JPH04295266A - Epicyclic motor - Google Patents

Epicyclic motor

Info

Publication number
JPH04295266A
JPH04295266A JP8332591A JP8332591A JPH04295266A JP H04295266 A JPH04295266 A JP H04295266A JP 8332591 A JP8332591 A JP 8332591A JP 8332591 A JP8332591 A JP 8332591A JP H04295266 A JPH04295266 A JP H04295266A
Authority
JP
Japan
Prior art keywords
rotor
stator
magnetic
motor
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8332591A
Other languages
Japanese (ja)
Inventor
Masashi Sakuma
昌史 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP8332591A priority Critical patent/JPH04295266A/en
Publication of JPH04295266A publication Critical patent/JPH04295266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To reduce the vibration at the time of an epicyclic motor operating. CONSTITUTION:The epicyclic motor comprises a rotor 91, which epicyclically moves, and a stator 1, which is arranged around the rotor 91 and gives the epicyclic motion to the rotor 91. The stator 1 comprises a ring-shaped magnetic substance 11, a plurality of magnetic poles 12 radially projected around that magnetic substance 11, and exciting coils 13 wound on that magnetic poles 12. At motor operation, currents are applied to the exciting coils 13 so as to excite the magnetic poles 12 in order. At this time, the flow of a magnetic flux go toward the contact part between the rotor 91 and the stator 1, and besides it changes accompanying the rotation of the rotor 91. This is attributable to that the inside periphery of the stator 1 is magnetically connected by the magnetic substance 11. Therefore, the operating angle 62 of the rotor 91 becomes smaller than the arrangement angle 61 of the magnetic pole 12, and besides it changes smoothly accompanying the rotation of the rotor 91.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,回転子の遊星運動を利
用して低速かつ大トルクの回転出力を得るようにした遊
星モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planetary motor that utilizes the planetary motion of a rotor to obtain a low-speed, high-torque rotational output.

【0002】0002

【従来技術】遊星モータは,回転子と固定子とよりなり
,該固定子を円周方向に順次励磁することにより得られ
る回転子の遊星運動を,外部で利用しようとするもので
ある。該遊星モータは,ギヤ等の減速機構を用いること
なく,低速かつ大トルクの回転出力が得られるという特
徴を有する。従来の遊星モータは,図5及び図6に示す
ごとく,遊星運動する回転子91と,該回転子91の周
囲に配設され回転子91に遊星運動を与える固定子92
とよりなる。
2. Description of the Related Art A planetary motor consists of a rotor and a stator, and the planetary motion of the rotor obtained by sequentially exciting the stator in the circumferential direction is utilized externally. The planetary motor is characterized in that it can provide a low-speed and large-torque rotational output without using a speed reduction mechanism such as a gear. As shown in FIGS. 5 and 6, a conventional planetary motor includes a rotor 91 that makes planetary motion, and a stator 92 that is arranged around the rotor 91 and gives planetary motion to the rotor 91.
It becomes more.

【0003】上記固定子92は,ハウジング90の内壁
面に円周方向に沿って60度毎に固着している。各固定
子92は,図7及び図8に示すごとく,内周側に上下2
段の突起部921を有しており,それぞれの突起部92
1には励磁コイル922を巻装している。上記各固定子
92は,遊星モータの磁極を構成しており,上記励磁コ
イル922に通電して各固定子92を順次励磁すること
により,回転子91が遊星運動するようにしている。該
回転子91の遊星運動は,オルダム継手93を介してシ
ャフト94より低速かつ大トルクの回転出力として取り
出される。なお,図6において,95,96はベアリン
グを示す。
The stator 92 is fixed to the inner wall surface of the housing 90 at every 60 degrees along the circumferential direction. As shown in FIGS. 7 and 8, each stator 92 has two upper and lower parts on the inner circumference side.
It has stepped protrusions 921, and each protrusion 92
1 is wound with an excitation coil 922. Each stator 92 constitutes a magnetic pole of a planetary motor, and by energizing the excitation coil 922 to sequentially excite each stator 92, the rotor 91 is caused to perform planetary motion. The planetary motion of the rotor 91 is extracted from the shaft 94 via the Oldham joint 93 as a low-speed, large-torque rotational output. In addition, in FIG. 6, 95 and 96 indicate bearings.

