JPH04297704A - Controlling method for concentration of deoxidizer of boiler water - Google Patents

Controlling method for concentration of deoxidizer of boiler water

Info

Publication number
JPH04297704A
JPH04297704A JP6176891A JP6176891A JPH04297704A JP H04297704 A JPH04297704 A JP H04297704A JP 6176891 A JP6176891 A JP 6176891A JP 6176891 A JP6176891 A JP 6176891A JP H04297704 A JPH04297704 A JP H04297704A
Authority
JP
Japan
Prior art keywords
water
concentration
boiler
oxygen
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6176891A
Other languages
Japanese (ja)
Inventor
Tsuneji Araoka
荒岡 常次
Hiroaki Kobayashi
小林 広昭
Kazuo Idokawa
井戸川 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP6176891A priority Critical patent/JPH04297704A/en
Publication of JPH04297704A publication Critical patent/JPH04297704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method, in which the concentration of a deoxidizer in boiler water is controlled within a proper value without the reconstruction of an existing facility. CONSTITUTION:In a boiler, in which water supply from a feed water tank supplied with make-up water and return water from the boiler and the injection of a deoxidizer are conducted, it is determined that there is excellent correlation in the relationship (Fig. 8) of feed-water temperature and the dissolved-oxygen concentration of boiler water from the relationship of the feed-water temperature and dissolved-oxygen concentration in supply water and the relationship of dissolved-oxygen concentration in supply water and the dissolved-oxygen concentration (a calculated value) of boiler water. The preset quantity of the deoxidizer injected is obtained on the basis of the feed-water temperature and a feed-water flow rate to the boiler, the deoxideizer concentration of boiler water, in which the deoxidizer is injected to the boiler in the quantity of injection, is controlled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はボイラの缶水に関するも
ので、特にボイラ缶水に添加する脱酸素剤の濃度調整方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to boiler canned water, and more particularly to a method for adjusting the concentration of an oxygen scavenger added to boiler canned water.

【0002】0002

【従来の技術】発電所の所内ボイラで発生する蒸気は原
子力建屋内の空調、廃液処理、原子力建屋内での作業着
の洗濯と乾燥に用いられることがある。そのため、所内
ボイラ蒸気は閉ループで循環している。そして、負荷変
動などがあったときは、この閉ループに純水が補給され
る。このように発電所の所内ボイラ用の水は高品質のも
のが要求されているが、水中の溶存酸素によるボイラの
缶内腐食があると、前記閉ループが破れる。そのため所
内ボイラの缶内の腐食防止のため、ヒドラジン等の脱酸
素剤を連続注入し、次の反応式(A)の反応により缶水
の脱酸素を行っている。
2. Description of the Related Art Steam generated in an in-house boiler of a power plant is sometimes used for air conditioning inside a nuclear power building, treating waste liquid, and washing and drying work clothes inside a nuclear power building. Therefore, the station boiler steam circulates in a closed loop. When there is a load change, pure water is replenished into this closed loop. As described above, high quality water is required for the in-house boilers of power plants, but if there is corrosion in the boiler can due to dissolved oxygen in the water, the closed loop will be broken. Therefore, in order to prevent corrosion inside the can of the station boiler, an oxygen scavenger such as hydrazine is continuously injected, and the can water is deoxidized by the reaction shown in the following reaction formula (A).

【0003】       N2H4  +  O2  →  N2 
 +  2H2O          (A)
[0003] N2H4 + O2 → N2
+ 2H2O (A)

【000
4】そして、原子力建屋内の負荷に使用される所内ボイ
ラの缶水中の脱酸素剤濃度については目標値(0.05
〜1.0ppm)が設定され、この目標値内に缶水中の
脱酸素剤濃度を設定する必要がある。
000
4] The target value (0.05
~1.0 ppm), and it is necessary to set the oxygen scavenger concentration in canned water within this target value.

【0005】[0005]

【発明が解決しようとする課題】ところが、図18に示
すように、このボイラ缶水中の脱酸素剤濃度がボイラ運
転起動初期および給水流量変動時に前記目標値を逸脱す
る傾向があった。また、脱酸素剤注入用の薬注ポンプの
注入量変更を行っているにもかかわらず、目標値を満足
できないことも頻繁にあった。これらの要因として以下
のことが考えられている。
However, as shown in FIG. 18, the oxygen scavenger concentration in the boiler can water tended to deviate from the target value at the beginning of boiler operation and during fluctuations in the feed water flow rate. Furthermore, despite changing the injection volume of the oxygen scavenger injection pump, the target value was often not met. The following factors are thought to be responsible for these factors.

【0006】下限値逸脱:給水タンクへ純水が補給され
ることにより、高濃度(約8ppm)の溶存酸素が缶水
中に持ち込まれ、缶水中のヒドラジン消費量が大きくな
った場合、または、給水流量が増加し、持ち込まれる酸
素が増えた場合。
Lower limit deviation: When pure water is replenished into the water supply tank, a high concentration (approximately 8 ppm) of dissolved oxygen is brought into the can water, and the amount of hydrazine consumed in the can water becomes large, or If the flow rate increases and more oxygen is brought in.

