JP3754821B2 - Cantilever amplitude measuring method and non-contact atomic force microscope - Google Patents

Cantilever amplitude measuring method and non-contact atomic force microscope Download PDF

Info

Publication number
JP3754821B2
JP3754821B2 JP19476298A JP19476298A JP3754821B2 JP 3754821 B2 JP3754821 B2 JP 3754821B2 JP 19476298 A JP19476298 A JP 19476298A JP 19476298 A JP19476298 A JP 19476298A JP 3754821 B2 JP3754821 B2 JP 3754821B2
Authority
JP
Japan
Prior art keywords
cantilever
sample
frequency
oscillation
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19476298A
Other languages
Japanese (ja)
Other versions
JP2000028511A (en
Inventor
鈴木克之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP19476298A priority Critical patent/JP3754821B2/en
Publication of JP2000028511A publication Critical patent/JP2000028511A/en
Application granted granted Critical
Publication of JP3754821B2 publication Critical patent/JP3754821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は非接触原子間力顕微鏡(以下AFMという)に関し、特にカンチレバーの発振振幅を直接求められるようにした方法、および係る方法を用いた非接触原子間力顕微鏡に関するものである。
【0002】
【従来の技術】
図5に示すように、試料1の表面にカンチレバー2の先端を原子間力が作用する程度に近接させで走査し、試料表面の形状を観察する原子間力顕微鏡が知られている。このような原子間力顕微鏡においては、試料1とカンチレバー2の先端を近づけていくと、最初両者間に引力が働き、さらに接近させると斥力が作用し、これら作用する力を一定にするように試料1とカンチレバー2の間の距離を制御することにより試料表面の形状観察が行われる。
【0003】
しかし、試料とカンチレバー先端間の斥力を検出する方式では、試料とカンチレバーが非常に接近している(実際にはカンチレバーを試料に押しつけた状態)ために、試料とカンチレバーの相互作用が強くなると試料表面を破壊してしまう。そこで、試料とカンチレバーが比較的離れた所で働く引力を検出することで、試料とカンチレバーを接触させることなく、試料の形状を観察する非接触AFMが考えられた。しかし、斥力は、試料とカンチレバー間の距離依存性が強いので、カンチレバーの撓みを測定することで検出することができるが、引力は距離依存性が弱いので、カンチレバーの撓みから引力を検出することは難しい。そこで、試料とカンチレバー間の引力を検出する方法の1つとして周波数変調(FM)検出法が用いられている。
【0004】
図6はこのようなFM検出法を説明するブロック図である。試料1は、X,Yドライバー(図示せず)およびZドライバー5で駆動されるピエゾスキャナー9により、X,Y方向に2次元走査されるとともに、Z方向に動かされるようになっている。カンチレバー2の根元に接続したピエゾ素子4に発振制御アンプ3より加振信号を加え、カンチレバー2をその共振周波数で振動させる。カンチレバーの発振による変位は、その先端にレーザ6からレーザ光を照射し、その反射を2分割光センサー7で受光し、センサの各受光面の出力の差から検出する光てこ方式を用いて検出している。発振制御アンプ3は2分割光センサー7の出力が一定となるようにピエゾ素子4を駆動する。FM復調器8は2分割光センサー7の出力を、その周波数に応じた電圧信号に変換し、その出力でZドライバー5を駆動し、カンチレバーと試料との間の距離が一定に保たれるようにし、この時のZ駆動電圧が距離に換算されて画像信号として取り出される。
このようにカンチレバー2は共振周波数で振動するが、カンチレバー2を試料に接近させ、試料との間で力を受けると共振周波数が変化する。そこで共振周波数が一定となるようにZドライバー5の駆動電圧を変化させ、カンチレバーと試料と間の距離を一定に保つように制御したときのZドライバー5の駆動電圧から試料表面の凹凸の情報が得られて観察される。
【0005】
【発明が解決しようとする課題】
前述したように、非接触AMFは試料とカンチレバーを接触させることなしに観察することから、カンチレバーと試料間の相互作用(原子間力、静電気力等)の解析に用いられる。これには、カンチレバーと試料間の距離を正確に知る必要があり、カンチレバーの発振振幅を求めることが必要となる。カンチレバーを発振させると、2分割光センサーの出力も正弦波となる。この正弦波の振幅とカンチレバーの発振振幅は比例関係にあるが、発振振幅の絶対値に直接換算することはできず、発振振幅自体の大きさを求めることはできない。また、カンチレバーの個体差やレーザ光のアライメント等により一定ではないので、カンチレバーを交換したり、アライメントを調整したときには、求め直す必要がある。
【0006】
一般的に、コンタクトモードにおけるフォースカーブ(Z方向距離に対する2分割光センサー出力)により発振振幅を求める方法が考えられる。
図7はコンタクトモードAFMにおけるフォースカーブを示している。フォースカーブとは、カンチレバーを試料に近づけて接触させ、また遠ざけていった時のZ方向の距離の変化に対する2分割光センサーの出力周波数変化をカーブに描いたもので、カンチレバーが試料と接触している部分では直線を描く。この直線部分よりカンチレバーの変位と2分割光センサーの出力周波数の関係を求めることができる。しかしこの方法は、カンチレバーを試料に押しつけた部分を用いるので、試料表面やカンチレバー先端を破壊する恐れがある。また、柔らかい試料では、カンチレバーを押しつけると試料が変形して正確な関係を求めることができない。
本発明は上記課題を解決するためのもので、非接触原子間力顕微鏡においてカンチレバーの発振振幅を直接正確に求められるようにすることを目的とする。
【0007】
【課題を解決するための手段】
本発明のカンチレバー振幅測定方法は、非接触原子間力顕微鏡のカンチレバーを加振して固有周波数で発振させた状態で試料とカンチレバー間の距離を変化させたときの距離変化に対するカンチレバー発振周波数の変化特性を、異なるカンチレバー加振振幅に対してそれぞれ測定し、各カンチレバー加振振幅に対する前記変化特性の急激な立ち上がり位置の差からカンチレバーの発振振幅を求めることを特徴とする。
また、本発明の非接触原子間力顕微鏡は、先端が試料に対向し、一端を加振手段に固定したカンチレバーと、カンチレバーの変位を検出する変位検出器と、変位検出器の出力が入力され、該出力を一定にするように前記加振手段を制御する増幅器と、前記変位検出器出力の周波数を検出する周波数検出器と、試料を2次元的に駆動すると共に、前記検出した周波数が一定となるように試料とカンチレバー先端との距離を一定に制御する試料駆動手段とを備えた非接触原子間力顕微鏡において、前記増幅器を制御して異なる加振電圧で加振手段をそれぞれ駆動させると共に、各加振電圧における試料とカンチレバー先端との距離変化に対する発振周波数の変化を前記周波数検出器出力より検出し,各加振電圧における前記発振周波数の急激な立ち上がり位置の差よりカンチレバーの発振振幅を算出する制御装置を備えたことを特徴とする。
【0008】
【発明の実施の形態】
