルソンの干渉計で構成され、干渉光は偏光ビ−ムス
プリッタ65でs偏光成分とp偏光成分に分離されて、
それぞれ光検出器66,67で検出され、干渉位相測定
回路68で干渉位相が測定される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the drawings. FIG. 1 is a block diagram showing an embodiment of the absolute length measuring device of the present invention. In FIG. 1, 1 is an integrated multi-wavelength LD light source, and this integrated multi-wavelength LD light source 1 consists of two wavelength-stabilized LDs 11 and 12, an active region 13a, a phase adjustment region 13b, and a wavelength variable region 13c. A 3-electrode wavelength tunable LD13 is integrated, and a wavelength stabilized LD11,1
Fiber input microlenses 14a to converge the light emitted from the 2- and 3-electrode wavelength tunable LDs 13, respectively.
Fibers 15a to 15 that guide the light focused by 14c
c, and a fiber multiplexer 16 that multiplexes light guided by fibers 15a to 15c. 2 is an LD driving current source that controls the wavelength and output of the wavelength stabilized LDs 11, 12 and the three-electrode wavelength variable LD 13; 3 is a collimating source that collimates the light emitted from the integrated multi-wavelength LD light source 1; A microlens, 4 is a half mirror, and 5 is light for monitoring the wavelength difference of the light into which one of the lights branched by the half mirror 4 is incident, multiplexed and output from the integrated multi-wavelength LD light source 1. It is a wavelength meter. Reference numeral 6 denotes a phase difference type length measurement interferometer section consisting of a Michelson interferometer with a 1/8 wavelength plate on one optical path and a polarizing beam splitter. The other light branched by the half mirror 4 is incident on the half mirror 61 which is further branched into two, a 1/8 wavelength plate 62 installed on the optical path on the reference side, and a reference corner. - It consists of a Michelson interferometer consisting of a cube 63 and a corner cube 64 for length measurement installed on the optical path on the length measurement side, and the interference light is converted into s-polarized light by a polarization beam splitter 65. component and p-polarized component,
They are detected by photodetectors 66 and 67, respectively, and the interference phase is measured by an interference phase measuring circuit 68.

【0008】なお、3電極波長可変LD13は位相調整
領域13bと波長可変領域13cに流す電流を調整する
ことにより、光の周波数を0.2%(TYP)程度まで
連続に可変することができる。したがって、例えば3電
極波長可変LD13と1%波長の異なる波長安定化LD
12と1.3μm帯の波長安定化LD11を集積化する
ことで、合成波長Λ1 =1.5mm(3電極波長可変
LD13で0.1%可変)、合成波長Λ2 =150μ
m(3電極波長可変LD13と波長安定化LD12)、
合成波長Λ3 =15μm(3電極波長可変LD13と
波長安定化LD11)とすることができる。また、3電
極波長可変LD13は連続可変できるため、スパンの変
化に同一の光源で対応が可能である。
The three-electrode wavelength variable LD 13 can continuously vary the frequency of light up to about 0.2% (TYP) by adjusting the current flowing through the phase adjustment region 13b and the wavelength variable region 13c. Therefore, for example, a three-electrode wavelength-tunable LD 13 and a wavelength-stabilized LD with a 1% wavelength difference.
By integrating the wavelength stabilizing LD11 in the 12 and 1.3 μm bands, the combined wavelength Λ1 = 1.5 mm (variable by 0.1% with the 3-electrode wavelength variable LD 13), and the combined wavelength Λ2 = 150 μm.
m (3-electrode wavelength tunable LD13 and wavelength stabilized LD12),
The combined wavelength Λ3 can be set to 15 μm (3-electrode wavelength variable LD 13 and wavelength stabilized LD 11). Furthermore, since the three-electrode wavelength variable LD 13 can be continuously variable, it is possible to respond to changes in span with the same light source.