【0004】0004

【解決しようとする課題】しかしながら,従来の遊星モ
ータにおいては,図5及び図6に示すごとく,各固定子
92が磁気的に分断されており,各固定子92により得
られる磁束の流れ99は,それぞれ独立している。その
ため,固定子92の励磁により回転子91が転動すると
きの作動角θ1は,磁極としての固定子92の配置角度
(図5においては,60度)により決定されてしまう。 回転子91が転動するときには,該回転子91の重心が
移動するのであるが,上記のごとく,作動角θ1が大き
いため,この重心移動がモータ作動時に大きな振動を引
き起こす。
[Problem to be Solved] However, in the conventional planetary motor, as shown in FIGS. 5 and 6, each stator 92 is magnetically separated, and the magnetic flux flow 99 obtained by each stator 92 is , each is independent. Therefore, the operating angle θ1 when the rotor 91 rolls due to the excitation of the stator 92 is determined by the arrangement angle (60 degrees in FIG. 5) of the stator 92 as a magnetic pole. When the rotor 91 rolls, the center of gravity of the rotor 91 moves, and as described above, since the operating angle θ1 is large, this movement of the center of gravity causes large vibrations when the motor operates.

【0005】なお,モータ作動時の振動を低減するため
には,作動角θ1を小さくすれば良いが,従来構造では
励磁コイル922の収納スペースを確保する必要から,
作動角θ1を60度よりも小さくすることが困難である
。本発明は,かかる従来の問題点に鑑み,モータ作動時
の振動を低減することができる,遊星モータを提供しよ
うとするものである。
[0005] In order to reduce the vibration during motor operation, it is sufficient to reduce the operating angle θ1, but in the conventional structure, it is necessary to secure a storage space for the excitation coil 922.
It is difficult to make the operating angle θ1 smaller than 60 degrees. In view of these conventional problems, the present invention seeks to provide a planetary motor that can reduce vibrations during motor operation.

【0006】[0006]

【課題の解決手段】本発明は,遊星運動する回転子と,
該回転子の周囲に配設され回転子に遊星運動を与える固
定子とよりなる遊星モータにおいて,上記固定子は,リ
ング状に形成した磁性体と,該磁性体の外周に放射状に
突設した複数の磁極と,該磁極に巻装した励磁コイルと
よりなる遊星モータにある。
[Means for solving the problems] The present invention includes a rotor that moves planetarily,
In a planetary motor consisting of a stator disposed around the rotor and giving planetary motion to the rotor, the stator comprises a ring-shaped magnetic body and a ring-shaped magnetic body that protrudes radially from the outer periphery of the magnetic body. A planetary motor consists of a plurality of magnetic poles and an excitation coil wound around the magnetic poles.

【0007】本発明において最も注目すべきことは,作
動角を小さくするために,リング状の磁性体の外周に,
励磁コイルを巻装した磁極を設けたことにある。換言す
れば,磁束の流れが回転子の転動に伴って滑らかに移動
するように,励磁コイルを巻装した磁極における回転子
側対向面を,磁性体によりリング状に接続したことにあ
る。
The most noteworthy feature of the present invention is that, in order to reduce the operating angle, the ring-shaped magnetic material has a
The reason is that a magnetic pole is provided around which an excitation coil is wound. In other words, the rotor-side facing surfaces of the magnetic poles around which the excitation coils are wound are connected in a ring shape by a magnetic material so that the flow of magnetic flux moves smoothly as the rotor rolls.

【0008】[0008]

【作用及び効果】固定子の励磁コイルに順次通電したと
き,磁極が順次励磁されていく。そして,回転子が磁極
側に順次吸引されて転動する。これにより,該回転子が
固定子の内側で遊星運動を行う。
[Operation and Effect] When the excitation coils of the stator are sequentially energized, the magnetic poles are sequentially excited. Then, the rotor is successively attracted to the magnetic pole side and rotates. This causes the rotor to perform planetary motion inside the stator.