図1は本発明の非接触原子間力顕微鏡のブロック構成図、図2〜図4はカンチレバーの発振振幅を求める方法を説明する図である。
図1の構成は基本的に図6と同様であり、ピエゾ素子4の加振電圧を変化させ、その時の周波数変位出力から各加振電圧におけるフォースカーブを求め、これよりカンチレバーの発振振幅を求める制御装置10が付加されている点のみ異なっている。この制御装置10による制御を図2〜図4により説明する。
【0009】
図2はノンコンタクトモードAFMにおけるフォースカーブを示している。発振制御アンプ3の出力でピエゾ素子4を駆動し、カンチレバー2を共振周波数で発振させた状態で2分割光センサー7の出力をFM復調器8で検出し、Zドライバー5により試料とカンチレバー間の距離(Z方向距離)を変化させた時の発振周波数の変位量を測定し、フォースカーブを求める。図2において、横軸はZ方向の距離、縦軸は周波数の変位量(FM復調器8の出力)である。カンチレバーが試料から離れているときには周波数変化はない。このカンチレバーを試料に接近させ、カンチレバーに力が加わると、急激に発振周波数が変化する。
【0010】
図3において、2分割光センサーの出力(正弦波)の振幅をAとした時(図3(a))、実際のカンチレバーの発振振幅をaとし(図3(b))、フォースカーブの周波数の急激な立ち上がりのZ方向位置をZaとする(図3(c))。いま、図1の制御装置10により発振制御アンプ3を制御して、ピエゾ素子4に加える加振電圧を変化させ、2分割光センサー出力の振幅B=A/2(図4(a))としたとき、カンチレバーの発振振幅は2分割光センサーの出力と比例関係にあることから、b=a/2となる(図4(b))。また、このときのフォースカーブの立ち上がりのZ方向位置をZbとする(図4(c))。
カンチレバーの発振振幅をaからa/2に変化させたとき、カンチレバー先端の基準位置(振動方向中心位置)と試料間の距離はa/4だけ変化したことになり、これがZ方向の距離(Za−Zb)に相当するので、
a/4=Za−Zb
a=4(Za−Zb)
となる。このように、加振振幅を変化させてフォースカーブを測定することによって、カンチレバーの発振振幅を求めることができる。制御装置10では、以上の処理を自動化して行う機能をもっている。この方法は、図7に示したようなフォースカーブの直線部分を使用せず、急激な周波数の変化またはFM復調器の出力の変化を用いているので、カンチレバーや試料の状態に影響なく、安定してカンチレバーの発振振幅を正確に求めることができる。
【0011】
なお、上記において、試料とカンチレバーの間に働く力の検出にFM検出法を用いているが、直接周波数変化を測定する方法等によっても良く、またカンチレバーの加振方法も加振電圧振幅一定方式や発振振幅一定方式等があり、これを用いても良い。また、カンチレバーの変位の検出に光てこ方式を使用したが、光干渉法やカンチレバーにバイモルフを使用する等その他の方法を用いてもよい。
【0012】
【発明の効果】
以上のように、本発明によれば非接触AFMによる試料とカンチレバーの間に働く相互作用の解析に必要なカンチレバーの発振振幅をカンチレバーや試料の状態に影響なく、安定し、かつ簡便に正確に求めることが可能となる。
【図面の簡単な説明】
【図1】 本発明の非接触原子間力顕微鏡のブロック構成図である。
【図2】 カンチレバーの発振振幅を求める方法を説明する図である。
【図3】 カンチレバーの発振振幅を求める方法を説明する図である。
【図4】 カンチレバーの発振振幅を求める方法を説明する図である。
【図5】 従来の原子間力顕微鏡を示す図である。
【図6】 FM検出法を説明するブロック図である。
【図7】 接触モードAFMにおけるフォースカーブを示す図である。
【符号の説明】
1…試料、2…カンチレバー、3…発振制御アンプ、4…ピエゾ素子、5…ドライバ、6…レーザ、7…2分割光センサ、8…FM復調器、9…ピエゾスキャナ、10…制御装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-contact atomic force microscope (hereinafter referred to as AFM), and more particularly to a method in which the oscillation amplitude of a cantilever can be directly obtained and a non-contact atomic force microscope using such a method.
[0002]
[Prior art]
As shown in FIG. 5, an atomic force microscope is known in which the tip of a cantilever 2 is scanned close to the surface of a sample 1 to the extent that an atomic force acts, and the shape of the sample surface is observed. In such an atomic force microscope, when the tip of the sample 1 and the cantilever 2 are brought closer to each other, an attractive force is first exerted between them, and when further brought closer, a repulsive force acts, and these acting forces are made constant. The shape of the sample surface is observed by controlling the distance between the sample 1 and the cantilever 2.
[0003]
However, in the method of detecting the repulsive force between the sample and the tip of the cantilever, the sample and the cantilever are very close to each other (actually, the cantilever is pressed against the sample). It will destroy the surface. In view of this, a non-contact AFM that observes the shape of the sample without contacting the sample and the cantilever by detecting the attractive force acting at a location where the sample and the cantilever are relatively separated has been considered. However, since repulsive force is strongly dependent on the distance between the sample and the cantilever, it can be detected by measuring the deflection of the cantilever. Is difficult. Therefore, a frequency modulation (FM) detection method is used as one method for detecting the attractive force between the sample and the cantilever.
[0004]
