JPH0429219A - High-polymer liquid crystal composition, liquid crystal optical element formed by using this composition and method for driving liquid crystal optical element - Google Patents

High-polymer liquid crystal composition, liquid crystal optical element formed by using this composition and method for driving liquid crystal optical element

Info

Publication number
JPH0429219A
JPH0429219A JP13403090A JP13403090A JPH0429219A JP H0429219 A JPH0429219 A JP H0429219A JP 13403090 A JP13403090 A JP 13403090A JP 13403090 A JP13403090 A JP 13403090A JP H0429219 A JPH0429219 A JP H0429219A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical element
polymer liquid
polymer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13403090A
Other languages
Japanese (ja)
Other versions
JP2788667B2 (en
Inventor
Hiroyuki Endo
博之 遠藤
Kazuharu Morita
森田 和春
Kenji Hashimoto
橋本 憲次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2134030A priority Critical patent/JP2788667B2/en
Publication of JPH0429219A publication Critical patent/JPH0429219A/en
Application granted granted Critical
Publication of JP2788667B2 publication Critical patent/JP2788667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain high-speed responsiveness without impairing an antiferroelectric characteristic and orientability by incorporating at least one kind of low-polymer liquid crystals and high-polymer liquid crystals which consists of low-polymer liquid crystals and high-polymer liquid crystals and exhibit an antiferroelectric liquic crystal phase. CONSTITUTION:This compsn. consists of one or >=2 kinds of the low-polymer liquid crystals and one or >=2 kinds of the high-polymer liquid crystals and contain >=1 kinds of the low-polymer liquid crystals or high-polymer liquid crystals exhibiting the antiferroelectric characteristic. The liquid crystal optical element is formed by holding this high-polymer liquid crystal compsn. 4 in place between two sheets of electrodes 3 and 5 facing each other and has the antiferroelectric characteristic and, therefore, the distinct plural stable states are obtd. and since the element contains the high-polymer liquid crystal, the element has the excellent orientability of the liquid crystal molecules. The high-speed responsiveness with an electric field change is obtd. in this way without imparing the antiferroelectric characteristic and orientability.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、液晶表示素子、液晶記憶素子、液晶音響素子
等の液晶材料として好適に使用される高分子液晶組成物
に関する。本発明はまた、それを用いた液晶光学素子に
関する。更に、その液晶光学素子の駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a polymeric liquid crystal composition suitably used as a liquid crystal material for liquid crystal display elements, liquid crystal memory elements, liquid crystal acoustic elements, and the like. The present invention also relates to a liquid crystal optical element using the same. Furthermore, the present invention relates to a method of driving the liquid crystal optical element.

〔従来の技術] 強誘電性液晶の光学的異方性を利用して2枚の基板間に
液晶を挟持した光学素子がクラークとラゲルハルにより
擢案されている(特開昭56−107216号公報、特
開昭63−153521号公報)。これらは基板間の距
離を十分小さくしてカイラルスメクチックC相のらせん
構造を消失させ、2つの安定状B(いわゆる双安定性)
を得ようとするものである。しかし、このような光学素
子を作製するためには基板に配向膜を設けなければなら
ず、更にこの配向膜のため当初考えられていたほどの明
確な双安定性が得にくいという問題点がある。
[Prior Art] An optical element in which a liquid crystal is sandwiched between two substrates by utilizing the optical anisotropy of a ferroelectric liquid crystal has been proposed by Clark and Lagerhal (Japanese Unexamined Patent Publication No. 107216/1982). , Japanese Unexamined Patent Publication No. 153521/1983). These methods reduce the distance between the substrates sufficiently to eliminate the helical structure of the chiral smectic C phase, resulting in two stable states B (so-called bistability).
It is an attempt to obtain. However, in order to fabricate such an optical element, an alignment film must be provided on the substrate, and this alignment film also poses the problem that it is difficult to obtain the clear bistability that was originally thought. .

近年、M HP OB C[4−(1−IIletyl
heptyloxycarbonyl)pheny!−
4’ −octyloxy biphenyl−4−c
arboxylate)と呼ばれる液晶で従来の強誘電
性液晶には見られなかった王室定性があることが確認さ
れた(Jpn、 J、 Appl、 Phys、 27
 (1988)、 L729)。
In recent years, M HP OB C[4-(1-IIletyl
heptyloxycarbonyl)pheny! −
4'-octyloxy biphenyl-4-c
It was confirmed that a liquid crystal called arboxylate has a royal property that was not seen in conventional ferroelectric liquid crystals (Jpn, J, Appl, Phys, 27
(1988), L729).

また、この液晶が反強誘電性であること(第15回液晶
討論会講演予稿集3A21 (1989)、 P310
)や、このような反強誘電性を示す液晶を用いてデイス
プレィデバイスを作製し、従来の双安定性駆動と異なっ
た方式で駆動できること(第15回液晶討論会講演予稿
集3A23 (1989)、 P314、特開平1−2
13390号公報、特開平1−316367号公報、特
開平2−28128号公報)などが報告され、双安定性
駆動の問題点を克服できる可能性が示された。
In addition, this liquid crystal is antiferroelectric (15th Liquid Crystal Symposium Proceedings 3A21 (1989), P310
) and the ability to manufacture display devices using liquid crystals that exhibit antiferroelectricity and drive them using a method different from conventional bistable drive (15th Liquid Crystal Symposium Proceedings 3A23 (1989) , P314, JP-A-1-2
13390, JP-A-1-316367, JP-A-2-28128), etc., and the possibility of overcoming the problems of bistable drive was shown.

しかしながら、使用する液晶が低分子液晶であるため、
■従来通り配向膜を必要とすること、■大面積にわたり
均一配向を得るのが難しいことなどの問題点が残る。
However, since the liquid crystal used is a low molecular liquid crystal,
Problems remain, such as (1) requiring an alignment film as in the past, and (2) difficulty in obtaining uniform alignment over a large area.

一方、低分子液晶の配向性を改善し、大面積にわたり均
一配向を得るためには強誘電性液晶を高分子化するとよ
いこと、かつ、これに低分子液晶を混合すると応答性も
損なわれないことが見出されている(特開昭64−60
88号公報、特開昭63−284291号公報)。また
、逆に強誘電性低分子液晶に高分子液晶を混ぜた組成物
でも同様の効果が得られている(特開昭64−6628
7号公報)。
On the other hand, in order to improve the alignment of low-molecular-weight liquid crystals and obtain uniform alignment over a large area, it is better to make ferroelectric liquid crystals into polymers, and when mixed with low-molecular-weight liquid crystals, responsiveness will not be impaired. It has been discovered that
No. 88, JP-A No. 63-284291). On the other hand, similar effects have been obtained with a composition in which a ferroelectric low-molecular liquid crystal is mixed with a high-molecular liquid crystal (Japanese Patent Laid-Open No. 64-6628
Publication No. 7).

しかしながら、これらの組成物を使用した液晶素子でも
液晶分子の双安定性を用いた駆動を行うので、やはり明
確な双安定性が得にくいという問題点を残している。
However, since liquid crystal elements using these compositions are also driven using the bistability of liquid crystal molecules, the problem remains that clear bistability is difficult to obtain.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、明確な複数安定状態を有し、反強誘電性、配
向性を損なわずに高速応答性を得ることができる高分子
液晶組成物を提供しようとするものである。
The present invention aims to provide a polymeric liquid crystal composition that has a plurality of distinct stable states and can provide high-speed response without impairing antiferroelectricity or orientation.

本発明はまた、その高分子液晶組成物を用いて配向膜を
必要とせず、大面積にわたり液晶分子の均一配向を得る
ことが可能な液晶光学素子を得ようとするものである。
Another object of the present invention is to use the polymer liquid crystal composition to obtain a liquid crystal optical element that does not require an alignment film and can obtain uniform alignment of liquid crystal molecules over a large area.

本発明は更に、上記の液晶光学素子を従来の双安定駆動
による不安定な駆動でなく、第3状態を利用して安定し
た駆動のできる液晶光学素子の駆動方法を提供しようと
するものである。
A further object of the present invention is to provide a method for driving a liquid crystal optical element that can stably drive the liquid crystal optical element using the third state, instead of unstable driving using conventional bistable driving. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは前記課題を解決するために鋭意研究を重ね
た結果、反強誘電性液晶相を示す高分子液晶組成物によ
り、その目的が達成されることを見出し、この知見に基
づいて本発明を完成するに至った。
As a result of intensive research to solve the above-mentioned problem, the present inventors discovered that the object could be achieved by a polymeric liquid crystal composition exhibiting an antiferroelectric liquid crystal phase, and based on this knowledge, the present invention was developed. The invention was completed.

すなわち本発明は、1種又は2種以上の低分子液晶と1
種又は2種以上の高分子液晶からなり、少な(とも1種
の低分子液晶又は高分子液晶が反強誘電性を示すことを
特徴とする高分子液晶組成物を提供するものである。
That is, the present invention provides one or more types of low-molecular liquid crystals and one
The present invention provides a polymeric liquid crystal composition comprising one or more types of polymeric liquid crystals, characterized in that at least one type of low-molecular liquid crystal or polymeric liquid crystal exhibits antiferroelectricity.

