JPH04296633A - Two-parallel-springs stylus structure body - Google Patents

Two-parallel-springs stylus structure body

Info

Publication number
JPH04296633A
JPH04296633A JP8438091A JP8438091A JPH04296633A JP H04296633 A JPH04296633 A JP H04296633A JP 8438091 A JP8438091 A JP 8438091A JP 8438091 A JP8438091 A JP 8438091A JP H04296633 A JPH04296633 A JP H04296633A
Authority
JP
Japan
Prior art keywords
stylus
measured
piezoelectric element
supersonic
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8438091A
Other languages
Japanese (ja)
Inventor
Kyosuke Yasuda
安田 享祐
Keiichi Yanagisawa
佳一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8438091A priority Critical patent/JPH04296633A/en
Publication of JPH04296633A publication Critical patent/JPH04296633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To measure surface hardness distribution nondestructively by providing a piezoelectric element as a separating member at an end part of two-parallel- springs equipped with a stylus so as to drive by supersonic frequency voltage, and measuring propagated vibration with a supersonic sensor. CONSTITUTION:On a longitudinal stylus structure body 9, conductive plate spring 2, 3 are held in parallel by a piezoelectric element 4, an insulating body 5 and a stylus 1 are provided nearby the element the springs 2, 3 are fixed to an insulating base 8 together with the insulating body 5, and piezoelectric element drive power sources 6, 7 are connected to the springs 2, 3 at the outer end of insulating body 5. An AC voltage is applied to the structure body 9 from the power sources 6, 7 so as the stylus 1 to generate supersonic vibration, and a face to be measured is scanned by moving an object to be measured 10. Then the output of a supersonic sensor 11, fixed to the end part of the object to be measured 10, is recorded as the supersonic propagated output from the stylus 1. As the supersonic propagated output reflects the hardness distribution of the face to be measured, the hardness distribution in response to the contour of the face to be measured can be measured by one time scanning at the same time together with the surface contour.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は物体表面の物理量を測定
するための触針構造体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stylus structure for measuring physical quantities on the surface of an object.

【0002】0002

【従来の技術】従来、物体表面の物理量を測定するには
、鋭い先端をもつ触針を板ばねに取付け、触針を測定面
に微小荷重で押付け、一方測定面内に測定面を動かし、
この触針の動きを変位センサによって検出し、測定面の
吸着力、摩擦力、表面形状等を測定することが行われて
いる。このような測定面のトライボロジ的な情報として
新たに表面硬度分布のような物理量の測定が望まれてい
る。そこで一定荷重の触針で表面を何回か走査し、その
摩耗形状の変化から表面の硬度分布等が測定されていた
[Prior Art] Conventionally, in order to measure physical quantities on the surface of an object, a stylus with a sharp tip is attached to a leaf spring, the stylus is pressed against the measuring surface with a minute load, while the measuring surface is moved within the measuring surface.
This movement of the stylus is detected by a displacement sensor, and the attraction force, frictional force, surface shape, etc. of the measurement surface are measured. As tribological information on such measurement surfaces, it is desired to newly measure physical quantities such as surface hardness distribution. Therefore, the surface was scanned several times with a stylus under a constant load, and the hardness distribution of the surface was measured from changes in the worn shape.

【0003】0003

【発明が解決しようとする課題】上述した従来の触針構
造体では、表面の硬度分布のような物理量を測定する場
合、試料を破壊すると同時に測定表面を数回から数10
回にわたって走査しなくてはならないので時間がかかる
という欠点がある。
[Problems to be Solved by the Invention] In the conventional stylus structure described above, when measuring a physical quantity such as the hardness distribution on the surface, it is necessary to destroy the sample and at the same time touch the measuring surface several times to several tens of times.
The disadvantage is that it is time consuming because it has to be scanned several times.

【0004】本発明の目的は、試料の測定面を破壊する
ことなく短時間に表面硬度分布等の測定が可能な触針構
造体を提供することである。
[0004] An object of the present invention is to provide a stylus structure capable of measuring surface hardness distribution, etc. in a short time without destroying the measurement surface of a sample.