FIG. 6 is a block diagram illustrating such an FM detection method. The sample 1 is two-dimensionally scanned in the X and Y directions and moved in the Z direction by a piezo scanner 9 driven by an X and Y driver (not shown) and a Z driver 5. An excitation signal is applied from the oscillation control amplifier 3 to the piezo element 4 connected to the base of the cantilever 2, and the cantilever 2 is vibrated at the resonance frequency. Displacement due to oscillation of the cantilever is detected using an optical lever method in which the laser beam is irradiated from the laser 6 to the tip, the reflection is received by the two-part optical sensor 7, and the difference is detected from the output of each light receiving surface of the sensor. is doing. The oscillation control amplifier 3 drives the piezo element 4 so that the output of the two-split optical sensor 7 is constant. The FM demodulator 8 converts the output of the two-part optical sensor 7 into a voltage signal corresponding to the frequency, and drives the Z driver 5 with the output so that the distance between the cantilever and the sample is kept constant. Then, the Z drive voltage at this time is converted into a distance and taken out as an image signal.
As described above, the cantilever 2 vibrates at the resonance frequency. However, when the cantilever 2 is brought close to the sample and a force is applied to the sample, the resonance frequency changes. Therefore, the unevenness information on the surface of the sample is obtained from the drive voltage of the Z driver 5 when the drive voltage of the Z driver 5 is changed so that the resonance frequency is constant and the distance between the cantilever and the sample is kept constant. Obtained and observed.
[0005]
[Problems to be solved by the invention]
As described above, since the non-contact AMF is observed without bringing the sample and the cantilever into contact with each other, the non-contact AMF is used for analyzing the interaction (atomic force, electrostatic force, etc.) between the cantilever and the sample. For this purpose, it is necessary to accurately know the distance between the cantilever and the sample, and it is necessary to obtain the oscillation amplitude of the cantilever. When the cantilever is oscillated, the output of the two-part photosensor also becomes a sine wave. Although the amplitude of the sine wave and the oscillation amplitude of the cantilever are in a proportional relationship, it cannot be directly converted into the absolute value of the oscillation amplitude, and the magnitude of the oscillation amplitude itself cannot be obtained. In addition, since it is not constant due to individual differences in cantilevers, laser beam alignment, etc., it is necessary to recalculate when cantilevers are replaced or alignment is adjusted.
[0006]
In general, a method of obtaining an oscillation amplitude by a force curve in a contact mode (a two-part optical sensor output with respect to a distance in the Z direction) can be considered.
FIG. 7 shows a force curve in the contact mode AFM. The force curve is a curve depicting the change in the output frequency of the two-part photosensor with respect to the change in distance in the Z direction when the cantilever is brought close to and in contact with the sample, and the cantilever contacts the sample. Draw a straight line where it is. From this straight line portion, the relationship between the displacement of the cantilever and the output frequency of the two-part photosensor can be obtained. However, since this method uses a portion where the cantilever is pressed against the sample, the sample surface or the tip of the cantilever may be destroyed. In a soft sample, when the cantilever is pressed, the sample is deformed and an accurate relationship cannot be obtained.
