JPH03148007A - Surface measuring apparatus - Google Patents

Surface measuring apparatus

Info

Publication number
JPH03148007A
JPH03148007A JP28740589A JP28740589A JPH03148007A JP H03148007 A JPH03148007 A JP H03148007A JP 28740589 A JP28740589 A JP 28740589A JP 28740589 A JP28740589 A JP 28740589A JP H03148007 A JPH03148007 A JP H03148007A
Authority
JP
Japan
Prior art keywords
needle
frequency
sample
amplitude
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28740589A
Other languages
Japanese (ja)
Inventor
Keiji Takada
啓二 高田
Takehiro Okawa
武宏 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28740589A priority Critical patent/JPH03148007A/en
Publication of JPH03148007A publication Critical patent/JPH03148007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To remove the distortion of an image resulting from the change of the amplitude of a needle by providing a means for vibrating the needle and a means for maintaining the frequency/amplitude of the needle constant at all times. CONSTITUTION:A needle 1 is vibrated when an alternating voltage V (frequency (f)) of an oscillator 3 is impressed to a piezoelectric body 2. As the needle 1 is in touch with a sample 4 more strongly, an electromotive force of the frequency (f) of a piezoelectric plate 5 is increased. A feedback circuit 6 detects the electromotive force of the piezoelectric plate 5, takes out and rectifies a voltage of the components of the frequency (f), and maintains the distance between the needle 1 and sample 4 constant by a minute driving mechanism 7 so that the voltage is kept constant. Moreover, the needle 1 is moved along the surface of the sample 4 by the action of the circuit 6 and a scanning circuit 8, and the locus of the needle is indicated at a display part 9. Further, the mechanism 7 is provided with a piezoelectric plate 10 to detect the vibration of the piezoelectric body 2. A feedback circuit 11 detects an electromotive force S of the piezoelectric plate 10, rectifies a voltage of the components of the frequency (f), and controls an output voltage V of the oscillator 3 so that the voltage is maintained constant. Accordingly, even when the resonance frequency of the vibrating body is changed as a result of the deformation of the mechanism 7, the amplitude of the needle 1 is kept constant.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、走査型トンネル顕微鏡(STM)の類似装置
に係り、特に絶縁体表面のm察に適した表面計測装置に
関する。 【従来の技術】 針と試料との間に流れる電流を一定に保ちながら針を試
料面上で走査する従来のSTMでは、絶縁体表面を観察
することは困難であった。そこで。 昭63−309803においては、水晶発振器で針を振
動させ、針と試料との接触による共振周波数の変化を検
出する方法が述べられている。
INDUSTRIAL APPLICATION FIELD 1 The present invention relates to an apparatus similar to a scanning tunneling microscope (STM), and particularly to a surface measuring apparatus suitable for measuring the surface of an insulator. 2. Description of the Related Art In conventional STM, in which a needle is scanned over a sample surface while keeping a constant current flowing between the needle and the sample, it is difficult to observe the surface of an insulator. Therefore. No. 63-309803 describes a method of vibrating a needle using a crystal oscillator and detecting changes in resonance frequency due to contact between the needle and a sample.

【発明が解決しようとする課題】[Problem to be solved by the invention]

振動する針を走査すると振幅が変化する。針の振幅の変
化は、鳥轍像における高さ方向の歪み、平面像では強度
ムラをもたらす。 本発明の目的は、この針の振幅の変化による像の歪を除
去することにある。
When the vibrating needle is scanned, the amplitude changes. Changes in the amplitude of the needle cause distortion in the height direction in the bird track image and uneven intensity in the plane image. An object of the present invention is to eliminate image distortion caused by changes in the amplitude of the needle.

【課題を解決するための手段】[Means to solve the problem]

針は、走査機構の変形により走査される。従って、針と
走査機構とより成る系の機械的共振周波数は針の走査に
伴って変化する。この系の機械的共振周波数の近傍に釦
の振動数が設定された場合には、針の走査に従って針の
振幅も変化してしまう。 この問題を解決するためには、走査機構の共振周波数と
針の振動数とをずらせばよい。そのためには、例えば走
査機構の剛性を高めることにより針の振動によって走査
機構が共振しないようにする。あるいは、針の振動を検
出し、振幅を一定に保つ手段を設ける。
The needle is scanned by a modification of the scanning mechanism. Therefore, the mechanical resonant frequency of the system consisting of the needle and scanning mechanism changes as the needle scans. If the frequency of the button is set close to the mechanical resonance frequency of this system, the amplitude of the needle will also change as the needle scans. To solve this problem, the resonant frequency of the scanning mechanism and the frequency of the needle can be shifted. To this end, for example, the rigidity of the scanning mechanism is increased so that the scanning mechanism does not resonate due to the vibration of the needle. Alternatively, a means is provided to detect the vibration of the needle and keep the amplitude constant.