【0005】[0005]

【課題を解決するための手段】本発明の2枚平行ばね触
針構造体は、互いに平行に位置する導電性材料からなる
2枚の長方形板ばねのうち、測定面に面する板ばねの端
部に測定面に向って鋭い先端をもつ触針が具備され、2
枚の板ばねを該板ばねの長手方向両端部で隔離して保持
する2つの部材のうち、前記触針側部材は圧電材料によ
り圧電素子として形成され、他端側部材は絶縁材料によ
り形成されて前記板ばねとともに絶縁性基体に固定され
、かつ前記2枚の板ばねはそれぞれ前記基体への固定部
近辺に前記圧電素子駆動用の超音波周波数電源が接続さ
れている。
[Means for Solving the Problems] The two-parallel spring stylus structure of the present invention has two rectangular leaf springs made of conductive material located parallel to each other, the end of the leaf spring facing the measurement surface. The part is equipped with a stylus with a sharp tip facing the measurement surface, and 2
Of the two members that separate and hold the leaf spring at both ends in the longitudinal direction of the leaf spring, the stylus side member is formed of a piezoelectric material as a piezoelectric element, and the other end side member is formed of an insulating material. The piezoelectric element is fixed to an insulating base together with the leaf spring, and an ultrasonic frequency power source for driving the piezoelectric element is connected to each of the two leaf springs near a portion fixed to the base.

【0006】[0006]

【作用】超音波周波数電源で圧電素子が駆動されると発
生した振動が触針に伝播して触針を振動させるので、測
定物の1端に取付けた超音波センサにより、触針からの
伝播超音波振動を検測して表面硬度を測定することがで
きる。
[Operation] When the piezoelectric element is driven by an ultrasonic frequency power source, the vibration generated propagates to the stylus and causes the stylus to vibrate. Surface hardness can be measured by measuring ultrasonic vibrations.

【0007】[0007]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments Next, embodiments of the present invention will be described with reference to the drawings.

【0008】図1は本発明の2枚平行ばね触針構造体の
一実施例の斜視図、図2は図1の2枚平行ばね触針構造
体を使用した測定系の側面図、図3は図2の測定系で測
定された物体表面の硬度分布を示すぐらふである。
FIG. 1 is a perspective view of an embodiment of the two-parallel spring stylus structure of the present invention, FIG. 2 is a side view of a measurement system using the two-parallel spring stylus structure of FIG. 1, and FIG. is a rough graph showing the hardness distribution of the object surface measured by the measurement system of FIG.

【0009】この2枚平行ばね触針構造体は板ばね2,
3と圧電素子4と絶縁体5と基体8より構成されている
。板ばね2,3はともに導電性材料により長方形に成形
され互いに平行に位置し、板ばね2の1端に測定面を向
いて触針1が設けられている。触針1は鋭い先端をもっ
ている。圧電素子4は板ばね2の触針1が設けられた端
部に取付けられ、板ばね2,3を平行に離隔して保持す
る。絶縁体5は板ばね2,3の他端の近くで板ばね2,
3を平行に離隔して保持する一方、板ばね2,3と共に
絶縁性材料により成形された基体8に固定されている。 板ばね2,3には絶縁体5の外方の端にそれぞれ圧電素
子駆動用電源6,7が接続されている。圧電素子駆動用
電源6,7から超音波周波数の交流電圧が加えられると
、印加電圧は板ばね2,3を介して圧電素子4を駆動し
、圧電素子4が発生した超音波振動は触針1に伝播して
触針1を振動させる。
This two-parallel spring stylus structure includes leaf springs 2,
3, a piezoelectric element 4, an insulator 5, and a base 8. The leaf springs 2 and 3 are both formed into rectangular shapes made of conductive material and are positioned parallel to each other, and a stylus 1 is provided at one end of the leaf spring 2 facing the measuring surface. The stylus 1 has a sharp tip. The piezoelectric element 4 is attached to the end of the leaf spring 2 where the stylus 1 is provided, and holds the leaf springs 2 and 3 in parallel and spaced apart. The insulator 5 connects the leaf springs 2, 3 near the other ends of the leaf springs 2, 3.
3 are held parallel and spaced apart, and are fixed together with the leaf springs 2 and 3 to a base body 8 formed of an insulating material. Power supplies 6 and 7 for driving piezoelectric elements are connected to the outer ends of the insulators 5 of the leaf springs 2 and 3, respectively. When an AC voltage with an ultrasonic frequency is applied from the piezoelectric element driving power supplies 6 and 7, the applied voltage drives the piezoelectric element 4 via the leaf springs 2 and 3, and the ultrasonic vibrations generated by the piezoelectric element 4 are transmitted to the stylus. 1 and causes the stylus 1 to vibrate.