The present invention has been made to solve the above-described problems, and an object of the present invention is to directly and accurately obtain the oscillation amplitude of a cantilever in a non-contact atomic force microscope.
[0007]
[Means for Solving the Problems]
The cantilever amplitude measuring method of the present invention is a method of changing the cantilever oscillation frequency with respect to the distance change when the distance between the sample and the cantilever is changed in a state where the cantilever of the non-contact atomic force microscope is vibrated and oscillated at the natural frequency The characteristics are respectively measured for different cantilever excitation amplitudes, and the oscillation amplitude of the cantilever is obtained from the difference in the sudden rising position of the change characteristics with respect to each cantilever excitation amplitude.
Further, the non-contact atomic force microscope of the present invention has a cantilever whose tip is opposed to the sample and one end fixed to a vibration means, a displacement detector for detecting the displacement of the cantilever, and an output of the displacement detector. An amplifier for controlling the excitation means so as to make the output constant, a frequency detector for detecting the frequency of the output of the displacement detector, and driving the sample two-dimensionally, and the detected frequency is constant In a non-contact atomic force microscope equipped with a sample driving means for controlling the distance between the sample and the tip of the cantilever to be constant, the amplifier is controlled to drive the excitation means with different excitation voltages, respectively. A change in the oscillation frequency with respect to a change in the distance between the sample and the cantilever tip at each excitation voltage is detected from the output of the frequency detector, and the oscillation frequency at each excitation voltage is rapidly increased. Characterized by comprising a control unit for calculating the oscillation amplitude of the cantilever from the difference of the rise position.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram of a non-contact atomic force microscope of the present invention, and FIGS. 2 to 4 are diagrams for explaining a method for obtaining the oscillation amplitude of a cantilever.
The configuration shown in FIG. 1 is basically the same as that shown in FIG. 6. The excitation voltage of the piezo element 4 is changed, the force curve at each excitation voltage is obtained from the frequency displacement output at that time, and the oscillation amplitude of the cantilever is obtained from this. The only difference is that a control device 10 is added. The control by the control device 10 will be described with reference to FIGS.
[0009]
FIG. 2 shows a force curve in the non-contact mode AFM. The piezo element 4 is driven by the output of the oscillation control amplifier 3, and the output of the two-part photosensor 7 is detected by the FM demodulator 8 in a state where the cantilever 2 is oscillated at the resonance frequency. The displacement amount of the oscillation frequency when the distance (distance in the Z direction) is changed is measured to obtain a force curve. In FIG. 2, the horizontal axis represents the distance in the Z direction, and the vertical axis represents the frequency displacement (output of the FM demodulator 8). There is no frequency change when the cantilever is away from the sample. When this cantilever is brought close to the sample and a force is applied to the cantilever, the oscillation frequency changes abruptly.