本発明の高分子液晶組成物は、反強誘電性を有する高分
子液晶組成物である。反強誘電性を有するので、明確な
複数の安定状態を得ることができる。また、高分子液晶
を含有するので、液晶分子の配向性に優れている。更に
、低分子液晶の混合された高分子液晶組成物であるので
、反強誘電性、配向性を損なわずに電界変化に対する高
速応答性を得ることが可能となっている。
The polymer liquid crystal composition of the present invention is a polymer liquid crystal composition having antiferroelectricity. Since it has antiferroelectricity, it is possible to obtain a plurality of distinct stable states. Furthermore, since it contains polymeric liquid crystal, it has excellent orientation of liquid crystal molecules. Furthermore, since it is a polymeric liquid crystal composition mixed with a low-molecular liquid crystal, it is possible to obtain high-speed response to electric field changes without impairing antiferroelectricity and orientation.

このような高分子液晶組成物としでは、■反強誘電性を
示す低分子液晶を1種以上含む低分子液晶又は低分子液
晶組成物と1種又は2種以上の高分子液晶又は高分子液
晶組成物からなる高分子液晶組成物、■反強誘電性を示
す高分子液晶を1種以上含む高分子液晶又は高分子液晶
組成物と1種又は2種以上の低分子液晶又は低分子液晶
組成物からなる高分子液晶組成物が挙げられる。ここで
■の高分子液晶及び■の低分子液晶は反強誘電性を示す
ものであってもよい。
Such polymer liquid crystal compositions include: (1) a low molecular liquid crystal or low molecular liquid crystal composition containing one or more types of low molecular liquid crystals exhibiting antiferroelectricity and one or more types of polymer liquid crystals or polymer liquid crystals; a polymer liquid crystal composition consisting of a composition, (i) a polymer liquid crystal or polymer liquid crystal composition containing one or more types of polymer liquid crystal exhibiting antiferroelectricity and one or more types of low molecular liquid crystal or low molecular liquid crystal composition; Examples include polymeric liquid crystal compositions consisting of Here, the polymer liquid crystal (2) and the low molecular liquid crystal (2) may exhibit antiferroelectricity.

高分子液晶組成物中に含まれる高分子液晶の副台として
前記■、■の場合とも、2〜95重量%とすることが好
ましく、特に5〜50重量%とすることが好ましい。高
分子液晶の割合が少な過ぎると高分子液晶組成物の配向
性などの有用性が欠けることがあり、多過ぎると、高分
子液晶組成物の電界変化に対する応答が遅くなったりす
るなどの不都合が生しることがある。また、反強誘電性
液晶の割合として前記■、■の場合とも、10〜100
重量%とすることが好ましく、特に50〜100重量%
とすることが好ましい。反強誘電性液晶の割合が少な過
ぎると、組成物として反強誘電性を示さない場合があり
、不都合を生じることがある。
In both cases (1) and (2) above, the amount of the secondary base for the polymeric liquid crystal contained in the polymeric liquid crystal composition is preferably 2 to 95% by weight, particularly preferably 5 to 50% by weight. If the proportion of the polymer liquid crystal is too small, the polymer liquid crystal composition may lack usefulness such as orientation, and if it is too large, the polymer liquid crystal composition may have disadvantages such as slow response to electric field changes. Sometimes it happens. In addition, the proportion of antiferroelectric liquid crystal is 10 to 100 in both cases (1) and (2) above.
It is preferable to set it as weight%, especially 50-100 weight%
It is preferable that If the proportion of antiferroelectric liquid crystal is too small, the composition may not exhibit antiferroelectricity, which may cause problems.

本発明に用いられる反強誘電性を示す高分子液晶として
は、適当な温度で反強誘電性を示すものであれば、特に
制限はない。一般に光学活性基とR1はアルキル基又は
アルキル鎖中にエステル結合を含んだ基を示す。)を有
する高分子液晶が好ましい。例えば、下記の繰り返し単
位を有する高分子液晶が好ましい。
The antiferroelectric liquid crystal polymer used in the present invention is not particularly limited as long as it exhibits antiferroelectricity at an appropriate temperature. Generally, the optically active group and R1 represent an alkyl group or a group containing an ester bond in the alkyl chain. ) is preferred. For example, polymeric liquid crystals having the following repeating units are preferred.

〔式中のR1及びXは、上記と同様であり、R2は−H
1CH3又は−Cz)Is 、jは1〜20の整数、k
は1〜30の整数、Aは一〇−又は−COO−、卸はO
又は1、Yは−COO−又は一0CO−を示す。)を示
す。〕具体的には、例えば、以下の繰り返し単位を有す
る液晶(a)、液晶(b)が挙げられる。
[In the formula, R1 and X are the same as above, and R2 is -H
1CH3 or -Cz)Is, j is an integer from 1 to 20, k
is an integer from 1 to 30, A is 10- or -COO-, wholesale is O
or 1, Y represents -COO- or 10CO-. ) is shown. ] Specifically, for example, liquid crystals (a) and liquid crystals (b) having the following repeating units can be mentioned.

液晶(a) CH:+  n − 相1」IL軌 [[so:等吉相(液体)、SmA : スメクチック
A相、5LIIC” : カイラルスメクチックC相、
SmCA”:反強誘電相、glassニガラス状態を示
す。]液晶(b) CHl n − ここで、反強誘電相を示す温度範囲は、これらの高分子
液晶を対向する電極間に挟持して電極間に三角波状電圧
を印加した際、クロスニコル下で透過光強度の変化が2
段階(3種類)になるときを反強誘電相として決定した
値である。
Liquid crystal (a) CH: + n − phase 1” IL orbital [[so: Tokichi phase (liquid), SmA: smectic A phase, 5LIIC”: chiral smectic C phase,
SmCA": indicates antiferroelectric phase, glass state.]Liquid crystal (b) CHl n When a triangular voltage is applied between
This value is determined as the antiferroelectric phase when the phase (three types) is reached.

また、 反強誘電性を示す低分子液晶としては、例えば、 以下のものが挙げられる。Also, Examples of low-molecular liquid crystals exhibiting antiferroelectricity include: These include:

n=7〜10 ■ 0号公報) n=6〜12 (第1 5回液晶討論会講演予稿集 A16 (1989)。n=7-10 ■ Publication No. 0) n=6-12 (1st Proceedings of the 5th LCD Symposium A16 (1989).

n=7〜10 (第1 5回液晶討論会講演予稿集 A16 n=7〜10 (特開平1−213390号公報) n=8〜10 (日本学術振興会情報料学用有機材料第142委員会 
第47回合同研究会資料P20)なお、上記化合物は反
強誘電性を有する液晶化合物の一例であり、これらの構
造式に限定されるものではない。
n=7 to 10 (1st 5th Liquid Crystal Conference Lecture Proceedings A16 n=7 to 10 (Unexamined Japanese Patent Publication No. 1-213390) n=8 to 10 (142nd Committee on Organic Materials for Information Technology, Japan Society for the Promotion of Science) Association
47th Joint Study Group Material P20) The above compound is an example of a liquid crystal compound having antiferroelectricity, and is not limited to these structural formulas.

また、反強誘電性を示す低分子液晶又は反強誘電性を示
す高分子液晶と混合される他の高分子液晶又は低分子液
晶としては、スメクチック相を示すものが好ましい。特
に、スメクチックC相又はカイラルスメクチックC相を
示すものが好ましい。
Further, as other polymer liquid crystals or low molecular liquid crystals to be mixed with the antiferroelectric low molecular liquid crystal or the antiferroelectric polymer liquid crystal, those exhibiting a smectic phase are preferable. Particularly preferred are those exhibiting a smectic C phase or a chiral smectic C phase.

このような高分子液晶としては、不斉炭素を含才ないも
のと不斉炭素を含むものが挙げられる。
Examples of such polymer liquid crystals include those that do not contain asymmetric carbon and those that contain asymmetric carbon.

不斉炭素を含まないものの例としては、以下のものが挙
げられる。
Examples of those containing no asymmetric carbon include the following.

(1)ポリアクリレート主鎖を有する高分子液晶ACH
2CH’h (Y。
(1) Polymer liquid crystal ACH with polyacrylate main chain
2CH'h (Y.

S。S.

Freidzon Polymer Common、。Freidzon Polymer Common.

1986゜ 27゜ ポリメタクリレート主鎖を有する高分子液晶Hff (H。1986° 27° Polymer liquid crystal Hff with polymethacrylate main chain (H.

Finkelmann。Finkelmann.

Makrow+ol。Makrow+ol.

Chem、+ 1978゜ ポリオキシラン主鎖を有する高分子液晶(C。Chem, + 1978° Polymer liquid crystal with polyoxirane main chain (C.