【0009】このような構成において、集積化多波長L
D光源1から出射され、コリメ−ト用マイクロレンズ3
で平行光とされた光はハ−フミラ−4で2つに分岐され
る。一方の光は、ハ−フミラ−4で反射されて光波長計
に入射され、波長差がモニタされる。他方の光は、ハ−
フミラ−4を通って測長用干渉計部6に入射される。測
長用干渉計部6では、ハ−フミラ−61で更に2つに分
岐される。一方の光(参照光)は、ハ−フミラ−61で
反射され、1/8波長板62を介して参照用コ−ナ−キ
ュ−ブ63で反射され、再び1/8波長板62を介して
ハ−フミラ−61に入射される。この参照光は、1/8
波長板62を2回通過することにより、s偏光成分とp
偏光成分間には90°の位相差が生じている。他方の光
(測定光)は、ハ−フミラ−61を透過して、測長用コ
−ナ−キュ−ブ64で反射され、再びハ−フミラ−61
に入射される。この測定光は、s偏光成分とp偏光成分
間には位相差がない。両入射光は、ハ−フミラ−61で
干渉して、偏光ビ−ムスプリッタ65に入射される。干
渉光は、偏光ビ−ムスプリッタ65でs偏光成分とp偏
光成分に分離され、光検出器66,67に入射される。 光検出器66,67で検出される信号には、p波とs波
に90°の位相差を与えているので、sin 信号とc
os 信号として検出され、検出した2つの信号は、干
渉位相測定回路68で電気的に処理され、絶対距離が求
められる。
In such a configuration, the integrated multi-wavelength L
Emitted from D light source 1, collimating microlens 3
The parallel light is split into two by the half mirror 4. One of the lights is reflected by the half mirror 4 and enters the optical wavelength meter, and the wavelength difference is monitored. The other light is
The light passes through the Humira 4 and enters the length measurement interferometer section 6. In the length measuring interferometer section 6, the beam is further branched into two by a half mirror 61. One of the lights (reference light) is reflected by a half mirror 61, passes through a 1/8 wavelength plate 62, is reflected at a reference corner cube 63, and passes through a 1/8 wavelength plate 62 again. and enters the half mirror 61. This reference light is 1/8
By passing through the wave plate 62 twice, the s-polarized light component and the p-polarized light component are separated.
A phase difference of 90° occurs between the polarized light components. The other light (measuring light) passes through the half mirror 61, is reflected by the length measuring corner cube 64, and returns to the half mirror 61.
is incident on the This measurement light has no phase difference between the s-polarized component and the p-polarized component. Both incident lights interfere with each other at a half mirror 61 and enter a polarizing beam splitter 65. The interference light is separated into an s-polarized component and a p-polarized component by a polarizing beam splitter 65, and is incident on photodetectors 66 and 67. The signals detected by the photodetectors 66 and 67 are given a 90° phase difference between the p-wave and the s-wave, so the sin signal and c
The two detected signals are electrically processed by the interference phase measurement circuit 68 to determine the absolute distance.

【0010】本発明のアブソリュ−ト測長器は測長用干
渉計部6に異なる波長の光を複数入射し、得られる干渉
位相の差から絶対距離を求める端数法を用いている。端
数法で重要なのは、各波長値の与え方であり、スパン距
離と必要な測定精度から決定されるものである。この波
長値の与え方を波長差から与えられる合成波長ΛN =
λ1 λN /(λ1 −λN )を使って説明すると
、まず、測定スパンLs ≦Λ1となる波長差を出射し
、大まかなアブソリュ−ト値を特定する。その時、干渉
位相測定回路68で決まる測定精度をΛ1 /Mとする
。次に、Λ1 /M≧Λ2 となる次の波長を出射し、
アブソリュ−ト値の特定測定精度をΛ2 /Mと上げる
。順にΛ3 、Λ4 、……、ΛN と波長精度を上げ
ていき、ΛN /M<λ1 とすることで、λ1 の干
渉次数を決定し、高性能が得られる。
The absolute length measuring device of the present invention uses a fraction method in which a plurality of lights of different wavelengths are incident on the length measuring interferometer section 6 and the absolute distance is determined from the difference in the obtained interference phases. What is important in the fraction method is how each wavelength value is given, which is determined from the span distance and required measurement accuracy. How to give this wavelength value is the synthetic wavelength ΛN given from the wavelength difference =
To explain using λ1 λN /(λ1 - λN), first, a wavelength difference such that the measurement span Ls≦Λ1 is emitted, and a rough absolute value is specified. At this time, the measurement accuracy determined by the interference phase measurement circuit 68 is assumed to be Λ1/M. Next, emit the next wavelength where Λ1 /M≧Λ2,
Increase the specific measurement accuracy of the absolute value to Λ2/M. By increasing the wavelength accuracy in order of Λ3, Λ4, .

【0011】[0011]

