JPH04296075A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04296075A
JPH04296075A JP6147791A JP6147791A JPH04296075A JP H04296075 A JPH04296075 A JP H04296075A JP 6147791 A JP6147791 A JP 6147791A JP 6147791 A JP6147791 A JP 6147791A JP H04296075 A JPH04296075 A JP H04296075A
Authority
JP
Japan
Prior art keywords
layer
strained
semiconductor device
semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6147791A
Other languages
Japanese (ja)
Inventor
Toshihiro Kono
河野 敏弘
Yae Okuno
奥野 八重
Yuichi Ono
小野 佑一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6147791A priority Critical patent/JPH04296075A/en
Publication of JPH04296075A publication Critical patent/JPH04296075A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor device manufactured through a hetero epitaxy method and provided with a growth layer of high quality by a method wherein the growth layer is lessened in through dislocation caused by misfit dislocations induced at an interface between a substrate and the growth layer. CONSTITUTION:When semiconductor layers 21, 22, 4, 6, and 8 different in lattice contact are laminated on a semiconductor substrate 1, a semiconductor layers of high quality can be obtained by providing one or more of single-layered distorted films 3, 5, and 5 smaller than a critical value in thickness or one or more of distorted layers larger than a critical value in thickness to the semiconductor layers concerned. Most of through location disappears in the single-layered distorted layers smaller or larger than a critical value in thickness, and as new misfit dislocation is hardly induced in the distorted layers smaller than a critical value in thickness, semiconductor layers of high quality can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、格子定数の異なる異種
半導体層を積層して構成される半導体装置に係り、特に
電子素子と光素子を同一基板上に積層して形成される電
子光集積素子(OEIC等)に応用して特に好ましい半
導体装置に関する。
[Field of Industrial Application] The present invention relates to a semiconductor device formed by stacking different types of semiconductor layers with different lattice constants, and more particularly to an electronic optical integrated device formed by stacking an electronic element and an optical element on the same substrate. The present invention relates to a semiconductor device particularly suitable for application to elements (OEIC, etc.).

【0002】0002

【従来の技術】半導体基板上に格子定数の異なる他の半
導体層を積層するヘテロエピタキシーにおいては、基板
と成長層の格子定数差および熱膨張係数差に起因するミ
スフィット転位が発生することが知られている。このミ
スフィット転位の除去がヘテロエピタキシーにおける最
大の課題である。従来は第51回応用物理学会学術講演
会講演予稿集(29p−T−3)に記載の如く、格子定
数の異なる二種類の半導体層を交互に複数回繰り返した
歪超格子層を少なくとも一回成長層内に導入することに
より、半導体基板と成長層の界面で発生するミスフィッ
ト転位の伝播を抑制し、以後の成長層内の転位低減を図
っていた。貫通転位の大部分は、成長層内に導入された
歪超格子層の主に基板側の界面で成長層に沿って横方向
に曲げられ消滅することが知られており、更に、このよ
うな貫通転位の低減には上記予稿集に記載されているよ
うに歪超格子層の複数回導入がより効果的であることが
知られている。
[Prior Art] In heteroepitaxy, in which semiconductor layers with different lattice constants are laminated on a semiconductor substrate, it is known that misfit dislocations occur due to the difference in lattice constant and thermal expansion coefficient between the substrate and the grown layer. It is being Removal of these misfit dislocations is the biggest challenge in heteroepitaxy. Conventionally, as described in the 51st Annual Conference of the Japan Society of Applied Physics (29p-T-3), a strained superlattice layer in which two types of semiconductor layers with different lattice constants are alternately repeated multiple times is used at least once. By introducing it into the growth layer, the propagation of misfit dislocations generated at the interface between the semiconductor substrate and the growth layer is suppressed, and subsequent dislocations within the growth layer are reduced. It is known that most threading dislocations are bent and annihilated in the lateral direction along the grown layer, mainly at the substrate-side interface of the strained superlattice layer introduced into the grown layer. It is known that introducing strained superlattice layers multiple times is more effective in reducing threading dislocations, as described in the above-mentioned proceedings.

【0003】0003

【発明が解決しようとする課題】上記従来技術でも、歪
超格子層(複数の歪薄膜を積層した層)により半導体基
板と成長層の界面で発生したミスフィット転位の伝播を
抑制し、以後の成長層内の転位を低減する効果はある。 しかしながら、歪超格子層内の歪層の合計膜厚が臨界膜
厚を越えやすく、歪超格子内の多数のヘテロ界面が転位
発生の原因となり新たなミスフィット転位を生じる。こ
のため、これらの新たなミスフィット転位が以後の成長
層内へ伝播し、転位低減の実効が上がらないことがわか
った。また、超格子構造を複数回導入するため成長層構
造が複雑になるという欠点がある。本発明は、半導体基
板と成長層の界面で発生したミスフィット転位の伝播を
抑制し、かつ成長層内に導入した歪層の界面で新たなミ
スフィット転位を発生させること無く、高品質の半導体
成長層を得ることを目的とする。更に、本発明の他の目
的は層構造を簡略化し、より容易に高品質の半導体成長
層を得ることにある。
[Problems to be Solved by the Invention] Even in the above-mentioned conventional technology, the propagation of misfit dislocations generated at the interface between the semiconductor substrate and the growth layer is suppressed by the strained superlattice layer (a layer in which a plurality of strained thin films are laminated), and the subsequent This has the effect of reducing dislocations within the grown layer. However, the total thickness of the strained layers in the strained superlattice layer tends to exceed the critical thickness, and many heterointerfaces in the strained superlattice become a cause of dislocation generation, resulting in new misfit dislocations. For this reason, it was found that these new misfit dislocations propagate into the subsequent growth layer, and the effectiveness of dislocation reduction does not improve. Furthermore, since the superlattice structure is introduced multiple times, the growth layer structure becomes complicated. The present invention suppresses the propagation of misfit dislocations generated at the interface between the semiconductor substrate and the growth layer, and eliminates the generation of new misfit dislocations at the interface of the strained layer introduced into the growth layer, thereby producing high-quality semiconductors. The purpose is to obtain a growth layer. Furthermore, another object of the present invention is to simplify the layer structure and more easily obtain a high quality semiconductor growth layer.