Pugh。Pugh.

Polymer Bulletin 1986゜ ポリシロキサン主鎖を有する高分子液晶H3 (H。Polymer Bulletin 1986° Polymer liquid crystal H3 with polysiloxane main chain (H.

Richard。Richard.

Mol。Mol.

Cryst。Cryst.

Liq。Liq.

Cryst、。Cryst.

198B。198B.

155゜ ポリエステル主鎖を有する高分子液晶 (M。155° Polymer liquid crystal with polyester main chain (M.

F、 i c h MacroIIlo I 。F, ic h MacroIIlo I.

Cheffl、l apid Commun。Cheffl,l apid Commun.

■ (渡辺順次、第1 4回液晶討論会講演予稿集、 988. また、 不斉炭素を含むものの例としては、 以下の ものが挙げられる。■ (Watanabe sequentially, 1st Proceedings of the 4th LCD Symposium, 988. Also, Examples of things containing asymmetric carbon are: below Things can be mentioned.

ポリアクリレート主鎖を有する不斉炭素を含む高分子液
晶 ポリメタクリレート主鎖を有する不斉炭素を含む高分子
液晶 H3 (J、 C,Dubois  ら、 Mo1. Cry
st、 Liq、 Cryst、、 1986.137
,349) (3)  ポリクロロアクリレート主鎖を有する不斉炭
素を含む高分子液晶 U、 C,Dubois  ら、 Mo1. Crys
t、 Liq、 Cryst、、 1986、 137
,349) (4)ポリオキシシラン主鎖を有する不斉炭素を含む高
分子液晶 (特開昭63−264629号公報) (5)ポリシロキサン主鎖を有する不斉炭素を含む高分
子液晶 CH。
Polymer liquid crystal containing asymmetric carbon having a polyacrylate main chain Polymer liquid crystal containing asymmetric carbon having a polymethacrylate main chain H3 (J, C, Dubois et al., Mo1. Cry
st, Liq, Cryst, 1986.137
, 349) (3) Polymer liquid crystal containing asymmetric carbon having a polychloroacrylate main chain U, C, Dubois et al., Mo1. Crys
t, Liq, Cryst, 1986, 137
, 349) (4) Polymer liquid crystal containing asymmetric carbon having a polyoxysilane main chain (JP-A-63-264629) (5) Polymer liquid crystal CH containing asymmetric carbon having a polysiloxane main chain.

2号公報) ポリエステル主鎖を有する不斉炭素を含む高分子液晶 CH。Publication No. 2) Polymer liquid crystal containing asymmetric carbon with polyester main chain CH.

24号公報) 22918号公報) (R。Publication No. 24) Publication No. 22918) (R.

Zentelら。Zentel et al.

Liq。Liq.

Cryst。Cryst.

1987゜ 2゜ 高分子液晶は2〜3量体のオリゴマー液晶であってもよ
い。
1987°2° The polymeric liquid crystal may be a dimer or trimer oligomer liquid crystal.

更に、本発明の高分子液晶組成物には、必要に応じて接
着側、減粘剤、非液晶カイラル化合物、色素等が含まれ
ていてもよい。
Furthermore, the polymeric liquid crystal composition of the present invention may contain an adhesive, a thinning agent, a non-liquid crystal chiral compound, a dye, etc., as necessary.

本発明はまた、上記の高分子液晶組成物を対向する2枚
の電極間に挟持してなることを特徴とする液晶光学素子
を提供するものである。
The present invention also provides a liquid crystal optical element characterized in that the polymer liquid crystal composition described above is sandwiched between two opposing electrodes.

第1図は、本発明の液晶光学素子の一例を示す断面図で
ある。
FIG. 1 is a sectional view showing an example of the liquid crystal optical element of the present invention.

本発明の液晶光学素子は、上記の高分子液晶組成物4を
対向する2枚の電極3.5間に挟持してなるものであり
、通常、電極3.5の外側にはそれぞれ基板2.6が設
けられており、更にその外側にはそれぞれ偏光板1.7
が設けられている。
The liquid crystal optical element of the present invention is formed by sandwiching the polymeric liquid crystal composition 4 between two opposing electrodes 3.5, and usually has a substrate 2.5 on the outside of each electrode 3.5. 6 are provided, and furthermore, on the outside thereof, polarizing plates 1.7 and 1.7 are respectively provided.
is provided.

電極3.5としては、透明性を有する材料であれば特に
限定はない。例えば、酸化インジウム又は酸化インジウ
ムと酸化スズとの混合物からなるITO膜等の透明電極
が好適であり、通常これらは基板2.6上に薄着され、
適当な形状に加工されて使用される。
The electrode 3.5 is not particularly limited as long as it is made of a transparent material. For example, transparent electrodes such as ITO films made of indium oxide or a mixture of indium oxide and tin oxide are suitable, and are usually thinly deposited on the substrate 2.6.
It is processed into an appropriate shape and used.

基板2.6としては、透明性の材料であれば特に制限は
ない。例えば、ガラスや、ポリエチレンテレフタレート
(PET)、ポリエーテルスルホン(PES)、ポリカ
ーボネート(pc)などのプラスチックフィルムなどを
用いることができる。
The substrate 2.6 is not particularly limited as long as it is made of a transparent material. For example, glass, a plastic film such as polyethylene terephthalate (PET), polyether sulfone (PES), polycarbonate (PC), etc. can be used.

基板の厚みとしては、通常10μm〜数■が好ましい。The thickness of the substrate is usually preferably 10 μm to several inches.

偏光板1.7としては、通常のものを使用することがで
きる。各々の偏光軸の方向としては特に限定はないが、
互いに直交していることが好ましい 本発明では、上記の高分子液晶組成物を使用しているの
で、電極3又は5と高分子液晶組成物4との間に配向膜
を必要としない。すなわち、配向膜が無くても、曲げ変
形やたわみ振動等により液晶組成物に剪断を加えるシェ
アリング法によって、容易に液晶分子を配向させること
ができる。したがって、従来の液晶光学素子のように配
向膜を必要とセす、大面積にわたり液晶分子が均一に配
向した液晶光学素子を得ることが可能となっている。
As the polarizing plate 1.7, a normal one can be used. There is no particular limitation on the direction of each polarization axis, but
In the present invention, which is preferably perpendicular to each other, since the above polymer liquid crystal composition is used, an alignment film is not required between the electrode 3 or 5 and the polymer liquid crystal composition 4. That is, even without an alignment film, liquid crystal molecules can be easily aligned by a shearing method in which shearing is applied to the liquid crystal composition by bending deformation, flexural vibration, or the like. Therefore, it is possible to obtain a liquid crystal optical element in which liquid crystal molecules are uniformly aligned over a large area, which does not require an alignment film like conventional liquid crystal optical elements.

第2図は、液晶光学素子内の強誘電性液晶分子の動きを
示す説明図である。
FIG. 2 is an explanatory diagram showing the movement of ferroelectric liquid crystal molecules within a liquid crystal optical element.

8は液晶分子、9は液晶分子8上のダイポール、10は
液晶分子8の移動軌跡を表すコーンを示している。3.
5は電極である。
8 is a liquid crystal molecule, 9 is a dipole on the liquid crystal molecule 8, and 10 is a cone representing the moving locus of the liquid crystal molecule 8. 3.
5 is an electrode.

通常の強誘電性液晶では、液晶光学素子のセル厚を薄く
シでいくと液晶分子のらせん構造が消失し、第2図に示
すようにセル界面に分子が平行なa又はbの状態が安定
となる、いわゆる表面安定化状態が得られる。仮にaの
状態が強誘電性液晶分子8のダイポール9が上向きの状
態、bの状態が強誘電性液晶分子8のダイポール9が下
向きの状態とすると、上向きの電界をセルの電極3.5
間に印加し、その後電界を切ると、aの状態でセル内の
全ての液晶分子8が安定化する。逆に、下向きの電界を
セルの電極3.5間に印加し、その後電界を切ると、b
の状態でセル内の全ての液晶分子8が安定化する。
In normal ferroelectric liquid crystals, when the cell thickness of the liquid crystal optical element is reduced, the helical structure of the liquid crystal molecules disappears, and the state a or b, where the molecules are parallel to the cell interface, becomes stable as shown in Figure 2. A so-called surface stabilization state is obtained. If state a is a state in which the dipole 9 of the ferroelectric liquid crystal molecules 8 is directed upward, and state b is a state in which the dipole 9 of the ferroelectric liquid crystal molecules 8 is directed downward, the upward electric field is applied to the electrodes 3.5 of the cell.
When the electric field is applied during this period and then the electric field is turned off, all the liquid crystal molecules 8 in the cell are stabilized in the state a. Conversely, if a downward electric field is applied between the electrodes 3.5 of the cell and then the electric field is turned off, b
All liquid crystal molecules 8 within the cell are stabilized in this state.