【作用】[Effect]

走査機構の最も低い共振周波数が針の振動数よりも高け
れば、走査機構の動作によっても針の振動状態に変化は
起こらない。 針の走査により振幅が変化する場合においては、その振
幅を検知しこれを一定に保つフィードバック系の働きに
より、振幅を一定に保つことができる。
If the lowest resonant frequency of the scanning mechanism is higher than the frequency of the needle, operation of the scanning mechanism will not cause a change in the vibrational state of the needle. When the amplitude changes due to the scanning of the needle, the amplitude can be kept constant by the action of a feedback system that detects the amplitude and keeps it constant.

【実施例】【Example】

以下、本発明の一実施例を第1図により説明する。 針]は、発振器3の交流電圧■(周波数f)が圧電体2
に印加されることにより、振動する。試料4には圧電板
5が貼り付けられている。針1と試料4とが強く接触す
るほど、圧電板5の周波数fの起電力は大きくなる。帰
還回路6は、圧電板5の起電力を検出し周波数fの成分
の電圧を取り出しこれを整流しこの値が一定に保たれる
ように微動機構7により、針1と試料4との間隔を一定
に保つ。走査回路8は、微動機構7により針1を試料4
表面に沿ってラスク方式で走査する。帰還回路6及び走
査回路8の働きにより、針1は試料4表面の凹凸をなぞ
って動く。この針1の軌跡を表示部9に表示することに
より、試料4表面の形状が得られる。 一方、微動機構7には圧電板10が取付けられており、
圧電体2の振動が検出される。帰還回路1]は圧電板1
0の起電力Sを検出し周波数fの成分の電圧を取り出し
これを整流しこの値が一定に保たれるように、発振器3
の出力電圧Vを制御する。これにより、針1.圧電体2
.微動機構7で構成される振動体の共振周波数が微動機
構の動作(変形)により変化しても、針1の振幅は一定
に保たれる。なお、針1と試料4との接触による圧電板
10の起電力への影響はほとんど無い。 第2図には、微動機構7.圧電体2.針1の具体的な構
成例を示す。微動機構7は、互いに直交する3個の圧電
素子12,13.14により構成されその交点が3次元
的に微動する。図示されてはいないが、3個の圧電素子
の他端は固定されている。圧電体2及び針1は、この交
点に取付けられている。圧電素子13.14は、針1の
走査のためのものであり、走査回路8より電圧が印加さ
れる。圧電素子12は、針と試料との間隔を制御すると
同時に圧電体2の振動を検出するためのものである。そ
のため、一方の電極は帰還回路6に接続され他方の電極
は帰還回路11に接続されている。抵抗15は帰還回路
6より印加される低周波成分の電圧を除去するためのも
のである。圧電素子12の静電容量と抵抗15とにより
低周波成分をカットされた信号Sが帰還回路11に入力
される。 第3図は、他の構成例を示す。前記実施例と基本的構成
はほとんど同じであるが、圧電素子12には帰還回路6
からの電圧が印加されるだけであり、振幅検出用の圧電
素子21は、針1−の根元に取り付けられている。この
圧電素子2]の起電力Sが帰還回路11に入力される。 このように振幅検出用の圧電素子を走査機構の先端部、
針1近傍に取り付けることにより、針1の振幅を正確に
測定することが出来る。振幅検出用の圧電素子を針1か
ら離れた位置に取り付けた場合には、その取付は位置固
有の振幅を測定してしまい、これは針1の振幅とは必ず
しも一致しないのである。 第4図は、微動機構の共振点を」二げることにより問題
点を解決した実施例である。針1.圧電体2、試料4.
圧電板5は前述の実施例と同様のものであるが、圧電体
2に微動機構16が取付けられ、その先に針1が取付け
られている。微動機構16の最大寸法(分極方向の長さ
)は圧電板5の短辺の長さよりもかなり短い。 第5図に、第4図に示した微動機構16の詳細な構成を
示す。 直方体の圧電体の6面金てに電極が取付けられており、
分極方向及びこれと直交する2方向に電界が印加される
ようになっている。電極17は帰還回路6の信号が加え
ら九、電極18.19へは走査回路8の信号が加えられ
る。これらの電極に対向する電極は全てアース電位であ
る。 分極方向に印加される電界により針1−と試料4との間
隔が制御され、分極方向と垂直方向の電界は圧電体を剪
断変形させ針を試料面と平行な方向に走査する。圧電板
5の長辺あるいは短辺方向の1次共振周波数で圧電体2
を振動させることにより針]と試料4との力の相互作用
を効率よく検出できるが、針1.微動機構16.圧電体
2より成る系の共振周波数は圧電板5のF記共振周波数
よりも高いため微動機構16の変形によっても振動状態
に何ら変化は無く従って針1の振幅も不変である。 以上述べてきた実施例では釧]の走査機構と試料とを支
持する構造を省略して説明してきた。実際には、微動機
構の変位範囲まで針1を試料に接近させるための粗動機
構を含めた支持部20が第6図に示すように存在する。 このため、支持部20を含めた系の共振点をも考慮しな
ければならない。圧電体2の振動数が低いほどすなわち
圧電板5の長辺が長いほど、圧電板5以外の機構系の共
振を避けることが容易になる。支持部20を含めた機構
全体は他の部分とは除振されているため、これ以上の系
を考える必要はない。 圧電板5以外が共振すれば、これにより針1と試料5と
の間隔が振動する。さらに、支持部20を通じて圧電板
5に侵入する圧電体2の振動が非常に大きくなる。この
時、微動機構7の動作によりこの共振状態が変化すれば
、支持部20を通じて進入する振動が針の走査に従って
変化する。その結果、圧電板5により検出される振動振
幅を一定に保っても針1が試料4をつつくことにより検
出される振動の振幅を一定に保つことは出来ない。 すなわち、帰還回路6により針1と試料4との力の相互
作用を一定に保つことが出来ない。本実施例においては
係る問題点をも解決することができる。 [発明の効果] 本発明によれば、針を振動させ、この振動する針を試料
表面に沿い走査することにより試料の表面形状などを計
測する方法において、針を走査することなどにより生じ
る振動状態の変化に起因する画像の歪を取り除くことが
出来る。
An embodiment of the present invention will be described below with reference to FIG. [needle] indicates that the AC voltage ■ (frequency f) of the oscillator 3 is the piezoelectric body 2
It vibrates by being applied to it. A piezoelectric plate 5 is attached to the sample 4. The stronger the contact between the needle 1 and the sample 4, the greater the electromotive force at the frequency f of the piezoelectric plate 5. The feedback circuit 6 detects the electromotive force of the piezoelectric plate 5, extracts the voltage of the frequency f component, rectifies it, and uses the fine movement mechanism 7 to adjust the distance between the needle 1 and the sample 4 so that this value is kept constant. Keep it constant. The scanning circuit 8 moves the needle 1 to the sample 4 using the fine movement mechanism 7.