【0004】0004

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、従来の歪超格子層に代わり臨界
膜厚以下の歪超薄膜を単層で少なくとも一回導入した。 更に、本発明は高品質の半導体成長層をより効果的に得
るために、単層で複数回導入した歪層の少なくとも最初
の一回を臨界膜厚以上の厚みにし、かつ少なくとも成長
時における最後の一回を臨界膜厚以下の厚みを有する歪
薄膜で形成するものである。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, a strained ultra-thin film having a thickness below the critical film thickness is introduced at least once as a single layer instead of the conventional strained superlattice layer. Furthermore, in order to more effectively obtain a high-quality semiconductor growth layer, the present invention provides that at least the first strained layer introduced multiple times in a single layer has a thickness equal to or greater than the critical film thickness, and at least the last strained layer during growth. This is done once using a strained thin film having a thickness less than the critical film thickness.

【0005】ここで「歪薄膜」は、隣接する半導体層と
格子定数が異なる薄膜である。普通、隣接する半導体層
は2層存在するが、そのうちいずれか一方とのみ格子定
数が異なっている場合を含む。具体的には薄膜をはさむ
2層の各格子定数の値の中間の値を有する場合や、又、
薄膜をはさむ2層の格子定数の値よりも更に大きい値を
有する場合も本発明において可能である。また、「単層
の歪薄膜を複数回導入する」とは、歪薄膜と歪薄膜との
間にこれら歪薄膜よりも厚い充分な厚さの半導体層を介
在させることを意味する。その結果、従来の超格子構造
とは異なった形態を本発明は有することとなる。すなわ
ち従来の超格子構造は複数の薄膜の積層構造であったが
、本発明にかかる転移低減領域は例えば、0.1μm以
上2μm以下、好ましくは0.2μm以上1μm以下の
充分な厚さを有する半導体層を介して複数の歪薄膜が導
入される。更に本明細書において「歪層」という場合に
は、その膜厚には特に制限の無いことを了解しておく。 また歪層は歪超格子構造を含む。
[0005] Here, a "strained thin film" is a thin film that has a lattice constant different from that of an adjacent semiconductor layer. Usually, there are two adjacent semiconductor layers, but this includes cases where only one of them has a different lattice constant. Specifically, the case where the lattice constant value is intermediate between the values of the two layers sandwiching the thin film, or
It is also possible in the present invention to have a lattice constant value that is even larger than the value of the lattice constant of the two layers sandwiching the thin film. In addition, "introducing a single layer of strained thin films multiple times" means interposing a sufficiently thick semiconductor layer thicker than the strained thin films between the strained thin films. As a result, the present invention has a form different from conventional superlattice structures. That is, the conventional superlattice structure is a laminated structure of a plurality of thin films, but the dislocation reduction region according to the present invention has a sufficient thickness of, for example, 0.1 μm or more and 2 μm or less, preferably 0.2 μm or more and 1 μm or less. A plurality of strained thin films are introduced through the semiconductor layer. Furthermore, when referring to a "strained layer" in this specification, it is understood that there is no particular restriction on the film thickness. The strained layer also includes a strained superlattice structure.