第3図は、第2図に示した液晶分子を上から見た説明図
であり、第3図(a)は第2図のaの状態、第3図(b
)は第2図のbの状態を表す。
FIG. 3 is an explanatory diagram of the liquid crystal molecules shown in FIG. 2 viewed from above, and FIG.
) represents the state b in FIG.

第3図(a)及び第3図(b)に示すように、aの状態
とbの状態とで液晶分子8のスメクチック層1工に対し
て傾く方向、すなわち光学軸12が異なるので、セル上
下に適当な方向の偏光板を設ければ明暗表示ができるこ
とがわかる。
As shown in FIGS. 3(a) and 3(b), since the direction in which the liquid crystal molecules 8 are tilted with respect to the smectic layer 1, that is, the optical axis 12, is different between state a and state b, the cell It can be seen that bright and dark display can be achieved by providing polarizing plates in appropriate directions above and below.

以上は、強誘電性液晶を用いた液晶光学素子の場合であ
るが、反強誘電性液晶を用いた液晶光学素子の場合も同
様に、セル厚を薄(するとセル界面に液晶分子が平行な
a及びbの状態が安定となる。しかし、反強誘電性液晶
を用いた液晶光学素子の場合、電界がゼロの状態では隣
合うスメクチック層間でダイポールが互いに逆向き、す
なわち隣合う液晶分子の傾く方向がスメクチック層法線
に対し互いに逆向きの状態が安定に存在する。
The above is a case of a liquid crystal optical element using a ferroelectric liquid crystal, but similarly, in the case of a liquid crystal optical element using an antiferroelectric liquid crystal, the cell thickness is thinned (so that the liquid crystal molecules are parallel to the cell interface). States a and b are stable.However, in the case of a liquid crystal optical element using antiferroelectric liquid crystal, when the electric field is zero, the dipoles between adjacent smectic layers are oriented in opposite directions, that is, the adjacent liquid crystal molecules are tilted. A state in which the directions are mutually opposite to the normal to the smectic layer stably exists.

第4図は、反強誘電性液晶を用いた液晶光学素子の電界
がゼロの状態での液晶分子の状態を示す説明図である。
FIG. 4 is an explanatory diagram showing the state of liquid crystal molecules in a state where the electric field of a liquid crystal optical element using antiferroelectric liquid crystal is zero.

この状態をCとする。Let this state be C.

Cの状態では、液晶分子の光学軸12の方向は全体の液
晶分子の平均的方向、すなわちスメクチック層11に垂
直な方向となる。
In state C, the direction of the optical axis 12 of the liquid crystal molecules is the average direction of all liquid crystal molecules, that is, the direction perpendicular to the smectic layer 11.

第5図及び第6図は、それぞれ強誘電性液晶を用いた液
晶光学素子、反強誘電性液晶を用いた液晶光学素子の印
加電圧の変化に対する液晶分子の状態を示すグラフであ
る。横軸は印加電圧(V)を示し、縦軸は液晶分子の状
態を示す。
5 and 6 are graphs showing the states of liquid crystal molecules with respect to changes in applied voltage in a liquid crystal optical element using ferroelectric liquid crystal and a liquid crystal optical element using antiferroelectric liquid crystal, respectively. The horizontal axis shows the applied voltage (V), and the vertical axis shows the state of the liquid crystal molecules.

強誘電性液晶を用いた液晶光学素子、反強誘電性液晶を
用いた液晶光学素子ともに液晶分子の状態にヒステリシ
スが存在する。特に、反強誘電性液晶を用いた液晶光学
素子では2つのヒステリシスが存在する。
Hysteresis exists in the state of liquid crystal molecules in both liquid crystal optical elements using ferroelectric liquid crystals and liquid crystal optical elements using antiferroelectric liquid crystals. In particular, two types of hysteresis exist in liquid crystal optical elements using antiferroelectric liquid crystals.

第7図は、液晶分子の各状態における光学軸と偏光板の
偏光軸の方向を示す説明図である。
FIG. 7 is an explanatory diagram showing the directions of the optical axis of the liquid crystal molecules in each state and the polarization axis of the polarizing plate.

上述のように反強誘電性液晶を用いた液晶光学素子では
、液晶分子8の状態にa、b及びCの3つの安定な状態
が存在する。セル内の液晶分子を配向した状態では、各
状態の光学軸12は液晶分子8の平均的方向、すなわち
第7図に示した方向である。
As described above, in the liquid crystal optical element using antiferroelectric liquid crystal, the liquid crystal molecules 8 have three stable states, a, b, and C. When the liquid crystal molecules in the cell are oriented, the optical axis 12 in each state is the average direction of the liquid crystal molecules 8, that is, the direction shown in FIG.

このような反強誘電性液晶を用いた液晶光学素子では、
偏光板を直交ニコルとして設定する場合の偏光軸の設定
方向として、2種類の好適な方向が考えられる。第1の
方向は、Cの状態が晴、aの状態とbの状態が等価な明
となるような方向、すなわち、第7図に示すように直交
ニコルの偏光軸13又は14の一方をCの状態の光学軸
と一致させる方向である。第2の方向は、aの状態が明
、Cの状態が中間、bの状態が暗となるような方向、す
なわち、直交ニコルの偏光軸13又は14の方をbの状
態の光学軸と一致させる方向である。
In liquid crystal optical elements using such antiferroelectric liquid crystals,
There are two suitable directions for setting the polarization axis when the polarizing plates are set as crossed Nicols. The first direction is a direction in which the state of C is clear and the states of a and b are equivalently bright, that is, as shown in FIG. This is the direction that aligns with the optical axis of the state. The second direction is a direction in which state a is bright, state C is intermediate, and state b is dark, that is, the polarization axis 13 or 14 of crossed Nicols is aligned with the optical axis of state b. The direction is to

この場合、aの状態とbの状態は明暗逆になるように設
定してもよい。
In this case, the state a and the state b may be set so that their brightness and darkness are reversed.

第8Vは、液晶光学素子の電極間に三角波状の電圧を印
加したときの透過光強度Tの様子を示したグラフであり
、第8図(a)は、上記第1の方向に偏光板を設定した
場合、第81ffi(b)は、上記第2の方向に偏光板
を設定した場合である。横軸は電圧(■)、縦軸は透過
光強度Tを示す。
8V is a graph showing the transmitted light intensity T when a triangular wave voltage is applied between the electrodes of the liquid crystal optical element, and FIG. If set, the 81st ffi (b) is a case where the polarizing plate is set in the second direction. The horizontal axis shows the voltage (■), and the vertical axis shows the transmitted light intensity T.

第8図(a)、第8図(b)ともに透過光強度Tは、双
安定のヒステリシスが2つ存在するような曲線を描いて
いる。
In both FIG. 8(a) and FIG. 8(b), the transmitted light intensity T draws a curve in which two bistable hysteresis patterns exist.

したがって、液晶光学素子の電極間に、高分子液晶組成
物が反強誘電相を示す温度範囲で正負2種のバイアスの
かかったパルス波形状の電圧を印加すると、液晶光学素
子を好適に駆動することができる。
Therefore, when a voltage in the form of a pulse wave with two positive and negative biases is applied between the electrodes of the liquid crystal optical element in a temperature range in which the polymeric liquid crystal composition exhibits an antiferroelectric phase, the liquid crystal optical element can be suitably driven. be able to.

第9図は、液晶光学素子の電極間に印加する駆動電圧の
一例を表すグラフである。横軸は時間(t)、縦軸は電
圧(V)を表す。
FIG. 9 is a graph showing an example of the driving voltage applied between the electrodes of the liquid crystal optical element. The horizontal axis represents time (t), and the vertical axis represents voltage (V).

第9図に示すように、液晶光学素子の電極間Cコ、高分
子液晶組成物が反強誘電相を示す温度範囲で、例えばV
oのバイアスかけておき、これを基準点としたパルス波
形状の電圧を正、負方向に加えれば、液晶分子はaの状
態とCの状態の間で双安定になる。逆に、−VOのバイ
アスかけておき、これを基準点としたパルス波形状の電
圧を正、負方向ムこ加えれば、液晶分子はbの状態とC
の状態の間で双安定となる。
As shown in FIG. 9, in the temperature range where the polymer liquid crystal composition exhibits an antiferroelectric phase, for example, V
By applying a bias of o and applying a voltage in the form of a pulse wave in the positive and negative directions using this as a reference point, the liquid crystal molecules become bistable between the a state and the C state. Conversely, if you apply a bias of -VO and apply a voltage in the form of a pulse wave in the positive and negative directions using this as a reference point, the liquid crystal molecules will change to state b and state C.
It is bistable between the states.

したがって、印加するバイアス電圧を調整すれば三状態
が安定な液晶光学素子を得ることができる。
Therefore, by adjusting the applied bias voltage, it is possible to obtain a liquid crystal optical element that is stable in three states.