Scan along the surface in a rask manner. By the action of the feedback circuit 6 and the scanning circuit 8, the needle 1 moves by tracing the irregularities on the surface of the sample 4. By displaying the trajectory of the needle 1 on the display section 9, the shape of the surface of the sample 4 can be obtained. On the other hand, a piezoelectric plate 10 is attached to the fine movement mechanism 7,
Vibrations of the piezoelectric body 2 are detected. Feedback circuit 1] is piezoelectric plate 1
The oscillator 3 detects the electromotive force S of 0, extracts the voltage of the frequency f component, rectifies it, and keeps this value constant.
The output voltage V is controlled. This allows needle 1. Piezoelectric body 2
.. Even if the resonance frequency of the vibrating body constituted by the fine movement mechanism 7 changes due to the operation (deformation) of the fine movement mechanism, the amplitude of the needle 1 is kept constant. Note that the contact between the needle 1 and the sample 4 has almost no effect on the electromotive force of the piezoelectric plate 10. FIG. 2 shows the fine movement mechanism 7. Piezoelectric body 2. A specific example of the configuration of the needle 1 will be shown. The fine movement mechanism 7 is composed of three piezoelectric elements 12, 13, and 14 that are perpendicular to each other, and the intersection point of the piezoelectric elements 12, 13, and 14 makes fine movements in three dimensions. Although not shown, the other ends of the three piezoelectric elements are fixed. The piezoelectric body 2 and the needle 1 are attached to this intersection. The piezoelectric elements 13 and 14 are for scanning the needle 1, and a voltage is applied from the scanning circuit 8. The piezoelectric element 12 is used to control the distance between the needle and the sample and to detect vibrations of the piezoelectric body 2 at the same time. Therefore, one electrode is connected to the feedback circuit 6 and the other electrode is connected to the feedback circuit 11. The resistor 15 is for removing the low frequency component voltage applied from the feedback circuit 6. A signal S whose low frequency components have been cut by the capacitance of the piezoelectric element 12 and the resistor 15 is input to the feedback circuit 11 . FIG. 3 shows another configuration example. The basic configuration is almost the same as the previous embodiment, but the piezoelectric element 12 is provided with a feedback circuit 6.
The piezoelectric element 21 for amplitude detection is attached to the base of the needle 1-. The electromotive force S of this piezoelectric element 2 is input to the feedback circuit 11. In this way, the piezoelectric element for amplitude detection is placed at the tip of the scanning mechanism.
By attaching it near the needle 1, the amplitude of the needle 1 can be measured accurately. If the piezoelectric element for amplitude detection is mounted at a position away from the needle 1, the mounting will measure a position-specific amplitude, which does not necessarily match the amplitude of the needle 1. FIG. 4 shows an embodiment in which the problem was solved by lowering the resonance point of the fine movement mechanism. Needle 1. Piezoelectric body 2, sample 4.
The piezoelectric plate 5 is similar to the above embodiment, but a fine movement mechanism 16 is attached to the piezoelectric body 2, and the needle 1 is attached to the tip of the fine movement mechanism 16. The maximum dimension (length in the polarization direction) of the fine movement mechanism 16 is considerably shorter than the length of the short side of the piezoelectric plate 5. FIG. 5 shows a detailed configuration of the fine movement mechanism 16 shown in FIG. 4. Electrodes are attached to the six metal surfaces of a rectangular parallelepiped piezoelectric body.