【0007】上限値逸脱:給水タンクへ戻り水が多く入
り、純水の補給がほとんどない場合、または、給水流量
が減少した場合。
[0007] Upper limit value deviation: When a large amount of water returns to the water supply tank and almost no pure water is replenished, or when the water supply flow rate decreases.

【0008】このような問題点については通産省の検査
官からの改善するようにとの指摘があったが、缶水中の
溶存酸素を直接測定することができないため長年の懸案
事項となっていた。
[0008] Regarding these problems, inspectors from the Ministry of International Trade and Industry pointed out that improvements should be made, but since it is not possible to directly measure dissolved oxygen in canned water, this has been a matter of concern for many years.

【0009】本来、缶水中の脱酸素剤の濃度をコントロ
ールするためには、缶水の溶存酸素濃度または脱酸素剤
濃度を連続測定し、薬注ポンプ運転の自動コントロール
をすればよいわけであるが、現行の所内ボイラの運用で
は缶水のクラッド濃度が高いことから、溶存酸素濃度ま
たは脱酸素剤濃度を連続して測定することは不可能であ
る。
Originally, in order to control the concentration of oxygen scavenger in canned water, it would be sufficient to continuously measure the dissolved oxygen concentration or oxygen scavenger concentration in canned water and automatically control the operation of the chemical dosing pump. However, in the current operation of in-house boilers, it is impossible to continuously measure dissolved oxygen concentration or oxygen scavenger concentration because the crud concentration in canned water is high.

【0010】そこで、本発明の目的は既設設備の改造を
伴わずにボイラ缶水中の脱酸素剤濃度を適性値内にコン
トロールする方法を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for controlling the oxygen scavenger concentration in boiler can water to within an appropriate value without modifying existing equipment.

【0011】[0011]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、補給水およびボイ
ラからの戻り水が供給される給水タンクからの給水と脱
酸素剤の注入とをボイラ缶水に行うボイラにおいて、ボ
イラへの給水温度と給水流量に基づき予め設定された脱
酸素剤注入量を求めて、該脱酸素剤注入量を缶水へ注入
するボイラ缶水の脱酸素剤濃度制御方法である。
[Means for Solving the Problems] The above objects of the present invention are achieved by the following configuration. In other words, in a boiler where makeup water and return water from the boiler are supplied from a water supply tank and oxygen scavenger is injected into the boiler can water, the deoxidation rate is set in advance based on the water supply temperature and water supply flow rate to the boiler. This is a method for controlling the concentration of an oxygen scavenger in boiler can water, in which an amount of oxygen to be injected is determined and the amount of oxygen scavenger is injected into the can water.

【0012】0012

【作用】本発明者はボイラ缶水への給水の流量、給水タ
ンクへの補給水の量などが脱酸素剤の濃度変化に影響し
ているものと思われたが、念のため脱酸素剤注入(以後
、薬注ということがある。)システム、脱酸素剤のサン
プリング方法、分析方法についてチェックしたところ、
薬注タンク内の脱酸素剤濃度の経時変化はなく(図2参
照)、薬注ポンプストロークも安定していた。脱酸素剤
のサンプリングについてもサンプリング時のブロー時間
による分析値の差は見られなかった(図3)。そこで、
次にボイラ缶水へ供給される給水の温度と給水中の溶存
酸素濃度の関係について調べてみると、給水の温度変化
は純水の補給量に依存していること(図示せず。)、お
よび給水の温度と給水中の溶存酸素濃度の間には良い相
関があることが分かった(図4参照)。
[Operation] The inventor thought that the flow rate of water supplied to the boiler can water, the amount of make-up water to the water supply tank, etc. affected the concentration change of the oxygen absorber, but just in case We checked the injection (hereinafter sometimes referred to as chemical injection) system, oxygen scavenger sampling method, and analysis method, and found that:
There was no change in the oxygen scavenger concentration in the chemical injection tank over time (see Figure 2), and the chemical injection pump stroke was stable. Regarding the sampling of oxygen scavengers, no difference in analytical values was observed depending on the blowing time at the time of sampling (Figure 3). Therefore,
Next, when we investigated the relationship between the temperature of the feed water supplied to the boiler can water and the dissolved oxygen concentration in the feed water, we found that the temperature change in the feed water depends on the amount of pure water supplied (not shown). It was also found that there is a good correlation between the temperature of the feed water and the dissolved oxygen concentration in the feed water (see Figure 4).