【0006】以上、本発明によれば、例えば電子能動領
域を有する電子素子部と、光能動領域を有する光素子部
とを有する電子光半導体装置等の半導体装置において、
例えば電子素子部は第1の格子定数を有する第1の半導
体基板領域上に設けられ、光素子部は第1の格子定数と
異なる第2の格子定数を有する第2の半導体基板領域上
に設けられ、これら第1及び第2の半導体基板領域の間
には転移低減領域が配設され、かつこの転移低減領域は
単層の歪薄膜を有する半導体装置が提供される。この単
層の歪薄膜はミスフィット転位が発生し始める臨界膜厚
以下の厚みを有することが重要である。また、転移低減
領域に歪薄膜を複数設け、上述した単層の歪薄膜はこれ
ら複数の歪薄膜よりも上部(成長時において、最後に形
成すること)に配設すると良い。また、本発明の効果を
いっそうのものとするためには、転移低減領域に単層の
歪薄膜を複数導入するのが好ましい。複数の歪薄膜を導
入する場合には、歪薄膜層の間に膜厚が0.1μm以上
2μm以下(好ましくは更に0.2μm以上1μm以下
)の半導体層を配設することが重要である。この介在層
の膜厚が著しく小さくなり、上記歪薄膜と同程度以下に
なると、従来の超格子構造と等価となり本発明の効果が
得られない。また、電子素子と光素子とを集積化する場
合、これらの素子はほぼ同一面上に形成することが重要
である。そのために例えば上記第1の半導体領域をエッ
チングして凹部を設け、その上に上記転移低減領域を配
設することが有効である。
As described above, according to the present invention, in a semiconductor device such as an electronic optical semiconductor device having an electronic element section having an electronic active region and an optical element section having an optical active region,
For example, the electronic device portion is provided on a first semiconductor substrate region having a first lattice constant, and the optical device portion is provided on a second semiconductor substrate region having a second lattice constant different from the first lattice constant. A semiconductor device is provided in which a dislocation reduction region is disposed between the first and second semiconductor substrate regions, and the dislocation reduction region has a single layer of a strained thin film. It is important that this single-layer strained thin film has a thickness below a critical film thickness at which misfit dislocations begin to occur. Further, it is preferable that a plurality of strained thin films are provided in the dislocation reduction region, and the above-mentioned single-layer strained thin film is disposed above the plurality of strained thin films (formed last during growth). Furthermore, in order to further enhance the effects of the present invention, it is preferable to introduce a plurality of single-layer strained thin films into the dislocation reduction region. When introducing a plurality of strained thin films, it is important to arrange a semiconductor layer having a thickness of 0.1 μm or more and 2 μm or less (preferably 0.2 μm or more and 1 μm or less) between the strained thin film layers. If the thickness of this intervening layer becomes extremely small and becomes equal to or less than the strained thin film described above, it becomes equivalent to a conventional superlattice structure and the effects of the present invention cannot be obtained. Furthermore, when integrating electronic elements and optical elements, it is important to form these elements on substantially the same plane. For this purpose, it is effective, for example, to etch the first semiconductor region to form a recess, and to arrange the dislocation reduction region thereon.

【0007】[0007]

【作用】図4に示すような歪超格子層を複数回導入する
従来の転位低減方法では、基板と成長層の界面で発生し
たミスフィット転位の伝播による貫通転位の大部分は歪
超格子層の基板側の界面で横に曲げられ消滅するが、歪
超格子層内の他の界面では新たなミスフィット転位の発
生が起こる。このようなミスフィット転位の数は、格子
定数差の大きい基板と成長層の界面で生じたミスフィッ
ト転位数に比べると格子定数差が小さい分少ないが、そ
の一部は同じ歪超格子層内で消滅し一部分は次の成長層
へと伝播する。このため転位低減が効果的に行われない
[Effect] In the conventional dislocation reduction method of introducing strained superlattice layers multiple times as shown in Figure 4, most of the threading dislocations due to the propagation of misfit dislocations generated at the interface between the substrate and the growth layer occur in the strained superlattice layer. However, new misfit dislocations occur at other interfaces within the strained superlattice layer. The number of such misfit dislocations is smaller than the number of misfit dislocations that occur at the interface between the substrate and the growth layer, which have a large lattice constant difference, because the lattice constant difference is small, but some of them are within the same strained superlattice layer. It disappears and a part of it propagates to the next growth layer. For this reason, dislocation reduction is not performed effectively.

【0008】ところが、本発明のように臨界膜厚以下の
歪超薄膜を単層で導入すると貫通転位は歪層の界面で消
滅し、かつ歪層の膜厚が臨界膜厚以下であるために新た
なミスフィット転位の発生も起こらない。本発明におい
ても、歪超格子層の場合と同様に全ての貫通転位が一つ
の歪層の界面で消滅するわけでわない。一部分は次の成
長層へ伝播する。しかしながら、新たなミスフィット転
位が発生しない分貫通転位は確実に減少する。更に、歪
層の複数回導入により貫通転位の大部分は消滅し、高品
質の半導体層が得られるという効果がある。
However, when a strained ultra-thin film with a thickness below the critical thickness is introduced as a single layer as in the present invention, threading dislocations disappear at the interface of the strained layer, and since the thickness of the strained layer is below the critical thickness, No new misfit dislocations occur either. In the present invention, as in the case of strained superlattice layers, not all threading dislocations are annihilated at the interface of one strained layer. A portion propagates to the next growth layer. However, since new misfit dislocations are not generated, threading dislocations are definitely reduced. Furthermore, by introducing the strained layer multiple times, most of the threading dislocations are eliminated, and a high quality semiconductor layer can be obtained.

【0009】また、貫通転位は臨界膜厚以上の膜厚を有
する歪層においてより効果的に横に曲げられ消滅する(
新たなミスフィット転位の発生もあるが)ことから、複
数回導入した歪層の初期の歪層を臨界膜厚以上にし、そ
の後、更に臨界膜厚以下の歪層を少なくとも一回導入す
る本発明の構造では、基板と成長層の界面で発生した多
量のミスフィット転位に起因する貫通転位は、最初の臨
膜厚以上の歪層でより効果的に消滅する。この歪層で新
たなミスフィット転位も発生(基板と成長層の界面のミ
スフィット転位数に比べると非常に少ない)するが、こ
れらは次の臨界膜厚以下の歪層により消滅する。したが
って、全て臨界膜厚以下の歪層の場合に比較し著しく高
品質の半導体層が得られる。
In addition, threading dislocations are more effectively bent laterally and annihilated in strained layers having a film thickness greater than the critical film thickness (
(Although new misfit dislocations may occur), the present invention involves making the initial strained layer of the strained layer introduced multiple times to have a thickness equal to or greater than the critical thickness, and then introducing a strained layer having a thickness equal to or less than the critical thickness at least once. In this structure, threading dislocations caused by a large number of misfit dislocations generated at the interface between the substrate and the grown layer are more effectively quenched in the strained layer with a thickness greater than the initial critical thickness. New misfit dislocations also occur in this strained layer (very small in number compared to the number of misfit dislocations at the interface between the substrate and the grown layer), but these are eliminated by the next strained layer having a thickness below the critical film thickness. Therefore, a semiconductor layer of significantly higher quality can be obtained than in the case of strained layers whose thicknesses are all below the critical thickness.