[0010]
In FIG. 3, when the amplitude of the output (sine wave) of the two-part photosensor is A (FIG. 3A), the actual oscillation amplitude of the cantilever is a (FIG. 3B), and the frequency of the force curve The position in the Z direction of the sudden rise of Z is defined as Za (FIG. 3C). Now, the oscillation control amplifier 3 is controlled by the control device 10 in FIG. 1, and the excitation voltage applied to the piezo element 4 is changed, and the amplitude B = A / 2 (FIG. 4 (a)) of the two-part photosensor output. Then, since the oscillation amplitude of the cantilever is proportional to the output of the two-part optical sensor, b = a / 2 (FIG. 4B). Further, the Z-direction position of the rise of the force curve at this time is set as Zb (FIG. 4C).
When the oscillation amplitude of the cantilever is changed from a to a / 2, the distance between the reference position of the cantilever tip (center position in the vibration direction) and the sample is changed by a / 4, which is the distance in the Z direction (Za -Zb),
a / 4 = Za-Zb
a = 4 (Za-Zb)
It becomes. Thus, the oscillation amplitude of the cantilever can be obtained by measuring the force curve while changing the excitation amplitude. The control device 10 has a function of performing the above processing in an automated manner. This method does not use the linear portion of the force curve as shown in FIG. 7, but uses a rapid frequency change or FM demodulator output, so it is stable without affecting the state of the cantilever or the sample. Thus, the oscillation amplitude of the cantilever can be obtained accurately.
[0011]
In the above description, the FM detection method is used to detect the force acting between the sample and the cantilever. However, a method of directly measuring the frequency change or the like may be used, and the excitation method of the cantilever may be a constant excitation voltage amplitude method. Or a constant oscillation amplitude method, etc., which may be used. In addition, although the optical lever method is used for detecting the displacement of the cantilever, other methods such as an optical interference method or using a bimorph for the cantilever may be used.
[0012]
【The invention's effect】
As described above, according to the present invention, the oscillation amplitude of the cantilever necessary for analyzing the interaction between the sample and the cantilever by the non-contact AFM can be stably, simply and accurately without affecting the state of the cantilever or the sample. It can be obtained.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram of a non-contact atomic force microscope of the present invention.
FIG. 2 is a diagram for explaining a method for obtaining the oscillation amplitude of a cantilever.
FIG. 3 is a diagram illustrating a method for obtaining the oscillation amplitude of a cantilever.
FIG. 4 is a diagram illustrating a method for obtaining the oscillation amplitude of a cantilever.
FIG. 5 is a view showing a conventional atomic force microscope.
FIG. 6 is a block diagram illustrating an FM detection method.
FIG. 7 is a diagram showing a force curve in a contact mode AFM.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sample, 2 ... Cantilever, 3 ... Oscillation control amplifier, 4 ... Piezo element, 5 ... Driver, 6 ... Laser, 7 ... 2 split optical sensor, 8 ... FM demodulator, 9 ... Piezo scanner, 10 ... Control apparatus.