【0013】給水中の溶存酸素濃度が一定で、かつ給水
流量も一定であるならば、脱酸素剤の注入量を前記反応
式(A)で示す反応に必要な量以上で連続注入すれば、
缶水の脱酸素剤濃度は直線的に上昇するはずである。と
ころが、図5に示すように薬注開始後、缶水中の脱酸素
剤濃度の計算値(薬注タンクからの脱酸素剤注入量から
計算する。)と実測値(クラッドの影響を無くして個別
的に測定する。)に大きな差が見られた。図5に示すよ
うに、単位時間当たり一定流量で脱酸素剤を缶水中に注
入しても、時間の経過と共に前記実測値が前記計算値か
らかけ離れていき、しかも缶水中の脱酸素剤濃度は平衡
状態になることが分かった。
If the dissolved oxygen concentration in the feed water is constant and the feed water flow rate is also constant, if the oxygen scavenger is continuously injected in an amount greater than the amount required for the reaction shown by the reaction formula (A),
The oxygen scavenger concentration in canned water should increase linearly. However, as shown in Figure 5, after the start of chemical injection, the calculated value of the oxygen scavenger concentration in the can water (calculated from the amount of oxygen scavenger injected from the chemical injection tank) and the actual value (individually after eliminating the influence of cladding) There was a large difference in the results. As shown in FIG. 5, even if the oxygen absorber is injected into the can water at a constant flow rate per unit time, the actual measured value becomes far away from the calculated value as time passes, and the concentration of the oxygen absorber in the can water is It turns out that there is an equilibrium state.

【0014】上記図5に示す現象が生ずる原因は脱酸素
剤が水蒸気と共にキャリーオーバーしたためと考えられ
る。そこで適切なキャリーオーバー率を求めるため、実
測を繰り返したが測定値にバラツキが多く一定値を得る
ことはできなかった。
The reason for the phenomenon shown in FIG. 5 is thought to be that the oxygen scavenger carried over with the water vapor. In order to find an appropriate carryover rate, actual measurements were repeated, but the measured values varied so much that it was not possible to obtain a constant value.

【0015】次に、薬注ポンプを停止して後、給水が続
いている状態での缶水中の脱酸素剤の濃度の経時変化を
測定したところ、このデータについても、缶水中の脱酸
素剤濃度の実測値と計算値に差が見られた(図6参照)
Next, after the chemical dosing pump was stopped, we measured the change over time in the concentration of the oxygen absorber in the can water while water supply continued. There was a difference between the measured concentration value and the calculated value (see Figure 6).
.

【0016】なお、缶水中の脱酸素剤の濃度の計算値は
次式によった。 缶水中の脱酸素剤の濃度=[{薬注ポンプ停止以前の缶
水の脱酸素剤量−給水中の溶存酸素に消費される脱酸素
剤量}/缶水量]
[0016] The concentration of the oxygen scavenger in the can water was calculated according to the following formula. Concentration of oxygen scavenger in can water = [{Amount of oxygen scavenger in can water before stopping the chemical dosing pump - Amount of oxygen scavenger consumed by dissolved oxygen in feed water}/Amount of can water]

【0017】ここで、給水中の溶存酸素は0.5ppm
として計算した。この缶水中の脱酸素剤の濃度の実測値
をもとに缶水に持ち込まれる溶存酸素の量(=脱酸素剤
消費量)を計算すると、給水中の溶存酸素濃度の実測値
が0.5ppmであったときには缶水中では0.2pp
m程度であることが想定された。従来は給水の溶存酸素
濃度と缶水に持ち込まれる溶存酸素濃度は同一であると
考えていたが、両者にへだたりがあることが分かったた
め、次に缶水の溶存酸素濃度を求める方策を検討した。
[0017] Here, the dissolved oxygen in the water supply is 0.5 ppm.
It was calculated as When the amount of dissolved oxygen brought into the can water (=oxygen absorber consumption) is calculated based on the measured value of the concentration of the oxygen absorber in the can water, the actual value of the dissolved oxygen concentration in the feed water is 0.5 ppm. When it was 0.2pp in canned water
It was assumed that it would be about m. Previously, it was thought that the dissolved oxygen concentration in the feed water and the dissolved oxygen concentration brought into the canned water were the same, but since it was discovered that there was a gap between the two, the next step was to determine the dissolved oxygen concentration in the canned water. investigated.

【0018】そこで、給水中の溶存酸素濃度をいろいろ
変えて、各溶存酸素濃度を持つ給水を所内ボイラに供給
し、その時の缶水に持ち込まれる溶存酸素の濃度を推定
すると図7に示すように良い相関が得られた。当然この
とき薬注ポンプは停止している。
[0018] Therefore, by varying the dissolved oxygen concentration in the feed water and supplying the feed water with each dissolved oxygen concentration to the in-house boiler, the concentration of dissolved oxygen brought into the canned water at that time is estimated, as shown in Figure 7. A good correlation was obtained. Naturally, the chemical injection pump is stopped at this time.

【0019】さらに、図7に示す関係と図4に示す給水
温度と給水中の溶存酸素濃度との関係から、給水温度と
缶水に持ち込まれる溶存酸素濃度の関係をプロットして
みるとこれも、図8に示すように、よい相関が得られた
。なお、図4、図7および図8に示す各値の関係は各ボ
イラ毎の実測値そのものではなく、その典型例を概念的
に表したものである。
Furthermore, if we plot the relationship between the feed water temperature and the dissolved oxygen concentration brought into the canned water from the relationship shown in FIG. 7 and the relationship between the feed water temperature and the dissolved oxygen concentration in the feed water shown in FIG. , as shown in FIG. 8, a good correlation was obtained. Note that the relationships among the values shown in FIGS. 4, 7, and 8 are not actual measured values for each boiler, but conceptually represent typical examples thereof.