このような駆動電圧により液晶光学素子を駆動すると、
上述の第1の方向に偏光板を設定した場合には、明の状
態をa、b交互に使用することができるので、平均的に
みるとセルに電圧の直流成分がかからないという利点が
ある。液晶に印加される電圧の直流成分は、液晶の分解
、劣化等の悪影響を液晶に与えるものであるので、この
ような成分がセルにかからないことは、液晶光学素子の
寿命を長くする。また、従来の双安定駆動で問題となっ
ていたように液晶分子がaの状態又はbの状態にかたよ
り易くなる、いわゆる焼き付けの効果を防止するこがで
きるという利点もある。
When a liquid crystal optical element is driven by such a driving voltage,
When the polarizing plate is set in the above-mentioned first direction, the bright states a and b can be used alternately, so there is an advantage that, on average, no DC component of voltage is applied to the cell. Since the direct current component of the voltage applied to the liquid crystal has an adverse effect on the liquid crystal, such as decomposition and deterioration of the liquid crystal, not having such a component applied to the cell prolongs the life of the liquid crystal optical element. Another advantage is that it is possible to prevent the so-called burn-in effect, in which liquid crystal molecules tend to shift to the a state or the b state, which has been a problem with conventional bistable drive.

第2の方向に偏光板を設定した場合には、従来の双安定
駆動では実現できなかった明、中間、暗の階調表示が可
能となるという利点がある。
When the polarizing plate is set in the second direction, there is an advantage that gradation display of bright, intermediate, and dark, which could not be realized with conventional bistable driving, becomes possible.

実際的な駆動パルス電圧としては、第10図のような波
形が好ましい。第11図(a)に示すような双安定性を
有する場合には、第11図(b)のようにしきい値電圧
■いを超える書き込みパルスにより例えば暗方向へスイ
ッチングを行う際に、しきい値電圧■5以下の電圧によ
るクロストークが生じてしまう。ここで、しきい値電圧
Vthは反対の状態にスイッチングさせるのに必要な電
圧であり、このクロストークによっては明暗のスイッチ
ングは起こらない。同様に、第8図(a)又は第8図〜
)に示すような液晶光学素子では、第10図のような駆
動パルス電圧を用いるとよい。すなわち、双安定性のヒ
ステレシスが2つあると考えて、双安定パルス波形(第
11図Q)))の基*OVを、王室定の場合には■。又
は−V。ヘハイアスをかけてずらした波形とするとよい
。第10図の駆動パルスによると、第8図(b)の液晶
光学素子では、光透過強度は最初の書き込みパルスによ
り中間状態へスイッチングされ、第2の書き込みパルス
により暗状態へスイッチングされ、さらに第3の書き込
みパルスにより明状態へスイッチングされる。
As a practical driving pulse voltage, a waveform as shown in FIG. 10 is preferable. In the case of having bistability as shown in FIG. 11(a), when switching to the dark direction by a write pulse exceeding the threshold voltage as shown in FIG. 11(b), Value Voltage ■ Crosstalk occurs due to voltages below 5. Here, the threshold voltage Vth is a voltage necessary to switch to the opposite state, and switching between bright and dark does not occur due to this crosstalk. Similarly, FIG. 8(a) or FIG.
), it is preferable to use a driving pulse voltage as shown in FIG. 10. That is, considering that there are two hysteresis of bistable properties, the base *OV of the bistable pulse waveform (Fig. 11 Q)) is given by ■ in the royal setting. or -V. It is best to apply Hehias to create a shifted waveform. According to the drive pulses shown in FIG. 10, in the liquid crystal optical element shown in FIG. It is switched to the bright state by a write pulse of 3.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて詳細に説明するが、本
発明はこれに限定されるものではない。
Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

実施例1 下記の構造を有する低分子液晶Aと下記の繰り返し単位
を有する高分子液晶Bとを、室温で必要な量だけ秤量し
、溶媒(ジクロロエタン)に溶解した後、溶媒を蒸発さ
せて混合し、高分子液晶組成物を得た。
Example 1 A required amount of low-molecular liquid crystal A having the following structure and high-molecular liquid crystal B having the following repeating unit was weighed at room temperature, dissolved in a solvent (dichloroethane), and then mixed by evaporating the solvent. A polymer liquid crystal composition was obtained.

液晶A 液晶B 液晶A Mn−3200 :液晶B=80:20(重量%) Cryst    5IIlcA”     Sa+A
←−1s。
Liquid crystal A Liquid crystal B Liquid crystal A Mn-3200: Liquid crystal B = 80:20 (weight%) Cryst 5IIlcA” Sa+A
←−1s.

1:cryst:結晶相又は固体相を示す。1: crystal: indicates a crystal phase or solid phase.

〕 上記の高分子液晶組成物を対向する2枚のITO電極付
ガラス基板で液晶組成物とITO電極とが接するように
挟持し、液晶光学素子を得た。ここで、ITO電極面積
は15胚×15狐、液晶組成物の厚みは2μmとし、液
晶組成物をITO電極付ガラス基板で挟持した状態で1
30°Cまで加熱した後徐冷し、118°Cで数回液晶
組成物に剪断応力を加えるソエアリング法により、液晶
分子を一方向に配向させた。
] The above polymer liquid crystal composition was sandwiched between two opposing glass substrates with ITO electrodes so that the liquid crystal composition and the ITO electrodes were in contact with each other to obtain a liquid crystal optical element. Here, the ITO electrode area was 15 embryos x 15 foxes, the thickness of the liquid crystal composition was 2 μm, and the liquid crystal composition was sandwiched between glass substrates with ITO electrodes.
The liquid crystal molecules were oriented in one direction by heating to 30° C., then slowly cooling, and applying shearing stress to the liquid crystal composition several times at 118° C. by a soaring method.

得られた液晶光学素子について、液晶組成物の相転移挙
動を偏光顕微鏡により観察し、上記の相転移温度を決定
した。
Regarding the obtained liquid crystal optical element, the phase transition behavior of the liquid crystal composition was observed using a polarizing microscope, and the above phase transition temperature was determined.

次いで、ITO電極間に第12図に示す最大電圧±30
V、周波数1.25)tzの三角波状電圧を印加し、ク
ロスニコル下での液晶光学素子の透過光強度の変化をフ
ォトダイオードで観測すると、S様相では印加電圧にほ
ぼ比例して強度が変化する、いわゆるエレクトロクリニ
ック効果が観察された。
Next, the maximum voltage ±30 shown in FIG. 12 was applied between the ITO electrodes.
When applying a triangular wave voltage with a frequency of 1.25) tz and observing the change in the transmitted light intensity of the liquid crystal optical element under crossed nicol conditions with a photodiode, the intensity changes almost in proportion to the applied voltage in the S mode. A so-called electroclinic effect was observed.

105°Cでの三角波状電圧印加時におけるクロスニコ
ル下での液晶光学素子の透過光強度の変化を第13図に
示す。
FIG. 13 shows the change in the intensity of transmitted light of the liquid crystal optical element under crossed nicol conditions when a triangular wave voltage is applied at 105°C.

更に温度を下げながら透過光強度の変化をフォトダイオ
ードで観測すると、98°C〜50°Cで液晶分子が三
安定性を示した。すなわち、反強誘電相(S+s(6”
相)では透過光強度が二段階応答(三安定性)になり、
この二段階応答から相の同定ができた。90℃での三角
波状電圧印加時におけるクロスニコル下での液晶光学素
子の透過光強度の変化の測定例を第14図に示す。ここ
で、クロスニフルの設定方向は、一方の偏光軸がスメク
チック層法線と一致した状態から30°回転した方向と
した。三安定状態の透過光強度の比は、暗状態を1とし
たとき、1;15:32であった。
When the change in transmitted light intensity was observed with a photodiode while the temperature was further lowered, it was found that the liquid crystal molecules exhibited tristability between 98°C and 50°C. That is, the antiferroelectric phase (S+s(6”
phase), the transmitted light intensity has a two-step response (tristable),
The phase could be identified from this two-step response. FIG. 14 shows an example of measurement of changes in transmitted light intensity of a liquid crystal optical element under crossed nicol conditions when a triangular wave voltage is applied at 90°C. Here, the setting direction of the cross niffle was a direction in which one polarization axis was rotated by 30° from the state where it coincided with the normal line of the smectic layer. The ratio of transmitted light intensities in the three stable states was 1:15:32, where the dark state was 1.

また、90℃で最大電圧が±30Vの三角波状の電圧を
電極間に印加したときの分極反転電流の測定を行ったと
ころ、第15図に示すように、液晶分子のダイポールの
反転に伴う分極反転電流のピークが2本観測され、この
相が反強誘電相であることが確認できた。
In addition, when we measured the polarization reversal current when a triangular wave voltage with a maximum voltage of ±30V was applied between the electrodes at 90°C, we found that the polarization caused by the reversal of the dipole of the liquid crystal molecules, as shown in Figure 15. Two peaks of reversal current were observed, and it was confirmed that this phase was an antiferroelectric phase.