【0010】0010

【実施例】実施例1 以下、本発明の一実施例を図1〜2によりGaAs基板
上InP成長のヘテロエピタキシーの場合について説明
する。
EXAMPLES Example 1 An example of the present invention will be described below with reference to FIGS. 1 and 2 in the case of heteroepitaxy for growing InP on a GaAs substrate.

【0011】有機金属気相成長(MOCVD)法により
、図1に示すようにn+−GaAs基板1上にn−In
P層21(厚さ2.0μm)を成長する。一旦成長を中
断した後、PH3雰囲気中で熱処理を行う。この熱処理
は通常の高温(例えば、700〜800℃)でのアニー
ルや熱サイクルアニール(例えば、200℃⇔800℃
を複数回繰り返す)がよく用いられる。本実施例では、
熱サイクルアニールを採用し、上記条件で3回の熱サイ
クルをかけた。その後、引き続きInP層22(厚さ1
.0μm)を成長し、更にn−GaInP歪薄膜I3、
n−InP層4(厚さ0.5μm)、n−GaInP歪
薄膜II5、n−InP層6(厚さ0.5μm)、n−
GaInP歪薄膜III7、n−InP層8(厚さ2.
0μm)を順次成長する。更に、この上にアンドープG
aInAsP活性層9(波長1.55μm)、p−In
P層10(厚さ1.5μm)、p+ −GaInAsP
層11(厚さ0.3μm)を成長し、DH(Doubl
e  Heterostructure)レーザ構造を
形成した。InP層8および10はクラッド層として機
能し、GaInAsP層11はオーミックコンタクトを
得るために設けた。本実施例では、GaInP歪薄膜を
3回導入したがこの数に限らない。また、GaInP歪
薄膜I〜IIIは全て組成をGa0.1In0.9Pと
し、厚みは臨界膜厚以下の10nmとした。この歪薄膜
においても、図2に示すように歪(格子定数差の割合)
と臨界膜厚の関係からInP層に対して適当な歪量と臨
界膜厚以下の厚み(領域A)を選ぶならばこの組成に限
らない。また他の材料(例えば、GaInAsやGaI
nAsPなど)を用いても良い。更に、n+ −GaA
s基板1とn−InP層21の間に適当な中間層を挿入
しても良く、n−InP層21の初期に低温成長を行う
二段回成長を採用しても良い。
As shown in FIG. 1, n-In is deposited on an n+-GaAs substrate 1 by metal organic chemical vapor deposition (MOCVD).
A P layer 21 (thickness: 2.0 μm) is grown. After the growth is temporarily interrupted, heat treatment is performed in a PH3 atmosphere. This heat treatment may include normal high temperature annealing (e.g. 700 to 800°C) or thermal cycle annealing (e.g. 200°C⇔800°C).
(repeated multiple times) is often used. In this example,
Thermal cycle annealing was employed and three thermal cycles were performed under the above conditions. After that, the InP layer 22 (thickness 1
.. 0 μm), and further grown an n-GaInP strained thin film I3,
n-InP layer 4 (thickness 0.5 μm), n-GaInP strained thin film II5, n-InP layer 6 (thickness 0.5 μm), n-
GaInP strained thin film III 7, n-InP layer 8 (thickness 2.
0 μm) are grown sequentially. Furthermore, undoped G on top of this
aInAsP active layer 9 (wavelength 1.55 μm), p-In
P layer 10 (thickness 1.5 μm), p+ -GaInAsP
A layer 11 (thickness 0.3 μm) is grown and DH (Double
e. Heterostructure) laser structure was formed. InP layers 8 and 10 functioned as cladding layers, and GaInAsP layer 11 was provided to obtain ohmic contact. In this embodiment, the GaInP strained thin film is introduced three times, but the number is not limited to this number. Further, the GaInP strained thin films I to III all had a composition of Ga0.1In0.9P and a thickness of 10 nm, which was less than the critical film thickness. Even in this strained thin film, as shown in Figure 2, strain (ratio of lattice constant difference)
The composition is not limited to this, as long as an appropriate amount of strain and a thickness (region A) below the critical thickness are selected for the InP layer from the relationship between and the critical thickness. Also other materials (e.g. GaInAs, GaI
nAsP, etc.) may also be used. Furthermore, n+ -GaA
An appropriate intermediate layer may be inserted between the s-substrate 1 and the n-InP layer 21, or a two-stage growth process in which the n-InP layer 21 is initially grown at a low temperature may be adopted.