【0020】こうして、給水量と給水温度に基づき、缶
水に持ち込まれる溶存酸素量が予測できるので、当然補
給の必要な脱酸素剤量も求められることになる。
[0020] In this way, the amount of dissolved oxygen brought into the canned water can be predicted based on the amount of water supplied and the temperature of the supplied water, so naturally the amount of oxygen scavenger that needs to be replenished can also be determined.

【0021】以上の検討結果をもとに缶水内の脱酸素剤
濃度の計算式を次のようにして作成した。なお、ここで
は脱酸素剤としてヒドラジンを用いており、ヒドラジン
は等モルの酸素と反応し、しかも、両化合物は1モルが
同一グラム数からなるので、溶存酸素と反応する脱酸素
剤量は溶存酸素量に等しいものとしている。
Based on the above study results, a formula for calculating the oxygen scavenger concentration in canned water was created as follows. Note that hydrazine is used here as an oxygen scavenger, and hydrazine reacts with equimolar amounts of oxygen, and since 1 mole of both compounds consists of the same number of grams, the amount of oxygen scavenger that reacts with dissolved oxygen is equal to the amount of dissolved oxygen. It is assumed to be equal to the amount of oxygen.

【0022】まず、脱酸素剤のキャリーオーバー率を求
める。 キャリーオーバー量は次式(1)       x=k1・W・C           
                         
    (1)x :キャリーオーバー量(グラム/時
間)k1:キャリーオーバー率 W :給水流量(トン/時間) C :缶水中の脱酸素剤濃度(ppm=グラム/トン)
に示すように缶内の脱酸素剤濃度および単位時間当たり
の水蒸気発生量(=給水流量)に比例すると考えられる
First, the carryover rate of the oxygen scavenger is determined. The carryover amount is the following formula (1) x=k1・W・C

(1) x: Carryover amount (grams/hour) k1: Carryover rate W: Water supply flow rate (tons/hour) C: Oxygen absorber concentration in canned water (ppm = grams/ton)
As shown in , it is considered to be proportional to the oxygen absorber concentration in the can and the amount of water vapor generated per unit time (=water supply flow rate).

【0023】よって、キャリーオーバー率k1は次式(
2)で表される。       k1=x/(W・C)         
                         
  (2)
[0023] Therefore, the carryover rate k1 is calculated by the following formula (
2). k1=x/(W・C)

(2)

【0024】ところで、ボイラ缶水へ注入し
ている脱酸素剤のモル数から缶水中に持ち込まれる溶存
酸素量を差し引いたものは、脱酸素剤の余剰量となる。 なぜなら、反応式(A)より溶存酸素1モル(32g)
に対して、ヒドラジン1モル(32g)が消費されるも
のとすると、缶水中に持ち込まれる酸素量と同一量の脱
酸素剤であるヒドラジンが消費されるからである。そこ
で、単位時間当たりの脱酸素剤の缶水中の余剰量と、単
位時間当たりのキャリーオーバー量が等しくなれば、缶
水中の脱酸素剤の量は一定値となるはずである。
By the way, the amount of dissolved oxygen brought into the boiler can water is subtracted from the number of moles of the oxygen absorber injected into the boiler can water, and the result is the surplus amount of the oxygen absorber. Because, from reaction formula (A), 1 mol (32 g) of dissolved oxygen
On the other hand, if 1 mole (32 g) of hydrazine is consumed, the same amount of hydrazine as an oxygen scavenger is consumed as the amount of oxygen brought into the can water. Therefore, if the surplus amount of oxygen absorber in the can water per unit time and the carryover amount per unit time are equal, the amount of oxygen absorber in the can water should be a constant value.

【0025】したがって、缶水中の脱酸素剤濃度が一定
値となったときの単位時間当たりの脱酸素剤の余剰量=
キャリーオーバー量としてキャリーオーバー率を求める
ことができる。キャリーオーバー率が求まると、次式(
3)   dC/dt=(A−x)/G=(A−k1・W・C
)/G        (3)x :キャリーオーバー
量(グラム/時間)C :缶水中の脱酸素剤濃度(pp
m)k1:キャリーオーバー率 W :給水流量(トン/時間) A :脱酸素剤余剰量(グラム/時間)G :缶水量(
トン) t :経過時間(時間) より、缶水中の脱酸素剤濃度を求めることができる。
Therefore, when the oxygen absorber concentration in the can water becomes a constant value, the surplus amount of oxygen absorber per unit time =
The carryover rate can be determined as the carryover amount. Once the carryover rate is determined, the following formula (
3) dC/dt=(A-x)/G=(A-k1・W・C
)/G (3)x: Carryover amount (grams/hour) C: Oxygen absorber concentration in canned water (pp
m) k1: Carryover rate W: Water supply flow rate (tons/hour) A: Surplus amount of oxygen scavenger (grams/hour) G: Canned water amount (
t: elapsed time (hours) The oxygen scavenger concentration in the can water can be determined.