また、得られた液晶光学素子について、上記の方向に設
定したクロスニコル下で液晶分子の配向度を測定したと
ころ、約70程度であった。これは、液晶Aのみを用い
て同様にして配向させた液晶光学素子の配向度が約30
であることに比べて明らかに配向性が良かった。
Further, the degree of orientation of liquid crystal molecules of the obtained liquid crystal optical element was measured under crossed nicols set in the above direction, and was found to be about 70. This means that the degree of orientation of a liquid crystal optical element that was oriented in the same manner using only liquid crystal A was approximately 30.
The orientation was clearly better than that of .

なお、配向度の値は、以下に示すよく知られた一a的な
測定方法に従って求めた。
Note that the value of the degree of orientation was determined according to the well-known measurement method shown below.

すなわち、上記の配向処理を施した液晶光学素子を、偏
光軸が互いに直交する二枚の偏光板間に平行に配置し、
これにハロゲンランプの白色光を入射しながら偏光板を
そのままの位置に保ったまま液晶光学素子を光のスポッ
トを中心に回転したときの透過光の強度変化を測定し、
その際の最大強度(Imax)と最小強度(Imin)
の比、Imax/lm1nを配向度とした。
That is, the liquid crystal optical element subjected to the above alignment treatment is arranged in parallel between two polarizing plates whose polarization axes are orthogonal to each other,
While white light from a halogen lamp was incident on this, the intensity change of the transmitted light was measured when the liquid crystal optical element was rotated around the light spot while keeping the polarizing plate in the same position.
Maximum intensity (Imax) and minimum intensity (Imin) at that time
The ratio of Imax/lm1n was taken as the degree of orientation.

実施例2 下記の構造を有する低分子液晶Aと下記の繰り返し単位
を有する高分子液晶Cとを、実施例1と同様にして混合
し、 液晶A 高分子液晶組成物を得た。
Example 2 Low molecular liquid crystal A having the following structure and polymer liquid crystal C having the following repeating unit were mixed in the same manner as in Example 1 to obtain a liquid crystal A polymer liquid crystal composition.

液晶C Mn=4 000 液晶A:液晶C=60: (重量%) 上記の高分子液晶組成物を実施例1と同様に2枚のIT
O電極付ガラス基板で挟持し、液晶光学素子を作製した
。次いで、液晶組成物をITO電極付ガラス基板で挟持
した状態で140°Cまで加熱した後徐冷し、123°
Cで数回液晶組成物に剪断応力を加えるシェアリング法
により、液晶分子を一方向に配向させた。
Liquid crystal C Mn=4 000 Liquid crystal A: Liquid crystal C=60: (wt%) The above polymer liquid crystal composition was applied to two sheets of IT in the same manner as in Example 1.
A liquid crystal optical element was produced by sandwiching the glass substrates with O electrodes. Next, the liquid crystal composition was heated to 140°C while being sandwiched between glass substrates with ITO electrodes, and then slowly cooled to 123°C.
The liquid crystal molecules were oriented in one direction by a shearing method in which shearing stress was applied to the liquid crystal composition several times at C.

得られた液晶光学素子について、液晶組成物の相転移挙
動を偏光顕微鏡により観察し、上記の相転移温度を決定
した。
Regarding the obtained liquid crystal optical element, the phase transition behavior of the liquid crystal composition was observed using a polarizing microscope, and the above phase transition temperature was determined.

次いで、60゛Cの反強誘電相(SmCA″相)におい
て実施例1と同様に透過光強度を測定したところ、実施
例1と同様に良好な三安定状態を示した。三安定状態の
透過光強度の比は、暗状態を1としたとき、1:12:
30であった。
Next, when the transmitted light intensity was measured in the antiferroelectric phase (SmCA'' phase) at 60°C in the same manner as in Example 1, it showed a good tristable state as in Example 1. Transmission in the tristable state The light intensity ratio is 1:12: when the dark state is 1.
It was 30.

また、得られた液晶光学素子について、実施例1と同様
に配向度を測定したところ、約50程度であり、こ・の
高分子液晶組成物の配向性は良好であった。
Further, when the degree of orientation of the obtained liquid crystal optical element was measured in the same manner as in Example 1, it was about 50, indicating that the degree of orientation of this polymeric liquid crystal composition was good.

比較例1 下記の繰り返し単位を有する高分子液晶りと下記の構造
を有する低分子液晶Eとを、実施例1と同様にして混合
し、高分子液晶組成物を得た。
Comparative Example 1 A polymer liquid crystal having the following repeating unit and a low molecular liquid crystal E having the following structure were mixed in the same manner as in Example 1 to obtain a polymer liquid crystal composition.

液晶D M n = 6 8 液晶E 液晶D=液晶E=20: 80(重量%) glass +−5mC” ←−−5mA  ←−−I
s。
Liquid crystal DM n = 6 8 Liquid crystal E Liquid crystal D = Liquid crystal E = 20: 80 (weight%) glass +-5mC" ←--5mA ←--I
s.

上記の高分子液晶組成物を実施例1と同様に2枚のIT
O電極付ガラス基板で挟持し、液晶光学素子を作製した
。次いで、液晶組成物をITO電極付ガラス基板で挟持
した状態で90°Cまで加熱した後徐冷し、80°Cで
数回液晶組成物に剪断応力を加えるシェアリング法によ
り、液晶分子を一方向に配向させた。
The above polymer liquid crystal composition was applied to two IT sheets in the same manner as in Example 1.
A liquid crystal optical element was produced by sandwiching the glass substrates with O electrodes. Next, the liquid crystal composition was heated to 90°C while being sandwiched between glass substrates with ITO electrodes, and then slowly cooled, and the liquid crystal molecules were heated to 80°C several times by the shearing method in which shear stress was applied to the liquid crystal composition. oriented in the direction.

得られた液晶光学素子について、液晶組成物の相転移挙
動を偏光顕微鏡により観察し、上記の相転移温度を決定
した。この液晶組成物は、反強誘電相を示さなかった。
Regarding the obtained liquid crystal optical element, the phase transition behavior of the liquid crystal composition was observed using a polarizing microscope, and the above phase transition temperature was determined. This liquid crystal composition did not exhibit an antiferroelectric phase.

次いで、43゛Cの強誘電相(SmC”相)において実
施例1と同様に透過光強度を測定したところ、双安定性
しか示さなかった(第16図)、双安定状態の透過光強
度の比は、暗状態を1としたとき、1:15であった。
Next, when the transmitted light intensity was measured in the ferroelectric phase (SmC" phase) at 43°C in the same manner as in Example 1, only bistability was observed (Fig. 16). The ratio was 1:15, with the dark state being 1.

実施例3 下記の繰り返し単位を有する高分子液晶Fと下記の構造
を有する低分子液晶A、G及びHとを、実施例1と同様
にして混合し、高分子液晶組成物を得た。
Example 3 Polymer liquid crystal F having the following repeating unit and low molecular liquid crystals A, G, and H having the following structures were mixed in the same manner as in Example 1 to obtain a polymer liquid crystal composition.

液晶F L Mn=4200 液晶A 液晶G H3 液晶H (特開平1168793号公報記載) 液晶F:液晶A:液晶G:′1g、晶H=30:30:
20:20 (重量%)glass  +−SmC,1
”←−−− Sn+C”  ←−−− SmA    
   Is。
Liquid crystal F L Mn=4200 Liquid crystal A Liquid crystal G H3 Liquid crystal H (described in JP-A-1168793) Liquid crystal F: Liquid crystal A: Liquid crystal G: '1g, Crystal H = 30:30:
20:20 (wt%) glass +-SmC, 1
”←−−− Sn+C” ←−−− SmA
Is.

上記の高分子液晶組成物を実施例1と同様に2枚のIT
O電極付ガラス基板で挟持し、液晶光学素子を作製した
。次いで、液晶組成物をITO電極付ガラス基板で挟持
した状態で130°Cまで加熱した後徐冷し、120°
Cで数回液晶組成物に剪断応力を加えるシェアリング法
により、液晶分子を一方向に配向させた。更に室温まで
徐冷した。
The above polymer liquid crystal composition was applied to two IT sheets in the same manner as in Example 1.
A liquid crystal optical element was produced by sandwiching the glass substrates with O electrodes. Next, the liquid crystal composition was heated to 130°C while being sandwiched between glass substrates with ITO electrodes, and then slowly cooled to 120°C.
The liquid crystal molecules were oriented in one direction by a shearing method in which shearing stress was applied to the liquid crystal composition several times at C. It was further slowly cooled to room temperature.

得られた液晶光学素子について、液晶組成物の相転移挙
動を偏光顕微鏡により観察し、上記の相転移温度を決定
した。この液晶組成物は室温を含む広い温度範囲で反強
誘電相を示した。
Regarding the obtained liquid crystal optical element, the phase transition behavior of the liquid crystal composition was observed using a polarizing microscope, and the above phase transition temperature was determined. This liquid crystal composition exhibited an antiferroelectric phase over a wide temperature range including room temperature.