【0009】このように磁極を順次励磁していくとき,
回転子は,まず最初に励磁された磁極に吸引されてリン
グ状磁性体の内周面に接触する。次に,隣接配置する磁
極を励磁したとき,該磁極と上記接触部分近傍との間に
磁束の流れが生ずる。これは,リング状磁性体により固
定子の内周側が磁気的に接続されているためである。上
記接触部分は回転子の転動に伴って移動するため,磁束
の流れも変化する。そのため,回転子の作動角は,磁極
の配置角度よりも小さくなり,かつ該回転子の転動に伴
って滑らかに変化する。それ故,本発明によれば,モー
タ作動時の振動を低減することが可能な,遊星モータを
提供することができる。
[0009] When the magnetic poles are sequentially excited in this way,
The rotor is first attracted by the excited magnetic poles and comes into contact with the inner peripheral surface of the ring-shaped magnetic body. Next, when the adjacent magnetic poles are excited, a flow of magnetic flux occurs between the magnetic poles and the vicinity of the contact portion. This is because the inner peripheral side of the stator is magnetically connected by the ring-shaped magnetic body. Since the contact portion moves with the rolling of the rotor, the flow of magnetic flux also changes. Therefore, the operating angle of the rotor is smaller than the arrangement angle of the magnetic poles, and changes smoothly as the rotor rolls. Therefore, according to the present invention, it is possible to provide a planetary motor that can reduce vibrations during motor operation.

【0010】0010

【実施例】本発明の実施例にかかる遊星モータにつき,
図1〜図4を用いて説明する。本例の遊星モータは,遊
星運動する回転子91と,該回転子91の周囲に配設さ
れ回転子91に遊星運動を与える固定子1とよりなる。 該固定子1は,リング状に形成した磁性体11と,該磁
性体11の外周に放射状に突設した複数の磁極12と,
該磁極12に巻装した励磁コイル13とよりなる。
[Example] Regarding the planetary motor according to the example of the present invention,
This will be explained using FIGS. 1 to 4. The planetary motor of this example includes a rotor 91 that makes planetary motion, and a stator 1 that is disposed around the rotor 91 and gives planetary motion to the rotor 91. The stator 1 includes a ring-shaped magnetic body 11, a plurality of magnetic poles 12 protruding radially from the outer circumference of the magnetic body 11,
It consists of an excitation coil 13 wound around the magnetic pole 12.

【0011】本例においては,図2に示すごとく,固定
子1を軸方向に2段に重ね合わせて,磁束の流れ19を
発生させている。上記固定子1の磁性体11は,図1及
び図3に示すごとく,リング状に形成し,かつその内径
は回転子91の外径よりも若干大きく形成してある。上
記磁極12は,磁性体11の外周に沿って一定角度毎に
突設してある。本例においては,磁極12の配置角度θ
1を60度に設定している。また,図2及び図3に示す
ごとく,磁極12は,ハウジング90に固定するための
固着面121と,上下2段の固定子1を磁気的に接続す
るための当接面122とを有している。
In this example, as shown in FIG. 2, the stators 1 are stacked in two stages in the axial direction to generate a magnetic flux flow 19. The magnetic body 11 of the stator 1 is formed into a ring shape, as shown in FIGS. 1 and 3, and its inner diameter is slightly larger than the outer diameter of the rotor 91. The magnetic poles 12 are provided to protrude along the outer periphery of the magnetic body 11 at regular angle intervals. In this example, the arrangement angle θ of the magnetic pole 12 is
1 is set to 60 degrees. Further, as shown in FIGS. 2 and 3, the magnetic pole 12 has a fixing surface 121 for fixing to the housing 90 and a contact surface 122 for magnetically connecting the upper and lower stators 1. ing.

【0012】上記励磁コイル13は,各磁極12に巻装
してあり,その巻線端部は励磁コイル切換回路(図示略
)に接続してある。その他は,前記従来例と同様である
The excitation coil 13 is wound around each magnetic pole 12, and the ends of the windings are connected to an excitation coil switching circuit (not shown). The rest is the same as the conventional example.