【0026】これを解いて、次式(4)    C={
C0−(A/k1・W)}EXP{(−k1・W/G)
・t}        +A/k1・W       
                         
        (4)
Solving this, the following equation (4) C={
C0-(A/k1・W)}EXP{(-k1・W/G)
・t} +A/k1・W

(4)

【0027】ここで、Aは次式
(5)で示す。   A=(注入脱酸素剤量)−(缶水に持ち込まれる溶
存酸素量)   (5)
[0027] Here, A is expressed by the following equation (5). A = (amount of oxygen scavenger injected) - (amount of dissolved oxygen brought into canned water) (5)

【0028】そして、注入脱酸
素剤量は式(6)    注入脱酸素剤量=k2cX×
10−3(グラム/時間)          (6)
X :薬注ポンプストローク(mm) k2:薬注ポンプストロークと薬液注入量の換算係数(
1/時間・mm) c:薬注タンク内の脱酸素剤濃度(ppm)から求めら
れ、缶水に持ち込まれる溶存酸素量は図8に示す関係か
ら、
[0028]The amount of oxygen scavenger injected is expressed by the formula (6): Amount of oxygen scavenger injected=k2cX×
10-3 (grams/hour) (6)
X: Chemical injection pump stroke (mm) k2: Conversion coefficient between chemical injection pump stroke and chemical injection amount (
1/hour・mm) c: The amount of dissolved oxygen brought into the canned water is determined from the oxygen scavenger concentration (ppm) in the chemical dosing tank, and is calculated from the relationship shown in Figure 8.

【0029】式(7)     缶水に持ち込まれる溶存酸素量=(a−bT)
×W           (7)      T:給
水温度(℃) a:定数(−) b:定数(1/℃) が得られる。
Equation (7) Amount of dissolved oxygen brought into canned water = (a-bT)
×W (7) T: Water supply temperature (°C) a: Constant (-) b: Constant (1/°C) are obtained.

【0030】よって、式(5)は次式(8)のように表
せる。     A=k2cX×10−3−(a−bT)W  
                    (8)ここ
で、脱酸素剤濃度が缶水中で平衡に達した後の値である
目標脱酸素剤濃度CTは(4)式の最終項に等しく、(
8)式を(4)式に代入すると、
Therefore, equation (5) can be expressed as the following equation (8). A=k2cX×10-3-(a-bT)W
(8) Here, the target oxygen scavenger concentration CT, which is the value after the oxygen scavenger concentration reaches equilibrium in the can water, is equal to the final term of equation (4), and (
Substituting equation (8) into equation (4), we get

【0031】薬注ポン
プストロークXは次式(9)    X=W{k1CT
+(a−bT)}×103/k2c         
    (9)で求められる。すなわち、目標脱酸素剤
濃度が決まると、缶水への給水流量Wと給水温度Tによ
り薬注ポンプストロークXを求めることができる。
The chemical injection pump stroke X is expressed by the following equation (9): X=W{k1CT
+(a-bT)}×103/k2c
It is obtained by (9). That is, once the target oxygen scavenger concentration is determined, the chemical injection pump stroke X can be determined from the water supply flow rate W and the water supply temperature T to the canned water.

【0032】[0032]

【実施例】本発明の実施例を説明する。本実施例の所内
ボイラの水質検査の一部概要を図1に示す。所内ボイラ
1には給水タンク2から給水がされ、同時に薬注タンク
3からヒドラジン水溶液が注入される。給水タンク2に
は負荷5で使用された水蒸気が復水となって回収される
。給水タンク2から所内ボイラ1への給水配管6には給
水温度の測定用のサーマルエレメント7が設けられてい
る。また、給水配管6の分岐管6aには給水中の溶存酸
素計9が接続されている。この溶存酸素濃度を測定する
前に給水温度を一定にするためにクーラー10を設ける
。また、サンプリングライン11は缶水中のヒドラジン
濃度の測定用に、缶水をサンプリングする。
[Example] An example of the present invention will be explained. FIG. 1 shows a partial outline of the water quality test for the in-house boiler in this example. Water is supplied to the station boiler 1 from a water supply tank 2, and at the same time, a hydrazine aqueous solution is injected from a chemical injection tank 3. The water vapor used in the load 5 is collected as condensate in the water supply tank 2. A water supply pipe 6 from the water supply tank 2 to the in-house boiler 1 is provided with a thermal element 7 for measuring the temperature of the supply water. Further, a dissolved oxygen meter 9 in the water supply is connected to the branch pipe 6a of the water supply pipe 6. Before measuring the dissolved oxygen concentration, a cooler 10 is provided to keep the temperature of the water supply constant. Further, the sampling line 11 samples can water for measuring the hydrazine concentration in the can water.