An electric field is applied in the polarization direction and in two directions perpendicular to the polarization direction. The signal from the feedback circuit 6 is applied to the electrode 17, and the signal from the scanning circuit 8 is applied to the electrodes 18 and 19. All electrodes facing these electrodes are at ground potential. The distance between the needle 1- and the sample 4 is controlled by the electric field applied in the polarization direction, and the electric field in the direction perpendicular to the polarization direction shear deforms the piezoelectric material and causes the needle to scan in a direction parallel to the sample surface. The piezoelectric body 2
By vibrating the needle 1., the force interaction between the needle 1. and the sample 4 can be detected efficiently. Fine movement mechanism 16. Since the resonant frequency of the system made up of the piezoelectric body 2 is higher than the F resonant frequency of the piezoelectric plate 5, there is no change in the vibration state even if the fine movement mechanism 16 is deformed, and therefore, the amplitude of the needle 1 is also unchanged. In the embodiments described above, the structure for supporting the scanning mechanism and the sample has been omitted. In reality, as shown in FIG. 6, there is a support section 20 including a coarse movement mechanism for bringing the needle 1 close to the sample within the displacement range of the fine movement mechanism. For this reason, the resonance point of the system including the support portion 20 must also be considered. The lower the frequency of the piezoelectric body 2, that is, the longer the long side of the piezoelectric plate 5, the easier it is to avoid resonance in mechanical systems other than the piezoelectric plate 5. Since the entire mechanism including the support section 20 is isolated from other parts, there is no need to consider any further system. If anything other than the piezoelectric plate 5 resonates, the distance between the needle 1 and the sample 5 will oscillate. Furthermore, the vibration of the piezoelectric body 2 entering the piezoelectric plate 5 through the support portion 20 becomes extremely large. At this time, if this resonance state changes due to the operation of the fine movement mechanism 7, the vibration that enters through the support portion 20 changes according to the scanning of the needle. As a result, even if the amplitude of the vibration detected by the piezoelectric plate 5 is kept constant, the amplitude of the vibration detected when the needle 1 pokes the sample 4 cannot be kept constant. That is, the feedback circuit 6 cannot maintain a constant force interaction between the needle 1 and the sample 4. In this embodiment, this problem can also be solved. [Effects of the Invention] According to the present invention, in a method of measuring the surface shape of a sample by vibrating a needle and scanning the vibrating needle along the sample surface, the vibration state caused by scanning the needle, etc. Image distortion caused by changes in can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の構成を示すブロック図、第
2図、第3図は第1図における走査機構部の構成を示す
斜視図、第4図は本発明の一実施例を示す斜視図、第5
図は第4図における走査機構部の構成を示す斜視図、第
6図は表面計測装置機構部全体の構成を示す概略側面図
である。 符号の説明
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIGS. 2 and 3 are perspective views showing the configuration of the scanning mechanism section in FIG. 1, and FIG. 4 is a block diagram showing the configuration of an embodiment of the present invention. Perspective view shown, fifth
This figure is a perspective view showing the structure of the scanning mechanism section in FIG. 4, and FIG. 6 is a schematic side view showing the structure of the entire surface measuring device mechanism section. Explanation of symbols