【0012】本実施例によれば、n+ −GaAs基板
1とn−InP層21の界面で発生したミスフィット転
位に由来するn−InP層8中の貫通転位数は、熱サイ
クルアニールとInP層中に導入されたGaInP歪薄
膜I〜IIIの効果により図3に示されるような歪超格
子層を用いた従来構造に比較して20〜30%減少した
。本実施例によるInP層8中の転位密度をH3PO4
:HBr=2:1液でエッチングして測定すると5〜7
×106/cm2であった。また、従来の歪超格子構造
に比べ歪層が単層に簡略化されたため結晶成長が容易に
なった。InP層8上に形成したデバイス特性はInP
層8の結晶性に左右されるが、本実施例のレーザ特性に
おいても従来構造に比較し閾電流値や寿命等に改善が見
られた。
According to this embodiment, the number of threading dislocations in the n-InP layer 8 resulting from misfit dislocations generated at the interface between the n + -GaAs substrate 1 and the n-InP layer 21 is determined by thermal cycle annealing and the InP layer. The effect of the GaInP strained thin films I to III introduced therein resulted in a reduction of 20 to 30% compared to the conventional structure using a strained superlattice layer as shown in FIG. The dislocation density in the InP layer 8 according to this example is expressed as H3PO4
:HBr=5-7 when measured by etching with 2:1 solution
×106/cm2. Furthermore, compared to conventional strained superlattice structures, the strained layer is simplified to a single layer, making crystal growth easier. The characteristics of the device formed on the InP layer 8 are InP
Although it depends on the crystallinity of the layer 8, the laser characteristics of this example also showed improvements in threshold current value, life span, etc. compared to the conventional structure.

【0013】本実施例は、n−InP層8上にDHレ−
ザ構造を形成した場合について示したが、この層上に種
々のデバイスに対応する層構造を形成した全ての場合に
ついて本発明の適用が可能であり、nおよびp形ドーピ
ングを逆にしても良い。また、本実施例はGaAs基板
上InPのヘテロエピタキシーについてのみ示したが、
他の半導体基板上にエピタキシャル成長したGaAs層
上でも良く、Si基板上GaAsやSi基板上InP、
InP基板上InAsなど他の材料系のヘテロエピタキ
シーについても本発明の適用が可能である。またIII
−V族化合物半導体に限らずII−VI族化合物半導体
においても適用可能である。
In this embodiment, a DH laser is placed on the n-InP layer 8.
Although the present invention is applicable to all cases in which layer structures corresponding to various devices are formed on this layer, the n- and p-type doping may be reversed. . In addition, although this example only showed the heteroepitaxy of InP on a GaAs substrate,
It may be on a GaAs layer epitaxially grown on another semiconductor substrate, such as GaAs on a Si substrate, InP on a Si substrate,
The present invention can also be applied to heteroepitaxy of other materials such as InAs on an InP substrate. Also III
It is applicable not only to -V group compound semiconductors but also to II-VI group compound semiconductors.

【0014】実施例2 本発明の他の実施例を同様に図1により説明する。Example 2 Another embodiment of the invention will be explained with reference to FIG. 1 as well.

【0015】基本的な層構造および成長方法については
実施例1と同様であるので省略する。但し、図1に示し
たGaInP歪層I3の組成をGa0.35In0.6
5Pに変更し、厚みが臨界膜厚以上となるよう10nm
にした。
The basic layer structure and growth method are the same as in Example 1, so their explanation will be omitted. However, the composition of the GaInP strained layer I3 shown in FIG.
5P, and the thickness is 10 nm so that it is more than the critical film thickness.
I made it.

【0016】本実施例によると、最初の歪層の厚みを図
2に示す臨界膜厚以上(領域B)にすることにより貫通
転位の低減効果が実施例1に比べより顕著になった。こ
れは、臨界膜厚を越えたGaInP歪層により貫通転位
の伝播がより効果的に抑止され、あるいは横方向に曲げ
られ消滅するためである。臨界膜厚を越えたためにこの
歪層の上側界面で発生するミスフィット転位は、更に次
のInP層へと伝播するが、この転位も次の臨界膜厚以
下のGaInP歪層により伝播を抑止され減少あるいは
消滅する。本実施例によるInP層8の転位密度は3〜
5×106/cm2と更に減少し、高品質のInP層が
得られた。また、レーザ特性も更に改善された。
According to this example, the effect of reducing threading dislocations became more remarkable than in Example 1 by making the initial strained layer thickness equal to or greater than the critical film thickness shown in FIG. 2 (region B). This is because the propagation of threading dislocations is more effectively suppressed by the GaInP strained layer exceeding the critical film thickness, or the threading dislocations are bent in the lateral direction and disappear. Misfit dislocations that occur at the upper interface of this strained layer because the critical film thickness is exceeded propagate further to the next InP layer, but this dislocation is also inhibited from propagating by the next GaInP strained layer whose thickness is below the critical film thickness. decrease or disappear. The dislocation density of the InP layer 8 according to this example is 3~
The density was further reduced to 5×10 6 /cm 2 , and a high quality InP layer was obtained. Additionally, the laser characteristics were further improved.

【0017】実施例3 本発明の他のもう一つの実施例を図3により説明する。 本実施例は、図3に示すように歪超格子層を2回導入(
層31および51)した後更に単一の歪層7を形成した
ものである。他の層構造は実施例1と同様である。図中
、図1と同一符号は同一の構成を示している。歪超格子
層31と51はGa0.1In0.9P層(50Å)と
InP層(50Å)の5周期で構成した。このように歪
超格子層を複数回導入した後最上層の歪層のみを単層の
歪層で構成した場合でも実施例1と同様の効果が得られ
た。もちろん歪超格子層と単層の歪層の導入回数は本実
施例の回数に限らない。
Embodiment 3 Another embodiment of the present invention will be explained with reference to FIG. In this example, the strained superlattice layer is introduced twice (
After the layers 31 and 51), a single strained layer 7 is further formed. The other layer structure is the same as in Example 1. In the figure, the same reference numerals as in FIG. 1 indicate the same configurations. The strained superlattice layers 31 and 51 were composed of five periods of a Ga0.1In0.9P layer (50 Å) and an InP layer (50 Å). Even when the strained superlattice layer was introduced a plurality of times in this manner and only the uppermost strained layer was composed of a single strained layer, the same effect as in Example 1 was obtained. Of course, the number of times the strained superlattice layer and the single strained layer are introduced is not limited to the number of times used in this embodiment.