【0033】本実施例はA号機並びにB号機の2つの所
内ボイラについて検討をした。A号機並びにB号機につ
いて、まず、それぞれ、図9、図10に示す給水温度と
給水溶存酸素濃度との関係を求め、さらに、給水量と缶
水に持ち込まれる溶存酸素濃度(計算値)の相関を求め
たところ、それぞれ図11、図12に示すように良い相
関が得られた。さらに、図11、図12に示す関係と図
9、図10に示す関係から、給水温度と缶水に持ち込ま
れる溶存酸素濃度の関係をプロットした結果をそれぞれ
図13と図14に示す。
In this example, two in-house boilers, No. A and No. B, were studied. For Units A and B, first find the relationship between the feed water temperature and dissolved oxygen concentration shown in Figures 9 and 10, respectively, and then find the correlation between the amount of water supplied and the dissolved oxygen concentration (calculated value) brought into the canned water. As a result, a good correlation was obtained as shown in FIGS. 11 and 12, respectively. Further, from the relationships shown in FIGS. 11 and 12 and the relationships shown in FIGS. 9 and 10, the relationship between the water supply temperature and the dissolved oxygen concentration brought into the can water is plotted, and the results are shown in FIGS. 13 and 14, respectively.

【0034】また、缶水中の脱酸素剤濃度が一定値とな
ったときの脱酸素剤の単位時間当たりの余剰量=キャリ
ーオーバー量として、キャリーオーバー率を求めた。A
号機並びにB号機について、それぞれ図15、図16に
示すように、給水流量にかかわらずキャリーオーバー率
はほぼ一定値となった。A号機については図15より保
守的にk1=0.3と設定した。また、B号機について
も同様に図16よりk1=0.4とした。
[0034] Furthermore, the carryover rate was determined as the excess amount of oxygen absorber per unit time = carryover amount when the oxygen absorber concentration in the can water became a constant value. A
As shown in Figures 15 and 16 for Unit No. 1 and Unit B, respectively, the carryover rates were approximately constant regardless of the water supply flow rate. For Unit A, k1 was conservatively set to 0.3 based on Figure 15. Similarly, k1 was set to 0.4 for the B machine based on FIG. 16.

【0035】次に、A号機について缶水中の脱酸素剤濃
度の計算式を作成し、実際に検証してみた。まず、A号
機におけるk2=0.3、c=4600(ppm)の固
有値をもとに注入脱酸素剤量を計算すると、式(6)は
次のようになる。
Next, for Unit A, a formula for calculating the concentration of oxygen scavenger in canned water was created and actually verified. First, when the amount of oxygen scavenger to be injected is calculated based on the eigenvalues of k2=0.3 and c=4600 (ppm) in machine A, equation (6) becomes as follows.

【0036】   注入脱酸素剤量=X×0.3(1/h・mm)×4
600(ppm)×10−3            
    =1.38X(g/h)
Amount of oxygen scavenger injected=X×0.3 (1/h・mm)×4
600 (ppm) x 10-3
=1.38X (g/h)

【0037】また、図
13より缶水に持ち込まれた溶存酸素量は次のようにな
る。   缶水に持ち込まれた溶存酸素量=(1.89−0.
017T)×W
Further, from FIG. 13, the amount of dissolved oxygen brought into the canned water is as follows. Amount of dissolved oxygen brought into canned water = (1.89-0.
017T)×W

【0038】よって、式(8)は次のよ
うになり、  A=1.38X−(1.89−0.01
7T)W(g/h)
Therefore, equation (8) becomes as follows, A=1.38X-(1.89-0.01
7T) W (g/h)

【0039】缶水中の脱酸素剤濃度
の計算式である式(4)が次のように与えられる。 C=[C0−{1.38X−(1.89−0.017T
)W}/0.3・W]×EXP(−k・W/4)t+{
1.38X−(1.89−0.017T)W}/0.3
・Wなお、ここでG=4トンとしてある。
Equation (4), which is a calculation formula for the oxygen scavenger concentration in can water, is given as follows. C=[C0-{1.38X-(1.89-0.017T
)W}/0.3・W]×EXP(-k・W/4)t+{
1.38X-(1.89-0.017T)W}/0.3
・W Note that G = 4 tons here.

【0040】この式を用い、ポンプストロークを変化さ
せた時の脱酸素剤濃度の計算値と実測値を比較したのが
図17である。両者はよく一致した。
FIG. 17 shows a comparison between the calculated value and the measured value of the oxygen scavenger concentration when the pump stroke was changed using this formula. The two agreed well.

【0041】また、脱酸素剤濃度が平衡に達した後の缶
水中の目標脱酸素剤濃度CT(ppm)は上式の最終項
で求められる。A号機についての薬注ポンプストローク
Xは、   X={CT−(0.17T−18.9)/3}×W
/4.6となる。
[0041] Furthermore, the target oxygen scavenger concentration CT (ppm) in the can water after the oxygen scavenger concentration reaches equilibrium is determined by the last term of the above equation. The chemical injection pump stroke X for Unit A is: X={CT-(0.17T-18.9)/3}×W
/4.6.