【0013】本例の遊星モータは,上記のように構成さ
れているので,次の作用効果を呈する。即ち,図1及び
図2に示すごとく,励磁コイル切換回路により固定子1
の励磁コイル13に順次通電したとき,磁極12が順次
励磁されていく。このとき,上下2段の固定子1には,
磁束の流れ19が生じ,回転子91が磁極12側に順次
吸引されて転動する。これにより,該回転子91が固定
子1の内側で遊星運動を行う。このようにして,配置位
置Aから配置位置Bへ向かって磁極12を順次励磁して
いくとき,固定子1には,まずD1点からE1点に向か
う磁束の流れ19が生じる。そのため,回転子91は,
配置位置Aの磁極12に吸引されて,リング状の磁性体
11の内周面に接触する。
Since the planetary motor of this example is constructed as described above, it exhibits the following effects. That is, as shown in Figures 1 and 2, the stator 1 is
When the excitation coils 13 are sequentially energized, the magnetic poles 12 are sequentially excited. At this time, the stator 1 in the upper and lower stages has
A magnetic flux flow 19 is generated, and the rotor 91 is successively attracted to the magnetic pole 12 side and rotates. As a result, the rotor 91 performs planetary motion inside the stator 1. In this way, when the magnetic poles 12 are sequentially excited from the arrangement position A to the arrangement position B, a magnetic flux flow 19 is first generated in the stator 1 from the point D1 to the point E1. Therefore, the rotor 91 is
It is attracted by the magnetic pole 12 at the arrangement position A and comes into contact with the inner peripheral surface of the ring-shaped magnetic body 11.

【0014】次に,配置位置Aの磁極12の励磁状態を
保持したままで,配置位置Bの磁極12を励磁する。こ
のとき,配置位置Bの磁極12と回転子91との間には
,D2点からE2点へ向かう磁束の流れ19が生ずる。 これは,リング状の磁性体11により固定子1の内周側
が磁気的に接続されており,D2点からの磁束の流れが
,磁性体11を経て,E2点へ向かうためである。 このE2点付近においては,回転子91と固定子1との
間の隙間が小さく,磁束が流れ易くなっている。
Next, while maintaining the excited state of the magnetic pole 12 at position A, the magnetic pole 12 at position B is excited. At this time, a flow 19 of magnetic flux is generated between the magnetic pole 12 at the arrangement position B and the rotor 91 from the point D2 toward the point E2. This is because the inner peripheral side of the stator 1 is magnetically connected by the ring-shaped magnetic body 11, and the flow of magnetic flux from point D2 passes through the magnetic body 11 and goes to point E2. Near this point E2, the gap between the rotor 91 and the stator 1 is small, making it easier for magnetic flux to flow.

【0015】そのため,回転子91の作動角θ2は,磁
極12の配置角度θ1よりも小さくなる。この作動角θ
2の分だけ,回転子91には上記遊星運動を行わせるた
めの回転力が働く。そこで,配置位置Aの磁極12の励
磁状態を解除すると,回転子91はE2点方向へ吸引さ
れて中間位置Cまで移動する。その後,回転子91の転
動に伴って,磁束の流れ19は,徐々に変化し,やがて
D2点からE3点へ向かう流れとなる。そのため,上記
作動角θ2も回転子91の転動に伴って滑らかに変化す
る。
Therefore, the operating angle θ2 of the rotor 91 is smaller than the arrangement angle θ1 of the magnetic poles 12. This working angle θ
2, a rotational force for causing the above-mentioned planetary motion acts on the rotor 91. Therefore, when the excitation state of the magnetic pole 12 at the arrangement position A is released, the rotor 91 is attracted toward the E2 point and moves to the intermediate position C. Thereafter, as the rotor 91 rolls, the magnetic flux flow 19 gradually changes and eventually becomes a flow from point D2 to point E3. Therefore, the operating angle θ2 also changes smoothly as the rotor 91 rolls.

【0016】それ故,本例によれば,モータ作動時の振
動を大幅に低減することができる。また,励磁コイル1
3を固定子1の外側から巻けるため,巻線作業が容易と
なる。更には,固定子1が一体物であるため,ハウジン
グ90に対する組付け作業が容易となる。なお,上記励
磁コイル13に対する通電電流量を回転子91の転動に
伴って徐々に変化させれば,上記作動角θ2を更に小さ
くすることが可能である。
Therefore, according to this example, vibrations during motor operation can be significantly reduced. Also, excitation coil 1
3 can be wound from the outside of the stator 1, making the winding work easier. Furthermore, since the stator 1 is integrated, the assembly work to the housing 90 is facilitated. Note that if the amount of current applied to the excitation coil 13 is gradually changed as the rotor 91 rolls, it is possible to further reduce the operating angle θ2.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例にかかる遊星モータの平面断面図。FIG. 1 is a plan sectional view of a planetary motor according to an embodiment.