Claims (2)

非接触原子間力顕微鏡のカンチレバーを加振して固有周波数で発振させた状態で試料とカンチレバー間の距離を変化させたときの距離変化に対するカンチレバー発振周波数の変化特性を、異なるカンチレバー加振振幅に対してそれぞれ測定し、各カンチレバー加振振幅に対する前記変化特性の急激な立ち上がり位置の差からカンチレバーの発振振幅を求めることを特徴とするカンチレバー振幅測定方法。  When the cantilever of a non-contact atomic force microscope is vibrated and oscillated at the natural frequency, the change characteristics of the cantilever oscillation frequency with respect to the distance change when the distance between the sample and the cantilever is changed to different cantilever excitation amplitudes. A cantilever amplitude measuring method characterized in that each cantilever oscillation is measured and the oscillation amplitude of the cantilever is obtained from the difference in the sudden rise position of the change characteristic with respect to each cantilever excitation amplitude. 先端が試料に対向し、一端を加振手段に固定したカンチレバーと、カンチレバーの変位を検出する変位検出器と、変位検出器の出力が入力され、該出力を一定にするように前記加振手段を制御する増幅器と、前記変位検出器出力の周波数を検出する周波数検出器と、試料を2次元的に駆動すると共に、前記検出した周波数が一定となるように試料とカンチレバー先端との距離を一定に制御する試料駆動手段とを備えた非接触原子間力顕微鏡において、
前記増幅器を制御して異なる加振電圧で加振手段をそれぞれ駆動させると共に、各加振電圧における試料とカンチレバー先端との距離変化に対する発振周波数の変化を前記周波数検出器出力より検出し,各加振電圧における前記発振周波数の急激な立ち上がり位置の差よりカンチレバーの発振振幅を算出する制御装置を備えたことを特徴とする非接触原子間力顕微鏡。
A cantilever with the tip facing the sample and one end fixed to the vibration means, a displacement detector for detecting the displacement of the cantilever, and an output of the displacement detector is inputted, and the vibration means is made to keep the output constant. An amplifier for controlling the frequency, a frequency detector for detecting the frequency of the displacement detector output, and a two-dimensional drive of the sample, and a constant distance between the sample and the cantilever tip so that the detected frequency is constant In a non-contact atomic force microscope equipped with a sample driving means for controlling
The amplifier is controlled to drive the excitation means with different excitation voltages, and the oscillation frequency change with respect to the distance change between the sample and the cantilever tip at each excitation voltage is detected from the output of the frequency detector. A non-contact atomic force microscope comprising a control device that calculates the oscillation amplitude of a cantilever from a difference in a sudden rise position of the oscillation frequency in an oscillating voltage.
JP19476298A 1998-07-09 1998-07-09 Cantilever amplitude measuring method and non-contact atomic force microscope Expired - Fee Related JP3754821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19476298A JP3754821B2 (en) 1998-07-09 1998-07-09 Cantilever amplitude measuring method and non-contact atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19476298A JP3754821B2 (en) 1998-07-09 1998-07-09 Cantilever amplitude measuring method and non-contact atomic force microscope