【0018】実施例4 本発明を光電子集積化素子(OEIC)に適用した場合
について、図5により説明する。図中、図1と同一符号
は同一の構成を示している。
Embodiment 4 A case where the present invention is applied to an opto-electronic integrated device (OEIC) will be explained with reference to FIG. In the figure, the same reference numerals as in FIG. 1 indicate the same configurations.

【0019】半絶縁性GaAs基板1aの一部にレーザ
の駆動回路として機能する電界効果トランジスタ(FE
T)のイオン打込み領域を形成する。その後基板の一部
を図のようにエッチング除去する。このエッチング除去
部に実施例1と同様のヘテロエピタキシーを行い、レー
ザ構造を形成する。本実施例におけるレーザ構造はBH
(Buried  Heterostructure)
構造とし、埋込層には半絶縁性InP層13を用いた。 その後更にエッチング工程を経た後SiO2膜14、電
極15を形成しOEICを作製した。
A field effect transistor (FE) which functions as a laser drive circuit is provided on a part of the semi-insulating GaAs substrate 1a.
Form an ion implantation region T). After that, a part of the substrate is removed by etching as shown in the figure. Heteroepitaxy similar to that in Example 1 is performed on this etched portion to form a laser structure. The laser structure in this example is BH
(Buried Heterostructure)
A semi-insulating InP layer 13 was used as the buried layer. Thereafter, an etching process was performed, and then a SiO2 film 14 and an electrode 15 were formed to produce an OEIC.

【0020】本実施例によるOEICでFETによる半
導体レーザ駆動動作を確認した。これは、本発明の転位
低減効果により高品質のヘテロエピタキシャル膜が得ら
れるようになったことによる。本発明の適用が本実施例
で示したOEICの構造に限らないことは言うまでもな
い。
The operation of driving a semiconductor laser using an FET in the OEIC according to this example was confirmed. This is because a high quality heteroepitaxial film can now be obtained due to the dislocation reduction effect of the present invention. It goes without saying that the application of the present invention is not limited to the structure of the OEIC shown in this embodiment.

【0021】[0021]

【発明の効果】以上説明したように、本発明は貫通転位
の低減を目的とした歪層が従来の歪超格子層に代わり臨
界膜厚以下の歪層単層で構成されているため、貫通転位
の抑止効果を有しつつ歪層の界面で新たなミスフィット
転位を発生しない。そのため転位低減がより効果的に行
われ、高品質の半導体層が得られやすいという利点を有
する。更に、層構造が簡略化され結晶成長が容易である
Effects of the Invention As explained above, in the present invention, the strained layer for the purpose of reducing threading dislocations is composed of a single strained layer with a thickness below the critical film thickness instead of the conventional strained superlattice layer. While having the effect of suppressing dislocations, no new misfit dislocations are generated at the interface of the strained layer. Therefore, it has the advantage that dislocations can be reduced more effectively and a high quality semiconductor layer can be easily obtained. Furthermore, the layer structure is simplified and crystal growth is easy.

【0022】また、初期の歪層の少なくとも一つを臨界
膜厚以上にし、その後更に臨界膜厚以下の歪層を導入す
ることで貫通転位の低減がより効果的に行われる。これ
は臨界膜厚以上に設定された歪層で、基板と成長層の界
面で生じた多量のミスフィット転位に由来する貫通転位
の大部分が効率良く抑止されるためである。また、この
歪層により生じたミスフィット転位も次の臨界膜厚以下
の歪層により消滅する。従って、更に効果的に転位低減
が行われ、より高品質の半導体層が得られる。このため
、これらの半導体層上に形成されたデバイスの特性が改
善されるという利点を有する。
Further, threading dislocations can be more effectively reduced by making at least one of the initial strained layers have a thickness equal to or greater than the critical thickness, and then introducing strained layers having a thickness equal to or less than the critical thickness. This is because most of the threading dislocations originating from a large number of misfit dislocations generated at the interface between the substrate and the growth layer are efficiently suppressed by the strained layer set to a thickness greater than or equal to the critical film thickness. Moreover, the misfit dislocations generated by this strained layer are also eliminated by the next strained layer having a thickness below the critical film thickness. Therefore, dislocations can be reduced more effectively and a semiconductor layer of higher quality can be obtained. Therefore, there is an advantage that the characteristics of devices formed on these semiconductor layers are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す半導体装置の断面図で
ある。
FIG. 1 is a cross-sectional view of a semiconductor device showing an embodiment of the present invention.

【図2】歪量と臨界膜厚の関係を示す図である。FIG. 2 is a diagram showing the relationship between strain amount and critical film thickness.

【図3】本発明の他の実施例を示す半導体装置の断面図
である。
FIG. 3 is a cross-sectional view of a semiconductor device showing another embodiment of the present invention.

【図4】従来の半導体装置の断面図である。FIG. 4 is a cross-sectional view of a conventional semiconductor device.