【発明の効果】以上、実施例と共に具体的に説明したよ
うに、本発明によれば、アブソリュ−ト測長器の光源と
して、波長の異なる複数のLDを集積し、その出力をフ
ァイバで合波した多波長LD光源を用いることにより、
小型、安価、長寿命のアブソリュ−ト測長器を実現でき
ると共に、多波長LD光源のLDに少なくとも1つの波
長可変LDを用いることにより、スパンの変化に同一の
光源で対応が可能であり、また、複数のLDを集積する
ことで、1つの波長可変LDでは実現できない広い可変
幅を実現できるなどの効果も有するアブソリュ−ト測長
器を実現できる。
Effects of the Invention As described above in detail with the embodiments, according to the present invention, a plurality of LDs with different wavelengths are integrated as a light source of an absolute length measuring device, and their outputs are combined using a fiber. By using a waved multi-wavelength LD light source,
It is possible to realize a compact, inexpensive, and long-life absolute length measuring device, and by using at least one variable wavelength LD for the LD of the multi-wavelength LD light source, it is possible to respond to span changes with the same light source, Furthermore, by integrating a plurality of LDs, it is possible to realize an absolute length measuring device that has the effect of realizing a wide variable width that cannot be achieved with a single wavelength variable LD.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のアブソリュ−ト測長器の一実施例を示
す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of an absolute length measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1  集積化多波長LD光源 2  LD駆動用電流源 5  光波長計 6  測長用干渉計部 11,12  波長安定化LD 13  3電極波長可変LD 14a〜14c  ファイバ入射用マイクロレンズ15
a〜15c  ファイバ 16  ファイバ合波器
1 Integrated multi-wavelength LD light source 2 LD driving current source 5 Optical wavelength meter 6 Length measurement interferometer section 11, 12 Wavelength stabilizing LD 13 3-electrode wavelength tunable LD 14a to 14c Microlens for fiber injection 15
a~15c Fiber 16 Fiber multiplexer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  波長の異なる複数の光を測長用干渉計
部に入射し、この測長用干渉計部から得られる干渉位相
信号の位相差を利用して絶対距離を測定するアブソリュ
−ト測長器において、前記波長の異なる複数の光を出射
する光源に少なくとも一つの波長可変レ−ザダイオ−ド
を含む複数のレ−ザダイオ−ドとこの複数のレ−ザダイ
オ−ドの出射光を合波するためのファイバ若しくは光導
波路による合波器とを集積化した集積化多波長レ−ザダ
イオ−ド光源を使用した構成としたことを特徴とするア
ブソリュ−ト測長器。
[Claim 1] An absolute method in which a plurality of lights with different wavelengths are incident on a length measurement interferometer section, and an absolute distance is measured using the phase difference of interference phase signals obtained from the length measurement interferometer section. In the length measuring device, the light source that emits a plurality of lights with different wavelengths includes a plurality of laser diodes including at least one wavelength tunable laser diode, and the light emitted from the plurality of laser diodes is combined. 1. An absolute length measuring device characterized in that it uses an integrated multi-wavelength laser diode light source that integrates a multiplexer using a fiber or optical waveguide for transmitting waves.
JP6508491A 1991-03-28 1991-03-28 Absolute length measurer Pending JPH04299203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6508491A JPH04299203A (en) 1991-03-28 1991-03-28 Absolute length measurer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6508491A JPH04299203A (en) 1991-03-28 1991-03-28 Absolute length measurer

Publications (1)

Publication Number Publication Date
JPH04299203A true JPH04299203A (en) 1992-10-22

Family

ID=13276722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6508491A Pending JPH04299203A (en) 1991-03-28 1991-03-28 Absolute length measurer

Country Status (1)

Country Link
JP (1) JPH04299203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603826A1 (en) * 1992-12-21 1994-06-29 Kabushiki Kaisha Topcon Optical distance meter
JP2010038552A (en) * 2008-07-31 2010-02-18 Mitsutoyo Corp Multiwavelength interferometric displacement measuring method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603826A1 (en) * 1992-12-21 1994-06-29 Kabushiki Kaisha Topcon Optical distance meter
JP2010038552A (en) * 2008-07-31 2010-02-18 Mitsutoyo Corp Multiwavelength interferometric displacement measuring method and apparatus

Similar Documents

Publication Publication Date Title
US7499182B2 (en) Optical signal measurement system
US5898502A (en) Optical wavelength monitoring apparatus
US20230349760A1 (en) Device and method for optical spectrum measurement
US7274870B2 (en) Apparatus and method for simultaneous channel and optical signal-to-noise ratio monitoring
US4972077A (en) Wavelength multiplexed optical transducer with a swept wavelength optical source
US6993257B2 (en) Optical channel monitor utilizing multiple Fabry-Perot filter pass-bands
JPH04299203A (en) Absolute length measurer
JP2003324241A (en) Wavelength monitor and semiconductor laser module
JPH077212A (en) Apparatus for controlling wavelength of light emitted from laser diode
US6838658B2 (en) Simple and compact laser wavelength locker
JP4234347B2 (en) Wavelength locker module and method for stabilizing emission wavelength of laser light source using the same
US6628448B2 (en) Optical spectrum slicer
KR20210099035A (en) Wavelength Controlled Beam Stabilizer for Spectral Beam-Coupled Laser Sources
KR100317140B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio in wavelength division multiplexing optical telecommunications
WO2024075266A1 (en) Optical measurement device
JP2004132704A (en) Wavelength monitor and its reference value setting method
KR100292809B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of wavelength division multiplexed optical signal
JP2003283043A (en) Oscillation mode monitoring device and semiconductor laser device
JPH0786959B2 (en) Method and device for measuring physical quantity by optical sensor
KR100343070B1 (en) System and method for real time wavelength watching of each chahnnels in wavelength division multiplexing optical transmission system
JPH05312523A (en) Length measuring apparatus for semiconductor laser
JPS58175881A (en) Stabilizing device for oscillation wavelength of semiconductor laser
CN112236958A (en) Optical filter control
JPS59670A (en) Optical fiber magnetic field sensor
JP2900529B2 (en) Apparatus for measuring high frequency response characteristics of semiconductor laser