次いで、40°Cの反強誘電相(SmCA”相)におい
で実施例1と同様に透過光強度を測定したところ、第1
7図に示すように、実施例1と同様に良好な王室定状態
を示した。印加電圧が+30V、0■、−30Vにおけ
る透過光強度の比は、1:10:23であった。
Next, when the transmitted light intensity was measured in the antiferroelectric phase (SmCA" phase) at 40°C in the same manner as in Example 1, the first
As shown in FIG. 7, similar to Example 1, a good stable state was exhibited. The ratio of transmitted light intensity at applied voltages of +30V, 0V, and -30V was 1:10:23.

また、この液晶光学素子の電極間に、第18図に示すよ
うに、+30■から一30Vに変化する波形1、+30
■からOVに変化する波形2.0■から+30Vに変化
する波形3の3種類の波形の電圧を印加した場合の液晶
組成物の応答時間を測定した。測定温度は45°Cとし
た。結果を第1表に示す。
Moreover, between the electrodes of this liquid crystal optical element, as shown in FIG.
The response time of the liquid crystal composition was measured when voltages with three types of waveforms were applied: waveform 2.0, which changes from ■ to OV, and waveform 3, which changes to +30V. The measurement temperature was 45°C. The results are shown in Table 1.

比較例2 液晶Fを用いて、実施例3と同様の方法で液晶分子の配
向した液晶光学素子を作製した(液晶の厚み2μm)。
Comparative Example 2 A liquid crystal optical element in which liquid crystal molecules were oriented was produced using Liquid Crystal F in the same manner as in Example 3 (liquid crystal thickness: 2 μm).

この液晶光学素子について、実施例3と同様に、第18
図に示した3種類の波形の電圧を印加した場合の液晶組
成物の応答時間を測定した。測定温度は45゛Cとした
。結果を第1表に示す。
Regarding this liquid crystal optical element, the 18th
The response time of the liquid crystal composition when voltages having the three types of waveforms shown in the figure were applied was measured. The measurement temperature was 45°C. The results are shown in Table 1.

第1表 実施例4 下記の繰り返し単位を有する高分子液晶Iと下記の構造
を有する低分子液晶H及びJとを、実施例1と同様にし
て混合し、高分子液晶組成物を得た。
Table 1 Example 4 Polymer liquid crystal I having the following repeating units and low molecular liquid crystals H and J having the following structures were mixed in the same manner as in Example 1 to obtain a polymer liquid crystal composition.

液晶I Mn=38 液晶H 液晶J 液晶J:液晶I:液晶に =6010:20(重量%) 上記の高分子液晶組成物を実施例1と同様に2枚のIT
O電極付ガラス基板で挟持し、液晶光学素子を作製した
。次いで、液晶組成物をITO電極付ガラス基板で挟持
した状態で110°Cまで加熱した後徐冷し、100℃
で数回液晶組成物に剪断応力を加えるシェアリング法に
より、液晶分子を一方向に配向させた。
Liquid crystal I Mn=38 Liquid crystal H Liquid crystal J Liquid crystal J: Liquid crystal I: Liquid crystal = 6010:20 (wt%) The above polymer liquid crystal composition was applied to two sheets of IT in the same manner as in Example 1.
A liquid crystal optical element was produced by sandwiching the glass substrates with O electrodes. Next, the liquid crystal composition was heated to 110°C while being sandwiched between glass substrates with ITO electrodes, and then slowly cooled to 100°C.
The liquid crystal molecules were oriented in one direction using the shearing method in which shearing stress was applied to the liquid crystal composition several times.

得られた液晶光学素子について、液晶組成物の相転移挙
動を偏光顕vl!鏡により観察し、上記の相転移温度を
決定した。上記のように、この高分子液晶組成物は、室
温を含む広い温度範囲で反強誘電相を示した。
Regarding the obtained liquid crystal optical element, the phase transition behavior of the liquid crystal composition was observed using a polarized light microscope vl! The above phase transition temperature was determined by observation using a mirror. As mentioned above, this polymeric liquid crystal composition exhibited an antiferroelectric phase over a wide temperature range including room temperature.

次いで、40℃の反強誘電相(SmCA”相)において
実施例1と同様に透過光強度を測定したところ、実施例
1と同様に良好な王女定状態を示した。印加電圧が±3
0V、OV、−30Vにおける透過光強度の比は、1ニ
ア;16であった。
Next, when the transmitted light intensity was measured in the antiferroelectric phase (SmCA" phase) at 40° C. in the same manner as in Example 1, it showed a good stable state as in Example 1. The applied voltage was ±3
The ratio of transmitted light intensities at 0V, OV, and -30V was 1:16.

また、この液晶光学素子の電極間に、実施例3と同様に
、第18図に示した3種類の波形の電圧を印加した場合
の液晶組成物の応答時間を測定した。測定温度は35°
Cとした。結果を第2表に示す。
Further, similarly to Example 3, the response time of the liquid crystal composition was measured when voltages having the three types of waveforms shown in FIG. 18 were applied between the electrodes of this liquid crystal optical element. Measurement temperature is 35°
It was set as C. The results are shown in Table 2.

比較例3 液晶■を用いて、実施例4と同様の方法で液晶分子の配
向した液晶光学素子を作製した(液晶の厚み2μm)。
Comparative Example 3 A liquid crystal optical element in which liquid crystal molecules were oriented was produced in the same manner as in Example 4 using liquid crystal (1) (liquid crystal thickness: 2 μm).

この液晶光学素子について、実施例4と同様に、第18
図に示した3種類の波形の電圧を印加した場合の液晶組
成物の応答時間を測定した。測定温度は35°Cとした
。結果を第2表に示す。
Regarding this liquid crystal optical element, the 18th
The response time of the liquid crystal composition when voltages having the three types of waveforms shown in the figure were applied was measured. The measurement temperature was 35°C. The results are shown in Table 2.

第2表 なお、実施例3で使用した高分子液晶F及び実施例4で
使用した高分子液晶■の合成は以下のように行った。
Table 2 Note that polymer liquid crystal F used in Example 3 and polymer liquid crystal II used in Example 4 were synthesized as follows.

(Ill腋1iメ針釘収 液晶F CB。(Ill armpit 1i needle and nail storage) LCD F C.B.

■         CH3 4−アセトキシ安息香酸0.1モル及び塩化チオニル5
0dの溶液を80°Cで2時間攪拌した。反応後、過剰
の塩化チオニルを減圧留去し、酸塩化物を得た。次に、
エチル−3−ヒドロキシブタノ−[−−10,12モル
とトリエチルアミン0.2モルのTHF500j!i!
溶液を攪拌した。この中に先程得られた酸塩化物をTH
F溶液として滴下し、8時間攪拌した。反応液を濃縮後
、エーテル抽出し、乾燥、濃縮後、カラムクロマトグラ
フィーにて精製し、目的とするエステル体(1)を得た
(収率86%)。
■ CH3 4-acetoxybenzoic acid 0.1 mol and thionyl chloride 5
The solution of 0d was stirred at 80°C for 2 hours. After the reaction, excess thionyl chloride was distilled off under reduced pressure to obtain an acid chloride. next,
Ethyl-3-hydroxybutano-[-10.12 moles and 0.2 moles of triethylamine in THF500j! i!
The solution was stirred. In this, the acid chloride obtained earlier was added to TH
It was added dropwise as a F solution and stirred for 8 hours. The reaction solution was concentrated, extracted with ether, dried, concentrated, and purified by column chromatography to obtain the desired ester (1) (yield: 86%).

■で得られたエステル体(1)80ミリモルのエーテル
200d溶液を撹拌した。そこにベンジルアミンを40
rR1導入し、1時間攪拌した。反応液をエーテル抽出
し、乾燥、濃縮後、カラムクロマトグラフィーにて精製
し、目的とするアルコール体(2)を得た(収率96%
)。
A solution of 80 mmol of the ester (1) obtained in step (2) in 200 d of ether was stirred. Add 40 benzylamine to it.
rR1 was introduced and stirred for 1 hour. The reaction solution was extracted with ether, dried, concentrated, and purified by column chromatography to obtain the desired alcohol (2) (yield 96%).
).

(3)の合成 特開平1−113424号公報に記載されている中間体
[4’−(12−ブロモドデシルオキシ)ビフェニル−
4−カルボン酸〕50ミリモル及び塩化チオニル30d
の溶液を80°Cで2時間攪拌した。反応後、過剰の塩
化チオニルを減圧留去し、酸塩化物を得た。次に、■で
得られたアルコール体(2)60ミリモルとトリエチル
アミン70ミリモルのTHF200m溶液を撹拌した。
Synthesis of (3) The intermediate [4'-(12-bromododecyloxy)biphenyl-
4-carboxylic acid] 50 mmol and thionyl chloride 30 d
The solution was stirred at 80°C for 2 hours. After the reaction, excess thionyl chloride was distilled off under reduced pressure to obtain an acid chloride. Next, a 200 m THF solution of 60 mmol of the alcohol compound (2) obtained in step (2) and 70 mmol of triethylamine was stirred.