【0010】この2枚平行ばね触針構造体では1度の走
査で測定面の表面硬度分布が測定できるので、試料を破
壊しないばかりでなく短時間で測定でき、また触針1に
最も近接した位置から超音波振動が与えられるので超音
波振動の伝播効率が高く、伝播媒体となるばね部の材質
や寸法等によって振動伝播量に差を生ずることがない。
[0010] With this two-parallel spring stylus structure, the surface hardness distribution of the measurement surface can be measured in one scan, so not only does it not destroy the sample, but it can also be measured in a short time. Since the ultrasonic vibrations are applied from the position, the propagation efficiency of the ultrasonic vibrations is high, and there is no difference in the amount of vibration propagation depending on the material, dimensions, etc. of the spring portion serving as the propagation medium.

【0011】次に、この2枚平行ばね触針構造体の使用
例について説明する。
Next, an example of the use of this two-parallel spring stylus structure will be explained.

【0012】図2に示す測定系は図1の2枚平行ばね触
針構造体9と超音波センサ11と変位センサ12とX軸
移動台13とY軸移動台14とから構成されている。超
音波センサ11はX軸移動台13上に載せられた測定物
10の端部に取付けられている。X軸移動台13は測定
物10を被測定面上のX軸方向に移動させる。Y軸移動
台14は測定物10を被測定面上のY軸方向に移動させ
る。変位センサ12は測定物10の上方から触針1の被
測定面に垂直なZ軸方向の変位を検出する。
The measurement system shown in FIG. 2 is composed of the two-piece parallel spring stylus structure 9 shown in FIG. The ultrasonic sensor 11 is attached to the end of the object 10 placed on the X-axis moving table 13. The X-axis moving stage 13 moves the object 10 to be measured in the X-axis direction on the surface to be measured. The Y-axis moving table 14 moves the object 10 to be measured in the Y-axis direction on the surface to be measured. The displacement sensor 12 detects the displacement of the stylus 1 in the Z-axis direction perpendicular to the surface to be measured from above the object 10 to be measured.

【0013】この測定系で測定物10の被測定面の表面
形状に対応する硬度分布を測定するには、2枚平行ばね
触針構造体9に圧電素子駆動用電源6,7より355k
ヘルツの交流電圧を印加して触針1に超音波振動を生起
させ、次に、X軸移動台13とY軸移動台14を動かす
ことにより測定物10の被測定面を走査させる。この時
の変位センサ12の出力は被測定面の表面形状出力とし
て、一方超音波センサ11の出力は触針1からの超音波
伝播出力として記録される。超音波伝播出力は被測定面
の硬度分布を反映しており、低硬度の場合は触針1から
超音波センサ11への超音波伝播量を低下させ、高硬度
の場合は超音波伝播量を増大させる。したがって、変位
センサ12の出力と相まって被測定面の表面形状に対応
する硬度分布を非破壊でかつ表面形状と同時に測定する
ことができる。
In order to measure the hardness distribution corresponding to the surface shape of the surface to be measured of the object 10 using this measurement system, the two parallel spring stylus structure 9 is powered by 355k from the piezoelectric element driving power supplies 6 and 7.
A Hertz AC voltage is applied to generate ultrasonic vibrations in the stylus 1, and then the surface to be measured of the object 10 is scanned by moving the X-axis moving table 13 and the Y-axis moving table 14. The output of the displacement sensor 12 at this time is recorded as the surface shape output of the surface to be measured, while the output of the ultrasonic sensor 11 is recorded as the ultrasonic propagation output from the stylus 1. The ultrasonic propagation output reflects the hardness distribution of the surface to be measured, and in the case of low hardness, the amount of ultrasonic propagation from the stylus 1 to the ultrasonic sensor 11 is reduced, and in the case of high hardness, the amount of ultrasonic propagation is reduced. increase Therefore, in combination with the output of the displacement sensor 12, the hardness distribution corresponding to the surface shape of the surface to be measured can be measured non-destructively and at the same time as the surface shape.