【図5】本発明を光電子集積化素子に適用した場合の半
導体装置の断面図である。
FIG. 5 is a cross-sectional view of a semiconductor device in which the present invention is applied to an optoelectronic integrated device.

【符号の説明】[Explanation of symbols]

1…n+−GaAs基板、1a…半絶縁性GaAs基板
、21,22,4,6,8…n−InP層、10…p−
InP層、3…n−GaInP歪層I、5…n−GaI
nP歪層II、7…n−GaInP歪層III、31,
51,71…歪超格子層、9…GaInAsP活性層、
11…p+−GaInAsP層、12…p−InP層、
13…半絶縁性InP層、14…SiO2膜、15…電
極、16…イオン打込み領域
1...n+-GaAs substrate, 1a...semi-insulating GaAs substrate, 21, 22, 4, 6, 8...n-InP layer, 10...p-
InP layer, 3...n-GaInP strained layer I, 5...n-GaI
nP strained layer II, 7...n-GaInP strained layer III, 31,
51,71...Strained superlattice layer, 9...GaInAsP active layer,
11...p+-GaInAsP layer, 12...p-InP layer,
13... Semi-insulating InP layer, 14... SiO2 film, 15... Electrode, 16... Ion implantation region

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】第1の格子定数を有する第1の半導体層と
、第2の格子定数を有する第2の半導体層と、これら第
1及び第2の半導体層の間に配設された転位低減領域と
を有し、この転位低減領域は単層の歪薄膜を有すること
を特徴とする半導体装置。
1. A first semiconductor layer having a first lattice constant, a second semiconductor layer having a second lattice constant, and dislocations disposed between the first and second semiconductor layers. 1. A semiconductor device comprising a dislocation reduction region, the dislocation reduction region having a single layer of a strained thin film.
【請求項2】基板と、この基板を構成する半導体の格子
定数と異なる格子定数を有する半導体により構成された
能動領域と、前記基板と前記能動領域との間に配設され
た転位低減領域とを有し、この転位低減領域は単層の歪
薄膜を有することを特徴とする半導体装置。
2. A substrate, an active region made of a semiconductor having a lattice constant different from that of a semiconductor constituting the substrate, and a dislocation reduction region disposed between the substrate and the active region. 1. A semiconductor device comprising: a dislocation reduction region having a single layer of a strained thin film.
【請求項3】請求項2に記載の半導体装置において、前
記転位低減領域は複数の歪層を有することを特徴とする
半導体装置。
3. The semiconductor device according to claim 2, wherein the dislocation reduction region has a plurality of strained layers.
【請求項4】請求項1若しくは2に記載の半導体装置に
おいて、前記歪薄膜の膜厚はミスフィット転位が発生し
始める臨界膜厚以下であることを特徴とする半導体装置
4. The semiconductor device according to claim 1, wherein the strained thin film has a thickness equal to or less than a critical thickness at which misfit dislocations begin to occur.
【請求項5】請求項3に記載の半導体装置において、前
記複数の歪層の少なくとも一層がミスフィット転位が発
生し始める臨界膜厚以上の厚みを有し、他の歪層は臨界
膜厚以下の厚みであり、且つ臨界膜厚以上の厚みを有す
る歪層がミスフィット転位が発生し始める臨界膜厚以下
の厚みを有する歪層よりも前記基板側に有ることを特徴
とする半導体装置。
5. The semiconductor device according to claim 3, wherein at least one of the plurality of strained layers has a thickness equal to or greater than a critical thickness at which misfit dislocations begin to occur, and the other strained layers have a thickness equal to or less than the critical thickness. , and the strained layer having a thickness equal to or greater than a critical thickness is located closer to the substrate than the strained layer having a thickness equal to or less than the critical thickness at which misfit dislocations begin to occur.
【請求項6】請求項1若しくは2に記載の半導体装置に
おいて、前記転位低減領域は歪超格子構造を有すること
を特徴とする半導体装置。
6. The semiconductor device according to claim 1, wherein the dislocation reduction region has a strained superlattice structure.
【請求項7】請求項1若しくは2に記載の半導体装置が
、光電子集積化素子であることを特徴とする半導体装置
7. A semiconductor device, wherein the semiconductor device according to claim 1 or 2 is an optoelectronic integrated device.
【請求項8】第1の半導体基板と、この第1の半導体基
板上に設けられた電子素子領域と、上記第1の半導体基
板上に配設された転移低減領域と、この転移低減領域上
に設けられた光素子領域とを有し、上記転移低減領域は
単層の歪薄膜を有することを特徴とする半導体装置。
8. A first semiconductor substrate, an electronic device region provided on the first semiconductor substrate, a dislocation reduction region provided on the first semiconductor substrate, and a dislocation reduction region provided on the dislocation reduction region. and an optical element region provided in the semiconductor device, wherein the dislocation reduction region has a single-layer strained thin film.
【請求項9】電子能動領域を有する電子素子部と、光能
動領域を有する光素子部とを有し、上記電子素子部は第
1の格子定数を有する第1の半導体基板領域上に設けら
れ、上記光素子部は上記第1の格子定数と異なる第2の
格子定数を有する第2の半導体基板領域上に設けられ、
これら第1及び第2の半導体基板領域の間には転移低減
領域が配設され、この転移低減領域は単層の歪薄膜を有
することを特徴とする半導体装置。
9. An electronic element section having an electronic active region and an optical element section having an optical active region, the electronic element section being provided on a first semiconductor substrate region having a first lattice constant. , the optical element section is provided on a second semiconductor substrate region having a second lattice constant different from the first lattice constant,
A semiconductor device characterized in that a dislocation reduction region is disposed between the first and second semiconductor substrate regions, and the dislocation reduction region has a single layer of a strained thin film.
【請求項10】請求項9に記載の半導体装置において、
前記単層の歪薄膜はミスフィット転位が発生し始める臨
界膜厚以下の厚みを有することを特徴とする半導体装置
10. The semiconductor device according to claim 9,
A semiconductor device characterized in that the single-layer strained thin film has a thickness below a critical film thickness at which misfit dislocations begin to occur.
【請求項11】請求項9に記載の半導体装置において、
前記転移低減領域は複数の歪層を有し、前記単層の歪薄
膜はこれら複数の歪層よりも上部に配設されていること
を特徴とする半導体装置。
11. The semiconductor device according to claim 9,
A semiconductor device characterized in that the dislocation reduction region has a plurality of strained layers, and the single-layer strained thin film is disposed above the plurality of strained layers.
【請求項12】請求項9に記載の半導体装置において、
前記転移低減領域は前記単層の歪薄膜を複数層有するこ
とを特徴とする半導体装置。
12. The semiconductor device according to claim 9,
A semiconductor device, wherein the dislocation reduction region has a plurality of layers of the single-layer strained thin film.
【請求項13】請求項12に記載の半導体装置において
、前記転移低減領域は前記複数の歪薄膜の間に配設され
た膜厚が0.1μm以上2μm以下の半導体層を有する
ことを特徴とする半導体装置。
13. The semiconductor device according to claim 12, wherein the dislocation reduction region includes a semiconductor layer having a thickness of 0.1 μm or more and 2 μm or less, disposed between the plurality of strained thin films. semiconductor devices.
【請求項14】請求項12に記載の半導体装置において
、前記転移低減領域は前記複数の歪薄膜の間に配設され
た膜厚が0.2μm以上1μm以下の半導体層を有する
ことを特徴とする半導体装置。
14. The semiconductor device according to claim 12, wherein the dislocation reduction region includes a semiconductor layer having a thickness of 0.2 μm or more and 1 μm or less, disposed between the plurality of strained thin films. semiconductor devices.
【請求項15】請求項9に記載の半導体装置において、
前記転移低減領域は前記第1の半導体基板領域に形成さ
れた凹部上に配設されてなることを特徴とする半導体装
置。
15. The semiconductor device according to claim 9,
A semiconductor device, wherein the dislocation reduction region is disposed on a recess formed in the first semiconductor substrate region.
【請求項16】請求項9に記載の半導体装置において、
前記電子素子部と前記光素子部とはほぼ同一面上に形成
されてなることを特徴とする半導体装置。
16. The semiconductor device according to claim 9,
A semiconductor device, wherein the electronic element section and the optical element section are formed on substantially the same surface.
JP6147791A 1991-03-26 1991-03-26 Semiconductor device Pending JPH04296075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147791A JPH04296075A (en) 1991-03-26 1991-03-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6147791A JPH04296075A (en) 1991-03-26 1991-03-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04296075A true JPH04296075A (en) 1992-10-20