【0042】また、B号機についても前述のように計算
すると、   X={CT−(0.42T−42.3)/4}×W
/0.62となる。
[0042] Also, when calculating machine B as described above, X={CT-(0.42T-42.3)/4}×W
/0.62.

【0043】こうして、薬注ポンプストロークXは給水
温度Tと給水流量Wの関数として設定されるので給水温
度Tと給水流量Wに応じた薬注ポンプストローク設定表
を作成し、これに基づき、脱酸素剤の注入量を許容範囲
内に納めることができる。
[0043] In this way, the chemical injection pump stroke The amount of oxygen agent injected can be kept within an allowable range.

【0044】しかしながら、現場での設定では作業員の
負担軽減のため、ある程度の余裕が必要である。そこで
、前記設定値の下限と上限を定めた表を作成してもよい
。また、前記薬注ポンプストロークXをコンピュータの
ソフトウエア上で算出し、薬注ポンプのモータを駆動制
御する方法も採用できる。
However, in the on-site settings, a certain amount of leeway is required to reduce the burden on the workers. Therefore, a table may be created that defines the lower and upper limits of the set values. Alternatively, a method may be adopted in which the chemical injection pump stroke X is calculated on computer software and the motor of the chemical injection pump is driven and controlled.

【0045】[0045]

【発明の効果】本発明によれば、既存設備のままで、特
別の新たな設備を設ける事なく、ボイラ缶水中の脱酸素
剤濃度を許容範囲内にコントロールすることができる。
According to the present invention, the oxygen scavenger concentration in boiler can water can be controlled within an allowable range using existing equipment and without installing any special new equipment.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例で使用した所内ボイラの水質検
査の一部概要図である。
FIG. 1 is a partial schematic diagram of a water quality test of an in-house boiler used in an example of the present invention.

【図2】薬注タンク内の脱酸素剤濃度の経時変化を示す
図である。
FIG. 2 is a diagram showing changes over time in the oxygen scavenger concentration in the chemical injection tank.

【図3】脱酸素剤サンプリングのブロー時間による変化
を示す図である。
FIG. 3 is a diagram showing changes in oxygen scavenger sampling depending on blowing time.

【図4】所内ボイラの給水温度と給水中の溶存酸素濃度
との関係を概念的に示す図である。
FIG. 4 is a diagram conceptually illustrating the relationship between the water supply temperature of the station boiler and the dissolved oxygen concentration in the water supply.

【図5】缶水への供給脱酸素剤濃度の計算値と実測値の
経時変化を示す図である。
FIG. 5 is a diagram showing changes over time in calculated values and actual measured values of the oxygen scavenger concentration supplied to canned water.

【図6】薬注ポンプ停止後の缶水中の脱酸素剤濃度の経
時変化を示す図である。
FIG. 6 is a diagram showing the change over time in the oxygen scavenger concentration in the can water after the chemical injection pump is stopped.

【図7】給水中の溶存酸素濃度と缶水に持ち込まれる溶
存酸素濃度との関係を概念的に示す図である。
FIG. 7 is a diagram conceptually showing the relationship between the dissolved oxygen concentration in the water supply and the dissolved oxygen concentration brought into the canned water.

【図8】給水温度と缶水に持ち込まれる溶存酸素濃度と
の関係を概念的に示す図である。
FIG. 8 is a diagram conceptually showing the relationship between the water supply temperature and the dissolved oxygen concentration brought into canned water.

【図9】A号機の給水温度と給水中の溶存酸素濃度との
関係を示す図である。
FIG. 9 is a diagram showing the relationship between the feed water temperature of Unit A and the dissolved oxygen concentration in the feed water.

【図10】B号機の給水温度と給水中の溶存酸素濃度と
の関係を示す図である。
FIG. 10 is a diagram showing the relationship between the feed water temperature of Unit B and the dissolved oxygen concentration in the feed water.

【図11】A号機の給水溶存酸素濃度と缶水に持ち込ま
れる溶存酸素濃度との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the dissolved oxygen concentration in the feed water of Unit A and the dissolved oxygen concentration brought into canned water.

【図12】B号機の給水溶存酸素濃度と缶水に持ち込ま
れる溶存酸素濃度との関係を示す図である。
FIG. 12 is a diagram showing the relationship between the dissolved oxygen concentration in the feed water of Unit B and the dissolved oxygen concentration brought into canned water.

【図13】A号機の給水温度と缶水に持ち込まれる溶存
酸素濃度との関係図である。
FIG. 13 is a diagram showing the relationship between the water supply temperature of Unit A and the dissolved oxygen concentration brought into canned water.

【図14】B号機の給水温度と缶水中の溶存酸素濃度と
の関係図である。
FIG. 14 is a diagram showing the relationship between the feed water temperature of Unit B and the dissolved oxygen concentration in canned water.

【図15】A号機の給水流量と脱酸素剤のキャリーオー
バ率との関係図である。
FIG. 15 is a diagram showing the relationship between the water supply flow rate and the carryover rate of the oxygen scavenger for Unit A.