Publications (2)

Publication Number Publication Date
JP2000028511A JP2000028511A (en) 2000-01-28
JP3754821B2 true JP3754821B2 (en) 2006-03-15

Family

ID=16329824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19476298A Expired - Fee Related JP3754821B2 (en) 1998-07-09 1998-07-09 Cantilever amplitude measuring method and non-contact atomic force microscope

Country Status (1)

Country Link
JP (1) JP3754821B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227788A (en) * 2002-02-05 2003-08-15 Inst Of Physical & Chemical Res Scanning probe microscope and measuring method of surface structure of sample
JP4596813B2 (en) 2004-04-21 2010-12-15 独立行政法人科学技術振興機構 Quantum beam assisted atomic force microscopy and quantum beam assisted atomic force microscopy
JP4918427B2 (en) * 2007-08-01 2012-04-18 株式会社ミツトヨ Method and apparatus for detecting measurement position of resonance sensor
JP2009109377A (en) * 2007-10-31 2009-05-21 Jeol Ltd Scanning probe microscope
JP5080380B2 (en) * 2008-06-20 2012-11-21 エスアイアイ・ナノテクノロジー株式会社 Microfabrication method using atomic force microscope
JP2016520216A (en) * 2013-05-23 2016-07-11 アプライド マテリアルズ イスラエル リミテッド Evaluation system and method for evaluating a substrate

Also Published As

Publication number Publication date
JP2000028511A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
US7302833B2 (en) Torsional harmonic cantilevers for detection of high frequency force components in atomic force microscopy
JP3511361B2 (en) Scanning probe microscope
JP5580296B2 (en) Probe detection system
JP2730673B2 (en) Method and apparatus for measuring physical properties using cantilever for introducing ultrasonic waves
KR101569960B1 (en) Dynamic probe detection system
EP0574234A1 (en) Automatic tip approach method and apparatus for scanning probe microscope
US5357105A (en) Light modulated detection system for atomic force microscopes
JPH06213910A (en) Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
EP0862046B1 (en) Scanning probe microscope
JP5252389B2 (en) Scanning probe microscope
JPH0821846A (en) Sample measuring probe device
CA2231224A1 (en) Apparatus for machining, recording, and reproducing, using scanning probe microscope
JP3754821B2 (en) Cantilever amplitude measuring method and non-contact atomic force microscope
JP2000346784A (en) Viscoelasticity distribution measurement method
US6006595A (en) Device for vibrating cantilever
JP2007017388A (en) Scanned probe microscope
JP3908041B2 (en) Method for measuring oscillation amplitude of cantilever in non-contact scanning probe microscope and scanning probe microscope
JPH0915137A (en) Frictional force measuring apparatus and scanning frictional force microscope
JP3328657B2 (en) Atomic force microscope
JP3274087B2 (en) Scanning probe microscope
JP3376374B2 (en) Method of creating image of sample surface in probe microscope
JP2000146806A (en) Scanning probe microscope
JPH06323845A (en) Thin film force detection probe for scanning force microscope
JP4943822B2 (en) Scanning probe microscope
JP2004069445A (en) Scanning type probe microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees