JPH04292502A - Stationary blade of axial flow turbine - Google Patents

Stationary blade of axial flow turbine

Info

Publication number
JPH04292502A
JPH04292502A JP5636591A JP5636591A JPH04292502A JP H04292502 A JPH04292502 A JP H04292502A JP 5636591 A JP5636591 A JP 5636591A JP 5636591 A JP5636591 A JP 5636591A JP H04292502 A JPH04292502 A JP H04292502A
Authority
JP
Japan
Prior art keywords
blade
inlet
stationary
flow
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5636591A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamazaki
義昭 山崎
Norio Yasugadaira
安ケ平 紀雄
Tomoyuki Taki
友幸 滝
Takeshi Sato
武 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5636591A priority Critical patent/JPH04292502A/en
Publication of JPH04292502A publication Critical patent/JPH04292502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To increase the quantity of steam flowing from the inlet of a stationary blade toward its tip and to improve the efficiency of a turbine by increasing the throttle rate of a flow passage at the inlet of a cascade of blades, which is dependent on blade thickness at the front edge of the stationary blade, in the side toward the inner wall from a spot at a fixed height of the blade, and moreover the above- mentioned blade thickness in the side toward the inner wall from a spot at a fixed height. CONSTITUTION:Only the thickness the front edge 6 of the elementary blade form 10 of a stationary blade cascade on the low pressure stage of a steam turbine is made somewhat larger from a position having a blade height h2 on a inlet side from an outer ring wall toward an inner ring wall, and only the front edge 6 is formed into the same shape in teh inside of a spot having blade height h1 on the inlet side. The blade at the front edge 6 is thickened to narrow the width of a dimensionless flow passage at an inlet part continuously and sharply from a position away as much as a distance h2 from a blade root and to narrow it continuously and slowly from a position way as much as a distance h1 from the blade root. Thus the quantity of steam flowing toward the tip of the stationary blade can be increased, and the radial outward flow of a steam flow between the stationary blades can be lessened.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は軸流タービンの静翼の構
造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of stator blades for axial flow turbines.

【0002】0002

【従来の技術】大容量蒸気タービン等では、効率向上は
重要な研究課題であり、特に、大容量化に伴って低圧段
落部の効率向上が重要視されるようになってきた。しか
し、蒸気タービンの低圧段落部における蒸気流に関する
解明、若しくは、それに基づく改善は未だ十分に行われ
ていない。
BACKGROUND OF THE INVENTION Improving the efficiency of large-capacity steam turbines and the like is an important research topic, and in particular, as the capacity increases, improving the efficiency of low-pressure stage sections has become important. However, the steam flow in the low-pressure stage of a steam turbine has not yet been sufficiently elucidated or improved based on it.

【0003】図7は、フレア角(静翼ダイヤフラム外輪
が下流側に流路面積を増大するように拡大する角度)の
ある低圧タービン最終段落の子午面断面を示す。静翼1
と動翼2とが作動流体の流路内に設けられ、静翼1は流
路を構成するダイヤフラム外輪3とダイヤフラム内輪4
で保持されている。動翼2は回転するロータ5に取り付
けられている。
FIG. 7 shows a meridional cross section of the final stage of a low pressure turbine with a flare angle (the angle at which the stator vane diaphragm outer ring widens downstream to increase the flow area). static wing 1
and rotor blades 2 are provided in the flow path of the working fluid, and the stator blade 1 is connected to a diaphragm outer ring 3 and a diaphragm inner ring 4 that constitute the flow path.
is held in The moving blades 2 are attached to a rotating rotor 5.

【0004】静翼1のフレア角が大きい場合、前段動翼
7からほぼ一様に流出した蒸気はダイヤフラム外輪3方
向に大きく偏向する必要があるが、先端部ではフレア角
により流路面積が急に増大するのに対して蒸気が十分補
充されないために、静翼先端部では流れずらくなり流量
が減少すると共に半径方向の流出角が大きくなる。その
結果、静翼出口の先端部圧力が計画値より低くなると共
にそのまま損失となってしまう半径方向速度成分が大き
くなる。また、静翼出口の先端部圧力が計画値より低く
なると静翼からの流出速度が速くなり動翼入口角に対し
て腹打ち流入の状態となり迎え角損失が増加する。さら
に、静翼出口の先端部圧力が計画値より低くなると動翼
からの相対流出速度が遅くなるので絶対流出速度が速く
なりリービング損失が増加する。
When the flare angle of the stationary blade 1 is large, the steam flowing out almost uniformly from the front rotor blade 7 needs to be largely deflected in the direction of the diaphragm outer ring 3, but at the tip, the flow path area sharply increases due to the flare angle. However, since the steam is not sufficiently replenished, the flow becomes difficult at the tips of the stator blades, the flow rate decreases, and the outflow angle in the radial direction increases. As a result, the pressure at the tip of the stationary blade outlet becomes lower than the planned value, and the radial velocity component, which directly becomes a loss, increases. Furthermore, when the pressure at the tip of the stator blade outlet becomes lower than the planned value, the outflow speed from the stator blade becomes faster, resulting in a state of belly-strike inflow with respect to the rotor blade inlet angle, and the angle of attack loss increases. Furthermore, if the pressure at the tip of the stator blade outlet becomes lower than the planned value, the relative outflow speed from the moving blade becomes slow, so the absolute outflow speed increases and the leaving loss increases.

【0005】従来の対策として、低圧タービンのフレア
角の大きい場合に、特願平2−67045号明細書に記
載のように、翼長の途中から先端に向かって翼列最小流
路幅を急に広くする方向に翼を捩じる方法が行われてい
た。この方法では、静翼先端部の流量を多くするように
改善されるが、未だ十分でない。すなわち、静翼翼列内
で流量が先端部に移動する量が多くなり半径方向速度が
大きくなるので十分流量が増加しない。
As a conventional countermeasure, when the flare angle of a low-pressure turbine is large, as described in Japanese Patent Application No. 2-67045, the minimum flow passage width of the blade row is suddenly increased from the middle of the blade span toward the tip. The method used was to twist the wings in the direction of making them wider. Although this method is improved to increase the flow rate at the tip of the stator blade, it is still not sufficient. In other words, the amount of flow that moves toward the tip within the stator vane row increases, and the radial velocity increases, so the flow does not increase sufficiently.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は、静翼
後流の流出角及び蒸気量の半径方向分布等を、静翼の幾
何学的流出角で調整しようとしたものである。図8は静
翼群の半径方向一断面の翼列構成状態を示す断面図であ
る。静翼を通過する蒸気量は翼列流路の最狭部OとOの
半径方向分布によって決定される。低圧タービンの下流
段落のように、翼長が長くなると、図8に示した翼断面
形状は根元側から先端側に向かって次第に大きくなるよ
うに形成され、一般には翼弦長Cと翼列ピッチpの比が
ほぼ一定になるように構成されている。従って、翼列の
入口部では、翼厚みによる翼列流路の絞り割合は根元か
ら先端までほぼ一様になっている。このため、翼列流路
入口の絞りにより流れの整流作用で先端部に蒸気が補充
されるものの、未だ十分ではない。
SUMMARY OF THE INVENTION The above-mentioned prior art attempts to adjust the outflow angle of the flow behind a stator blade, the radial distribution of steam amount, etc. by the geometric outflow angle of the stator blade. FIG. 8 is a cross-sectional view showing the configuration of the blade row in one radial cross-section of the stationary blade group. The amount of steam passing through the stationary blades is determined by the radial distribution of the narrowest parts O and O of the blade row flow path. As the blade length becomes longer, such as in the downstream stage of a low-pressure turbine, the blade cross-sectional shape shown in Figure 8 is formed to gradually increase from the root side to the tip side, and in general, the blade chord length C and the blade row pitch The structure is such that the ratio of p is approximately constant. Therefore, at the inlet portion of the blade row, the throttling ratio of the blade row flow path due to the blade thickness is substantially uniform from the root to the tip. For this reason, although steam is replenished at the tip by the flow rectification effect by the throttle at the inlet of the blade row channel, it is still not sufficient.

【0007】本発明の目的は、静翼入口から先端部を流
れる蒸気量を多くして、静翼内の半径方向の流れを抑制
するとともに静翼出口先端部の圧力を高くして、段落性
能を向上するタービン静翼を提供することにある。
An object of the present invention is to increase the amount of steam flowing from the inlet to the tip of the stator blade, to suppress the flow in the radial direction within the stator blade, and to increase the pressure at the tip of the outlet of the stator blade, thereby improving the stage performance. Our objective is to provide a turbine stationary blade that improves the

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は所定の翼高さより内壁側の静翼前縁部の翼
列流路幅を狭くするように静翼前縁翼厚みを厚くしたこ
とを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a method for increasing the thickness of the leading edge of the stator blade so as to narrow the cascade flow path width of the leading edge of the stator blade on the inner wall side from a predetermined blade height. It is characterized by thicker.

【0009】[0009]

【作用】本発明は、所定の翼高さより内壁側の静翼前縁
部の翼列流路幅を狭くすることにより、内壁側の流動抵
抗を大きくして、内壁側の蒸気を半径方向外向き、すな
わち、外壁方向に向けることができる。
[Operation] The present invention increases the flow resistance on the inner wall side by narrowing the width of the blade cascade flow path at the leading edge of the stator blade on the inner wall side than a predetermined blade height, and the steam on the inner wall side is directed outward in the radial direction. direction, i.e. towards the outer wall.

【0010】これによって静翼先端部に流入する蒸気量
を多くするとともに、静翼内での蒸気流の半径方向外向
き流れを小さくすることができる。
[0010] This makes it possible to increase the amount of steam flowing into the tip of the stator blade and to reduce the outward flow of steam in the radial direction within the stator blade.

【0011】[0011]

【実施例】本発明を適用した時の静翼列を図1に示す。 静翼1は多数の要素翼形10を積み重ねてなり、接線方
向に傾いてダイヤフラム外輪壁8及び内輪壁9に保持さ
れている。従来翼の要素翼形10は一般的にダイヤフラ
ム外輪側が大きく内輪側ほど小さくなっているが、本発
明による静翼は要素翼形10の前縁部6のみが流入側翼
高さh2から外輪壁から内輪壁に向かって若干大きくな
り、流入側翼高さh1より内側では前縁部6のみ同一形
状になっている。翼高さ位置h2とh1における要素翼
形を図2及び図3に示す。図2の要素翼形10aに比べ
て図3の要素翼形10bは前縁部6の翼厚みが厚くなっ
ている。
[Embodiment] Fig. 1 shows a stator blade row when the present invention is applied. The stator vane 1 is formed by stacking a large number of element airfoils 10, and is held by the diaphragm outer ring wall 8 and inner ring wall 9 while being inclined in the tangential direction. The element airfoil 10 of a conventional blade is generally larger on the outer ring side of the diaphragm and becomes smaller on the inner ring side, but in the stationary blade according to the present invention, only the leading edge 6 of the element airfoil 10 is lower than the inflow side blade height h2 from the outer ring wall. It becomes slightly larger toward the inner ring wall, and only the leading edge 6 has the same shape inside the inflow side blade height h1. The element airfoil shapes at blade height positions h2 and h1 are shown in FIGS. 2 and 3. Compared to the element airfoil 10a in FIG. 2, the element airfoil 10b in FIG. 3 has a thicker blade at the leading edge 6.

【0012】図4は翼列流入部の流路幅sと翼列ピッチ
p(図8参照)との比の翼長方向分布を従来法による分
布と比較して示したものである。前縁部6の翼を厚くす
ることによって、従来翼に比べて根元よりh2の位置か
ら流入部の無次元流路幅s/pは連続的に急に小さくな
り、根元よりh1の位置からは連続的にゆるやかに小さ
くなっている。また、h1の位置は図5に示す前段の動
翼7の先端の半径位置付近とする。
FIG. 4 shows the distribution in the blade span direction of the ratio of the flow passage width s of the blade cascade inlet to the blade cascade pitch p (see FIG. 8) in comparison with the distribution according to the conventional method. By increasing the thickness of the blade at the leading edge 6, the dimensionless channel width s/p of the inflow section suddenly decreases continuously from the position h2 from the root compared to the conventional blade, and from the position h1 from the root It gradually decreases in size continuously. Further, the position of h1 is assumed to be near the radial position of the tip of the front rotor blade 7 shown in FIG.

【0013】図5は本発明の静翼を適用した場合の静翼
から流出する蒸気の単位面積当りの流量Qの分布を示し
たものであるが、従来例に比べて先端部での急な減少が
なくなっている。
FIG. 5 shows the distribution of the flow rate Q per unit area of steam flowing out from the stator blade when the stator blade of the present invention is applied. The decrease is gone.

【0014】本発明の実施例は、図3に示した要素翼形
の前縁部6の翼厚みが根元までほぼ一定になっているが
、図6に示すように内輪壁9の近傍で前縁部6の翼厚み
を再び薄くする場合もある。これにより、内輪壁近傍の
流れを壁面に押しつける作用が生じ静翼根元部の二次流
損失を低減することができる。
In the embodiment of the present invention, the blade thickness of the leading edge 6 of the element airfoil shown in FIG. 3 is approximately constant up to the root, but as shown in FIG. In some cases, the thickness of the blade at the edge 6 may be reduced again. As a result, the flow near the inner ring wall is pressed against the wall surface, and the secondary flow loss at the root of the stator blade can be reduced.

【0015】[0015]

【発明の効果】本発明によれば、下流側に流路面積が急
拡大するタービン段落の静翼先端部における静翼内及び
静翼出口の半径方向速度を小さくし、しかも、静翼出口
先端部の蒸気量を多くし、翼先端部での動翼へ流入する
流体の迎え角を適正化し、さらに動翼先端部から流出す
る蒸気の絶対流出速度を小さくしリービング損失を減少
させることができ、流体の持つエネルギを動翼で有効に
仕事に変換できるので軸流タービンの効率を向上させる
ことができる。
According to the present invention, the radial velocity within the stator blade and at the stator blade outlet at the tip of the stator blade of a turbine stage where the flow passage area rapidly expands on the downstream side can be reduced. This makes it possible to increase the amount of steam at the blade tip, optimize the angle of attack of the fluid flowing into the rotor blade at the blade tip, and reduce the absolute outflow velocity of the steam flowing out from the blade tip, thereby reducing leaving loss. Since the energy of the fluid can be effectively converted into work by the rotor blades, the efficiency of the axial flow turbine can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の静翼列の説明図。FIG. 1 is an explanatory diagram of a stator blade row according to an embodiment of the present invention.

【図2】静翼群の半径方向の断面図。FIG. 2 is a radial cross-sectional view of a stator blade group.

【図3】静翼群の半径方向の断面図。FIG. 3 is a radial cross-sectional view of the stationary blade group.

【図4】静翼列入口における流路幅と翼列ピッチの比の
分布図。
FIG. 4 is a distribution diagram of the ratio of the flow passage width to the pitch of the blade row at the inlet of the stator blade row.

【図5】静翼出口における単位面積当りの流量の分布図
FIG. 5 is a distribution diagram of the flow rate per unit area at the stationary blade outlet.

【図6】本発明の他の実施例の静翼列の説明図。FIG. 6 is an explanatory diagram of a stator blade row according to another embodiment of the present invention.

【図7】低圧タービン段落の子午面断面図。FIG. 7 is a meridional cross-sectional view of a low-pressure turbine stage.

【図8】静翼群の半径方向の断面図。FIG. 8 is a radial cross-sectional view of the stationary blade group.

【符号の説明】[Explanation of symbols]

1…静翼、2…動翼、3…ダイヤフラム外輪、4…ダイ
ヤフラム内輪、6…静翼前縁部、10…要素翼形。
DESCRIPTION OF SYMBOLS 1... Stator blade, 2... Moving blade, 3... Diaphragm outer ring, 4... Diaphragm inner ring, 6... Stator blade leading edge, 10... Element airfoil shape.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】流れ方向に拡大流路を形成する軸流タービ
ン段落の静翼において、前記静翼の前縁部の翼厚みによ
る翼列入口流路の絞り割合を所定の翼高さより内壁側で
大きくしたことを特徴とする軸流タービン静翼。
Claims: 1. In a stator blade of an axial turbine stage that forms a flow path expanding in the flow direction, the throttling ratio of the inlet flow path of the blade cascade due to the blade thickness of the leading edge of the stator blade is set closer to the inner wall than a predetermined blade height. An axial flow turbine stationary blade characterized by having a larger size.
【請求項2】請求項1において、前記静翼の前記前縁部
の翼厚みの翼列ピッチに対する割合を所定の翼高さより
内壁側で大きくした軸流タービン静翼。
2. The axial flow turbine stator blade according to claim 1, wherein the ratio of the blade thickness of the leading edge portion of the stator blade to the blade row pitch is larger on the inner wall side than a predetermined blade height.
JP5636591A 1991-03-20 1991-03-20 Stationary blade of axial flow turbine Pending JPH04292502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5636591A JPH04292502A (en) 1991-03-20 1991-03-20 Stationary blade of axial flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5636591A JPH04292502A (en) 1991-03-20 1991-03-20 Stationary blade of axial flow turbine

Publications (1)

Publication Number Publication Date
JPH04292502A true JPH04292502A (en) 1992-10-16

Family

ID=13025225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5636591A Pending JPH04292502A (en) 1991-03-20 1991-03-20 Stationary blade of axial flow turbine

Country Status (1)

Country Link
JP (1) JPH04292502A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
CN104121040A (en) * 2013-04-24 2014-10-29 哈米尔顿森德斯特兰德公司 Turbine nozzle for air cycle machine
CN104121039A (en) * 2013-04-24 2014-10-29 哈米尔顿森德斯特兰德公司 Turbine nozzle for air cycle machine
CN104121041A (en) * 2013-04-24 2014-10-29 哈米尔顿森德斯特兰德公司 Turbine nozzle and shroud for air cycle machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074804A (en) * 2009-09-30 2011-04-14 Hitachi Ltd Nozzle of steam turbine
CN104121040A (en) * 2013-04-24 2014-10-29 哈米尔顿森德斯特兰德公司 Turbine nozzle for air cycle machine
CN104121039A (en) * 2013-04-24 2014-10-29 哈米尔顿森德斯特兰德公司 Turbine nozzle for air cycle machine
CN104121041A (en) * 2013-04-24 2014-10-29 哈米尔顿森德斯特兰德公司 Turbine nozzle and shroud for air cycle machine
US10006299B2 (en) 2013-04-24 2018-06-26 Hamilton Sundstrand Corporation Turbine nozzle for air cycle machine
US10072519B2 (en) 2013-04-24 2018-09-11 Hamilton Sundstrand Corporation Turbine nozzle for air cycle machine

Similar Documents

Publication Publication Date Title
US5906474A (en) Turbine blade
JP3621216B2 (en) Turbine nozzle
KR100566759B1 (en) Turbine nozzle vane
US4643645A (en) Stage for a steam turbine
EP2492440A2 (en) Turbine nozzle blade and steam turbine equipment using same
JPH10502150A (en) Flow orientation assembly for the compression region of rotating machinery
GB2270348A (en) Axial-flow turbine.
EP1260674B1 (en) Turbine blade and turbine
JP2007120494A (en) Variable geometry inlet guide vane
JP2003074306A (en) Axial flow turbine
US5035578A (en) Blading for reaction turbine blade row
US6109869A (en) Steam turbine nozzle trailing edge modification for improved stage performance
US6312221B1 (en) End wall flow path of a compressor
US4616975A (en) Diaphragm for a steam turbine
JPH04292502A (en) Stationary blade of axial flow turbine
CN115263436A (en) Transonic turbine rotor blade, turbine rotor and turbine
JP4184565B2 (en) Steam turbine nozzle and steam turbine using the steam turbine nozzle
JPH10331791A (en) Vane for axial flow compressor and axial flow compressor using the vane
JPH10318117A (en) Impeller of fluid machine
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPH11173104A (en) Turbine rotor blade
GB2162587A (en) Steam turbines
JPH0893404A (en) Turbine nozzle and turbine rotor blade
JPH0686802B2 (en) Axial Turbine Transonic Vane
JPH11241601A (en) Axial flow turbine