【図2】実施例の遊星モータの側面断面図。FIG. 2 is a side sectional view of the planetary motor of the embodiment.

【図3】実施例の固定子の励磁コイル巻装前の斜視図。FIG. 3 is a perspective view of the stator of the embodiment before winding the excitation coil.

【図4】実施例の固定子の励磁コイル巻装後の斜視図。FIG. 4 is a perspective view of the stator of the embodiment after winding an excitation coil.

【図5】従来の遊星モータの平面断面図。FIG. 5 is a plan sectional view of a conventional planetary motor.

【図6】従来の遊星モータの側面断面図。FIG. 6 is a side sectional view of a conventional planetary motor.

【図7】従来の固定子の励磁コイル巻装前の斜視図。FIG. 7 is a perspective view of a conventional stator before winding an excitation coil.

【図8】従来の固定子の励磁コイル巻装後の斜視図。FIG. 8 is a perspective view of a conventional stator after winding an excitation coil.

【符号の説明】[Explanation of symbols]

1...固定子, 11...磁性体, 12...磁極, 13...励磁コイル, 91...回転子, 1. .. .. stator, 11. .. .. magnetic material, 12. .. .. magnetic pole, 13. .. .. excitation coil, 91. .. .. rotor,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  遊星運動する回転子と,該回転子の周
囲に配設され回転子に遊星運動を与える固定子とよりな
る遊星モータにおいて,上記固定子は,リング状に形成
した磁性体と,該磁性体の外周に放射状に突設した複数
の磁極と,該磁極に巻装した励磁コイルとよりなる遊星
モータ。
[Claim 1] A planetary motor consisting of a rotor that makes planetary motion and a stator that is arranged around the rotor and gives planetary motion to the rotor, wherein the stator is made of a ring-shaped magnetic material. , a planetary motor comprising a plurality of magnetic poles protruding radially from the outer periphery of the magnetic body, and an excitation coil wound around the magnetic poles.
JP8332591A 1991-03-23 1991-03-23 Epicyclic motor Pending JPH04295266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8332591A JPH04295266A (en) 1991-03-23 1991-03-23 Epicyclic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8332591A JPH04295266A (en) 1991-03-23 1991-03-23 Epicyclic motor

Publications (1)

Publication Number Publication Date
JPH04295266A true JPH04295266A (en) 1992-10-20

Family

ID=13799277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8332591A Pending JPH04295266A (en) 1991-03-23 1991-03-23 Epicyclic motor

Country Status (1)

Country Link
JP (1) JPH04295266A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8991932B2 (en) 2009-11-12 2015-03-31 Okamura Corporation Backrest mechanism for chair

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8991932B2 (en) 2009-11-12 2015-03-31 Okamura Corporation Backrest mechanism for chair

Similar Documents

Publication Publication Date Title
JPH07163105A (en) Switched reluctance motor
JP2001069738A (en) External circumference opposing type motor
JPH04295266A (en) Epicyclic motor
JP2001231240A (en) Stepping motor
JP4434577B2 (en) Stepping motor
JPH09200987A (en) Motor
JPH083187Y2 (en) Brushless motor
JPH06284663A (en) Brushless motor equipped with flat core
JP2750056B2 (en) Stepping motor
JPH1113682A (en) Dc canned motor pump
JP3246490B2 (en) Vibration generating motor
JPH02164265A (en) Variable void type motor
JP2003299331A (en) Shaft-fixed motor having gear, and gear head
JPH0441753Y2 (en)
JPH05211741A (en) Dc brushless motor pump
JP2001178071A (en) Motor for generation of vibration
JPS60241758A (en) Synchronous motor
JPS5980146A (en) Structure of pulse motor
JP2002263576A (en) Vibration type brushless motor
JPH01194843A (en) Motor rotor
JPH089621A (en) Stepping motor
JPS59213272A (en) Brushless motor
JPH01231650A (en) Stepping motor
JPH02311153A (en) Outer rotor type motor
JPH0437668B2 (en)