【図16】B号機の給水流量と脱酸素剤のキャリーオー
バ率との関係図である。
FIG. 16 is a diagram showing the relationship between the water supply flow rate and the oxygen scavenger carryover rate of the B machine.

【図17】薬注ポンプストローク変更による脱酸素剤濃
度の経時変化を示す図である。
FIG. 17 is a diagram showing changes in oxygen scavenger concentration over time due to changes in chemical injection pump stroke.

【図18】従来の缶水中での脱酸素剤濃度の制御状態を
示す図である。
FIG. 18 is a diagram showing a conventional control state of oxygen scavenger concentration in can water.

【符号の説明】[Explanation of symbols]

1  所内ボイラ 2  給水タンク 3  薬注タンク 5  負荷 7  温度計 9  溶存酸素計 1 In-house boiler 2 Water tank 3. Chemical dosing tank 5 Load 7 Thermometer 9 Dissolved oxygen meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  補給水およびボイラからの戻り水が供
給される給水タンクからの給水と脱酸素剤の注入とをボ
イラ缶水に行うボイラにおいて、ボイラへの給水温度と
給水流量に基づき予め設定された脱酸素剤注入量を求め
て、該脱酸素剤注入量を缶水へ注入することを特徴とす
るボイラ缶水の脱酸素剤濃度制御方法。
[Claim 1] In a boiler in which water is supplied from a water supply tank to which make-up water and return water from the boiler are supplied and an oxygen absorber is injected into the boiler can water, the temperature and flow rate of the water supplied to the boiler are preset. A method for controlling the concentration of an oxygen scavenger in boiler can water, the method comprising: determining the amount of oxygen scavenger injected into the boiler can water, and injecting the amount of oxygen scavenger into the can water.
JP6176891A 1991-03-26 1991-03-26 Controlling method for concentration of deoxidizer of boiler water Pending JPH04297704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6176891A JPH04297704A (en) 1991-03-26 1991-03-26 Controlling method for concentration of deoxidizer of boiler water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6176891A JPH04297704A (en) 1991-03-26 1991-03-26 Controlling method for concentration of deoxidizer of boiler water

Publications (1)

Publication Number Publication Date
JPH04297704A true JPH04297704A (en) 1992-10-21

Family

ID=13180625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6176891A Pending JPH04297704A (en) 1991-03-26 1991-03-26 Controlling method for concentration of deoxidizer of boiler water

Country Status (1)

Country Link
JP (1) JPH04297704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263385A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP2014085091A (en) * 2012-10-26 2014-05-12 Nippon Steel & Sumitomo Metal Water quality management method and water quality management device of boiler water
US10179743B2 (en) * 2014-02-28 2019-01-15 Kurita Water Industries Ltd. Device and method for controlling chemical injection into boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263385A (en) * 2006-03-27 2007-10-11 Kurita Water Ind Ltd Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP2014085091A (en) * 2012-10-26 2014-05-12 Nippon Steel & Sumitomo Metal Water quality management method and water quality management device of boiler water
US10179743B2 (en) * 2014-02-28 2019-01-15 Kurita Water Industries Ltd. Device and method for controlling chemical injection into boiler

Similar Documents

Publication Publication Date Title
JP3626095B2 (en) Control system based on performance
US4472354A (en) System for continuously monitoring the ionic content of steam-producing water
Ayers et al. On the vapor pressure of sulfuric acid
KR950034549A (en) Semiconductor device manufacturing method and manufacturing apparatus thereof
JP2011251210A (en) Apparatus for inhibiting scale
JPS61220793A (en) Method for monitoring and controlling water quality
US5746233A (en) Washing apparatus and method therefor
JP2009139047A (en) Boiler water quality management device and boiler water quality management method
US11170902B2 (en) Nuclear power plant and method for operating a nuclear power plant
JPH04297704A (en) Controlling method for concentration of deoxidizer of boiler water
Shinskey Control of pH
US7676017B2 (en) Vacuum actuated anhydrous ammonia feed system for pH adjustment of boiler condensate/feed water
JP5983310B2 (en) Boiler water quality management method and apparatus
Parisod et al. Vapor-liquid equilibriums of the sodium chloride-water system in the temperature range 300-440. degree. C
JPS628040A (en) Washing apparatus
FI100365B (en) redox
JP5866992B2 (en) Water quality management method for boiler can water
US4534320A (en) Method for determining the amount of dissolved oxygen from above and below water level air leakage in a steam power plant
JP2635798B2 (en) Waste heat recovery boiler feed water treatment method
JPH06317393A (en) Water quality control method for circulating cooling water in cooling tower
CN100359642C (en) Soup concentration controller of semiconductor processing appts.
US5478529A (en) Activity control apparatus for zinc phosphate treatment solution
Manner et al. Corrosion studies under conditions of thermal desalination I. Pilot test loops for the simulation of plant conditions
CN114199937B (en) Calorimetric test method for ultralow temperature reaction
Ulmgren et al. A steady state model describing the solubility of calcium oxalate in D (chlorine dioxide stage)-filtrates