【0014】なお、触針1に加わる超音波振動による微
小変位は、表面形状に対応する変位センサ12の出力に
比し高周波側にあるので、低域ろ波器によって容易にそ
の影響を除くことができるが、超音波振動変位は非常に
小さいので、表面形状変位出力が大きい場合は、敢てろ
波器を用いることなくそのまま変位出力として測定が実
施可能である。
[0014] Furthermore, since the minute displacement due to ultrasonic vibration applied to the stylus 1 is on the high frequency side compared to the output of the displacement sensor 12 corresponding to the surface shape, its influence can be easily removed by a low-pass filter. However, since the ultrasonic vibration displacement is very small, if the surface shape displacement output is large, it is possible to directly measure the displacement output without using a filter.

【0015】次に、本実施例の効果を示す具体例につい
て説明する。
Next, a specific example showing the effects of this embodiment will be explained.

【0016】図3は図2の測定系を用いてシリコン基板
上にレジストパターンを焼付けた被測定面について1次
元走査した結果を示している。このぐらふでは被測定面
のうちホトレジストのある部分では超音波センサ出力が
低下し、シリコン基板面が露出している部分では超音波
出力が増加している。すなわち、このデータにはホトレ
ジストとシリコンの硬度差が反映されていることがわか
る。
FIG. 3 shows the results of one-dimensional scanning of a surface to be measured on which a resist pattern is printed on a silicon substrate using the measurement system shown in FIG. In this graph, the ultrasonic sensor output decreases in the portion of the surface to be measured where the photoresist is present, and the ultrasonic output increases in the portion where the silicon substrate surface is exposed. In other words, it can be seen that this data reflects the difference in hardness between the photoresist and silicon.

【0017】[0017]

【発明の効果】以上説明したように本発明は、2枚の平
行板ばねの触針を具備した端部に離隔部材として圧電素
子を設けて超音波周波数電圧で駆動することにより、測
定物に取付けた超音波センサで伝播振動を検測して表面
硬度分布が1度の走査で測定できるので試料を破壊せず
かつ短時間で測定でき、さらに触針の直近位置から超音
波振動が発生するので、振動伝播効率が高く、かつばね
部の材質や寸法等により振動伝播量にバラツキを生じな
いという効果がある。
Effects of the Invention As explained above, the present invention provides a piezoelectric element as a separation member at the end of two parallel leaf springs equipped with a stylus, and drives it with an ultrasonic frequency voltage, so that the object to be measured can be The attached ultrasonic sensor measures the propagating vibration and the surface hardness distribution can be measured in one scan, so the measurement can be done in a short time without destroying the sample, and ultrasonic vibrations are generated from the position closest to the stylus. Therefore, there is an effect that the vibration propagation efficiency is high and that there is no variation in the amount of vibration propagation due to the material, dimensions, etc. of the spring portion.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の2枚平行ばね触針構造体の一実施例の
斜視図である。
FIG. 1 is a perspective view of one embodiment of the two-parallel spring stylus structure of the present invention.

【図2】図1の2枚平行ばね触針構造体を使用した測定
系の側面図である。
FIG. 2 is a side view of a measurement system using the two-parallel spring stylus structure of FIG. 1;

【図3】図2の測定系で測定された物体表面の硬度分布
を示すぐらふである。
FIG. 3 is a rough diagram showing the hardness distribution of the object surface measured by the measurement system of FIG. 2;

【符号の説明】[Explanation of symbols]