Family

ID=13172188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147791A Pending JPH04296075A (en) 1991-03-26 1991-03-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04296075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43159E1 (en) 1994-12-27 2012-02-07 Kabushiki Kaisha Toshiba Semiconductor light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43159E1 (en) 1994-12-27 2012-02-07 Kabushiki Kaisha Toshiba Semiconductor light emitting device

Similar Documents

Publication Publication Date Title
KR100376175B1 (en) Lattice mismatched stacked crystal structure and semiconductor device using it
JP3114809B2 (en) Semiconductor device
JPH0422185A (en) Semiconductor optical element
US5508554A (en) Semicoductor device having defect type compound layer between single crystal substrate and single crystal growth layer
US5260230A (en) Method of manufacturing buried heterostructure semiconductor laser
JP2001093837A (en) Structure of semiconductor thin film and manufacturing method therefor
JPH05167191A (en) Buried type semiconductor laser element
JP2004006732A (en) Laminated semiconductor substrate and optical semiconductor element
Shimoyama et al. A new selective MOVPE regrowth process utilizing in-situ vapor phase etching for optoelectronic integrated circuits
JP3406376B2 (en) Method for manufacturing compound semiconductor device
JP4078891B2 (en) Compound semiconductor epitaxial wafer manufacturing method and compound semiconductor epitaxial wafer
JP2723523B2 (en) AlGaInP visible light semiconductor light emitting device
JPH04296075A (en) Semiconductor device
US5304507A (en) Process for manufacturing semiconductor laser having low oscillation threshold current
JP2002314196A (en) Compound semiconductor and semiconductor optical device
JPH0834338B2 (en) Semiconductor laser
JP3172958B2 (en) Method for manufacturing compound semiconductor thin film
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP2854302B2 (en) Semiconductor device including epitaxial layer on lattice-mismatched single crystal substrate
JPH11261100A (en) Manufacture of photo-semiconductor device
JPH0722312A (en) Method for manufacturing strain semiconductor film
JP2902160B2 (en) Method for manufacturing semiconductor light emitting device
JPS61107782A (en) Compound semiconductor device
JPH06104534A (en) Semiconductor laser element
JP2528877B2 (en) Semiconductor laser