Claims (1)

【特許請求の範囲】 1、先端を鋭利に尖がらせた針と該針を試料表面に沿っ
て走査する走査手段とを有する表面計測装置において、
該針を振動させる手段と該針の振動振幅を常に一定に保
つ手段とを設けたことを特徴とする表面計測装置。 2、特許請求の範囲第1項記載の表面計測装置において
、前記走査手段の共振周波数は前記針の振動数よりも高
いことを特徴とする表面計測装置。 3、特許請求の範囲第1項記載の表面計測装置において
、前記走査手段は、六面体の圧電体であり該圧電体の各
々の面と垂直な方向に電場を印加する手段を有し該圧電
体の分極方向は該圧電体の特定の面にたいし垂直である
ことを特徴とする表面計測装置。 4、特許請求の範囲第1項記載の表面計測装置において
、振動検出手段と該振動検出手段からの信号により該針
の振動振幅を制御する手段とを設けたことを特徴とする
表面計測装置。
[Claims] 1. A surface measuring device having a needle with a sharply pointed tip and a scanning means for scanning the needle along the sample surface,
A surface measuring device comprising means for vibrating the needle and means for always keeping the vibration amplitude of the needle constant. 2. The surface measuring device according to claim 1, wherein the resonant frequency of the scanning means is higher than the vibration frequency of the needle. 3. In the surface measuring device according to claim 1, the scanning means is a hexahedral piezoelectric body, and has means for applying an electric field in a direction perpendicular to each surface of the piezoelectric body. A surface measuring device characterized in that the polarization direction of is perpendicular to a specific surface of the piezoelectric body. 4. A surface measuring device according to claim 1, further comprising vibration detecting means and means for controlling the vibration amplitude of the needle based on a signal from the vibration detecting means.
JP28740589A 1989-11-06 1989-11-06 Surface measuring apparatus Pending JPH03148007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28740589A JPH03148007A (en) 1989-11-06 1989-11-06 Surface measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28740589A JPH03148007A (en) 1989-11-06 1989-11-06 Surface measuring apparatus

Publications (1)

Publication Number Publication Date
JPH03148007A true JPH03148007A (en) 1991-06-24

Family

ID=17716915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28740589A Pending JPH03148007A (en) 1989-11-06 1989-11-06 Surface measuring apparatus

Country Status (1)

Country Link
JP (1) JPH03148007A (en)

Similar Documents

Publication Publication Date Title
JP2837083B2 (en) Method and interaction apparatus for accurately measuring surface parameters excluding shape or performing shape related work
USRE33387E (en) Atomic force microscope and method for imaging surfaces with atomic resolution
JP3608009B2 (en) Atomic force microscope
US6257053B1 (en) Scanning probe microscope having piezoelectric member for controlling movement of probe
US20060027739A1 (en) Scanning probe microscope and method
RU2005102703A (en) SCANNING PROBE MICROSCOPE
JP4314328B2 (en) Compliance measurement microscope
EP1256962A1 (en) Actuating and sensing device for scanning probe microscopes
JP2005106786A (en) Scanning type probe microscope
CN100387967C (en) Scanning probe microscope
JPH03148007A (en) Surface measuring apparatus
US6006595A (en) Device for vibrating cantilever
JP3754821B2 (en) Cantilever amplitude measuring method and non-contact atomic force microscope
JP4209891B2 (en) Scanning probe microscope
JP3318085B2 (en) Cantilever tip holder
US7423264B2 (en) Atomic force microscope
JPH06323845A (en) Thin film force detection probe for scanning force microscope
JP3809893B2 (en) Scanning probe microscope
JP2000065716A (en) Oscillation-type contact sensor
JPH09264897A (en) Scanning probe microscope
RU2193769C2 (en) Method measuring characteristics of surface magnetic field with use of scanning sounding microscope
JP3084924B2 (en) Atomic force microscope
JPH08248040A (en) Scanning probe microscope and measuring method thereof
JP3167287B2 (en) Micro vibration applying device, micro vibration applying method and surface state detecting device
JP3431246B2 (en) Probe excitation mechanism