1    触針 2,3    板ばね 4    圧電素子 5    絶縁体 6,7    圧電素子駆動用電源 8    基体 9    2枚平行ばね触針構造体 10    測定物 11    超音波センサ 12    変位センサ 13    X軸移動台 14    Y軸移動台 1 Stylus 2, 3 Leaf spring 4 Piezoelectric element 5 Insulator 6,7    Piezoelectric element drive power supply 8 Base 9 Two parallel spring stylus structure 10 Measurement object 11 Ultrasonic sensor 12 Displacement sensor 13 X-axis moving table 14 Y-axis moving table

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  互いに平行に位置する導電性材料から
なる2枚の長方形板ばねのうち、測定面に面する板ばね
の端部に測定面に向って鋭い先端をもつ触針が具備され
、2枚の板ばねを該板ばねの長手方向両端部で隔離して
保持する2つの部材のうち、前記触針側部材は圧電材料
により圧電素子として形成され、他端側部材は絶縁材料
により形成されて前記板ばねとともに絶縁性基体に固定
され、かつ前記2枚の板ばねはそれぞれ前記基体への固
定部近辺に前記圧電素子駆動用の超音波周波数電源が接
続されている2枚平行ばね触針構造体。
1. Two rectangular leaf springs made of conductive material located parallel to each other, the end of the leaf spring facing the measurement surface is provided with a stylus with a sharp tip facing the measurement surface, Of the two members that separate and hold the two leaf springs at both ends in the longitudinal direction of the leaf springs, the stylus side member is formed of a piezoelectric material as a piezoelectric element, and the other end side member is formed of an insulating material. and fixed to an insulating base together with the leaf spring, and each of the two leaf springs has two parallel spring contacts to which an ultrasonic frequency power source for driving the piezoelectric element is connected near the part fixed to the base. Needle structure.
JP8438091A 1991-03-26 1991-03-26 Two-parallel-springs stylus structure body Pending JPH04296633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8438091A JPH04296633A (en) 1991-03-26 1991-03-26 Two-parallel-springs stylus structure body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8438091A JPH04296633A (en) 1991-03-26 1991-03-26 Two-parallel-springs stylus structure body

Publications (1)

Publication Number Publication Date
JPH04296633A true JPH04296633A (en) 1992-10-21

Family

ID=13828945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8438091A Pending JPH04296633A (en) 1991-03-26 1991-03-26 Two-parallel-springs stylus structure body

Country Status (1)

Country Link
JP (1) JPH04296633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725532B1 (en) * 2005-10-11 2007-06-08 학교법인 두원학원 Apparatus for measuring hardness of polyurethane product having a variety of shapes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725532B1 (en) * 2005-10-11 2007-06-08 학교법인 두원학원 Apparatus for measuring hardness of polyurethane product having a variety of shapes

Similar Documents

Publication Publication Date Title
JP4732903B2 (en) Cantilever holder and scanning probe microscope
JPH04100251A (en) Probing device
US4216352A (en) Two coordinate position sensing systems
EP1256962A1 (en) Actuating and sensing device for scanning probe microscopes
EP0397116A3 (en) Information detecting apparatus
JP2002243538A (en) Vibration detection system of elastic material
JP2010022585A (en) Shaking unit of biothesiometer
JPH04296633A (en) Two-parallel-springs stylus structure body
US7038202B2 (en) Conductive transparent probe and probe control apparatus
JPH11153610A (en) Cantilever unit
JPH05209913A (en) Electrostatic formula measurement device
Matsumoto et al. Measurement of slider/disk collision forces using acoustic emission source wave analysis
JPH07243846A (en) Displacement measurement probe
JP2000065716A (en) Oscillation-type contact sensor
Schaadt The quantum chaology of acoustic resonators
JPH0387637A (en) Surface characteristic measuring instrument
JPS6166574A (en) Piezoelectric linear motor
US5105448A (en) Device for counting small projections or depressions on surfaces of objects
JPH11101603A (en) Contact sensor and fitting structure thereof
JPH07159422A (en) Cantilever chip holder
JPH10176902A (en) Touch signal probe
JPH03148007A (en) Surface measuring apparatus
JP3608499B2 (en) Material constant measuring device for piezoelectric substrate
TW369603B (en) Apparatus for machining, recording, and reproducing, using scanning probe microscope
JP3431246B2 (en) Probe excitation mechanism