この中に先程得られた酸塩化物をTHF溶液として滴下
し、8時間撹拌した。反応液を濃縮後、エーテル抽出し
、乾燥、濃縮後、カラムクロマトグラフィーにて精製し
、目的とするエステル体(3)を得た(収率76%)。
The acid chloride obtained earlier was added dropwise as a THF solution to this, and the mixture was stirred for 8 hours. The reaction solution was concentrated, extracted with ether, dried, concentrated, and purified by column chromatography to obtain the desired ester (3) (yield: 76%).

■  CH,+ (4)  の合成 22−ジヒドロキシメチルプロピオン酸18ミリモル及
び水酸化テトラメチルアンモニウム(5水和物)20ミ
リモルをDMF 150−中で2時間攪拌した。次にこ
の中に■で得られたエステル体(3N8ミリモルを加え
、6時間撹拌した。
(2) Synthesis of CH,+ (4) 18 mmol of 22-dihydroxymethylpropionic acid and 20 mmol of tetramethylammonium hydroxide (pentahydrate) were stirred in DMF 150 for 2 hours. Next, 8 mmol of the ester (3N) obtained in step ① was added to this, and the mixture was stirred for 6 hours.

反応後エーテル抽出し、乾燥、濃縮後、カラムクロマト
グラフィーにて精製し、目的とするエステル体(4)を
得た(収率62%)。
After the reaction, the reaction mixture was extracted with ether, dried, concentrated, and purified by column chromatography to obtain the desired ester (4) (yield: 62%).

重縮合反応 ■  CH。Polycondensation reaction ■ CH.

の合成 ■で得られたエステル体(4) 1.7ミリモル及びピ
リジン5rI11をトルエン30d中に入れ、ン容液を
70″Cに保持しながら撹拌し、この中ヘグルタル酸ジ
クロライト用、7ミリモルを滴下し、12時間攪拌した
。次いで反応液を一70°Cに冷却した多量のアセトン
中に投入し、重縮合反応を停止させた。温度を室温に戻
した後、濃縮後カラムクロマトグラフィー精製を行い、
NMR,IRの測定により構造を確認し、目的とするポ
リマーを得た(収率77%、Mn=4,200 (GP
(、Ps換算))。第19図にNMR測定結果、第20
図にIR測定結果を示す。
Synthesis 1.7 mmol of the ester (4) obtained in step (4) and 5rI11 of pyridine were placed in 30 d of toluene and stirred while maintaining the solution at 70''C. It was added dropwise and stirred for 12 hours.Then, the reaction solution was poured into a large amount of acetone cooled to -70°C to stop the polycondensation reaction.After returning the temperature to room temperature, it was concentrated and purified by column chromatography. conduct,
The structure was confirmed by NMR and IR measurements, and the desired polymer was obtained (yield 77%, Mn = 4,200 (GP
(, Ps conversion)). Figure 19 shows the NMR measurement results, Figure 20
The figure shows the IR measurement results.

(11)戒濯−m戊 液晶I CI(。(11) Kairansu-m 戊 LCD I CI(.

■         CH。■ CH.

4−アセトキシ安息香酸0.1モル及び塩化チオニル5
0j!I!の溶液を80°Cで2時間攪拌した。反応後
、過剰の塩化チオニルを減圧留去し、酸塩化物を得た。
4-acetoxybenzoic acid 0.1 mol and thionyl chloride 5
0j! I! The solution was stirred at 80°C for 2 hours. After the reaction, excess thionyl chloride was distilled off under reduced pressure to obtain an acid chloride.

次に、[−ブチル−3−ヒドロキシブタノエート0.1
2モルとトリエチルアミン0.2モルのTHF500d
溶液を攪拌した。この中に先程得られた酸塩化物をTH
Fi液として滴下し、8時間攪拌した。反応液を濃縮後
、エーテル抽出し、乾燥、濃縮後、カラムクロマトグラ
フィーにて精製し、目的とするエステル体(5)を得た
(収率81%)。
Next, [-butyl-3-hydroxybutanoate 0.1
2 moles and 0.2 moles of triethylamine in THF500d
The solution was stirred. In this, the acid chloride obtained earlier was added to TH
It was added dropwise as a Fi solution and stirred for 8 hours. The reaction solution was concentrated, extracted with ether, dried, concentrated, and purified by column chromatography to obtain the desired ester (5) (yield: 81%).

■で得られたエステル体(5)80ミリモルのエーテル
200m溶液を攪拌した。そこにヘンシルアミンを40
d導入し、1時間攪拌した。反応液をエーテル抽出し、
乾燥、濃縮後、カラムクロマトグラフィーにて精製し、
目的とするアルコール体(6)を得た(収率96%)。
A solution of 80 mmol of the ester (5) obtained in step (2) in 200 m of ether was stirred. Add 40 hensylamine to it.
d and stirred for 1 hour. The reaction solution was extracted with ether,
After drying and concentrating, it was purified by column chromatography.
The desired alcohol (6) was obtained (yield 96%).

(7)の合成 特開平1−113424号公報に記載されている中間体
[4’−(12−フロモトデシルオキシ)ビフェニル−
4−カルボン酸〕50ミリモル及び塩化チオニル30−
の溶液を80°Cで2時間攪拌した。反応後、過剰の塩
化チオニルを減圧留去し、酸塩化物を得た。次に、■で
得られたアルコール体(6)60ミリモルとトリエチル
アミン70ミリモルのTHF200a+f溶液を攪拌し
た。この中に先程得られた酸塩化物をTHF溶液として
滴下し、8時間攪拌した。反応液を濃縮後、エーテル抽
出し、乾燥、濃縮後、カラムクロマトグラフィーにて精
製し、目的とするエステル体(7)を得た(収率79%
)。
Synthesis of (7) The intermediate [4'-(12-furomotodecyloxy)biphenyl-
50 mmol of 4-carboxylic acid and 30 mmol of thionyl chloride
The solution was stirred at 80°C for 2 hours. After the reaction, excess thionyl chloride was distilled off under reduced pressure to obtain an acid chloride. Next, a THF200a+f solution of 60 mmol of the alcohol compound (6) obtained in step (2) and 70 mmol of triethylamine was stirred. The acid chloride obtained earlier was added dropwise as a THF solution to this, and the mixture was stirred for 8 hours. After concentrating the reaction solution, it was extracted with ether, dried, concentrated, and purified by column chromatography to obtain the desired ester (7) (yield 79%).
).

■  CH3 (8)の合成 2.2−ジヒドロキシメチルプロピオン酸18ミリモル
及び水酸化テトラメチルアンモニウム(5水和物)20
ミリモルをDMF 150咄中で2時間撹拌した。次に
この中に■で得られたエステル体(7)18ミリモルを
加え、6時間撹拌した。
■ Synthesis of CH3 (8) 2.18 mmol of 2-dihydroxymethylpropionic acid and 20 mmol of tetramethylammonium hydroxide (pentahydrate)
The mmol was stirred in 150 ml of DMF for 2 hours. Next, 18 mmol of the ester compound (7) obtained in (1) was added to the mixture, and the mixture was stirred for 6 hours.

反応後エーテル抽出し、乾燥、濃縮後、カラムクロマト
グラフィーにて精製し、目的とするエステル体(8)を
得た(収率71%)。
After the reaction, the reaction mixture was extracted with ether, dried, concentrated, and purified by column chromatography to obtain the desired ester (8) (yield: 71%).

重縮合反応− ■  CH3 の合成 ■で得られたエステル体(8) 1.7 ミリモル及び
ピリジン5mをトルエン30−中に入れ、?容液を70
°Cに保持しながら攪拌し、この中ヘグルタル酸ジクロ
ライド1.7ミリモルを滴下し、12時間攪拌した。次
いで反応液を一70°Cに冷却した多量のアセトン中に
投入し、重縮合反応を停止させた。温度を室温に戻した
後、濃縮後カラムクロマトグラフィー精製を行い、NM
RlIRにより構造を確認し、目的とするポリマーを得
た(収率87%、Mn=3,800 (GPC,Ps換
算))。
Polycondensation reaction - ■ Synthesis of CH3 1.7 mmol of the ester (8) obtained in step (1) and 5 m of pyridine are placed in 30 mm of toluene, and ? 70% liquid
The mixture was stirred while being maintained at °C, and 1.7 mmol of heglutaric acid dichloride was added dropwise thereto, followed by stirring for 12 hours. Next, the reaction solution was poured into a large amount of acetone cooled to -70°C to stop the polycondensation reaction. After returning the temperature to room temperature, column chromatography purification was performed after concentration, and NM
The structure was confirmed by RlIR, and the desired polymer was obtained (yield 87%, Mn=3,800 (GPC, Ps conversion)).

第21図にNMR測定結果、第22図にIRi[定結果
を示す。
FIG. 21 shows the NMR measurement results, and FIG. 22 shows the IRi measurement results.

〔発明の効果〕〔Effect of the invention〕

本発明の高分子液晶組成物は、明確な複数安定状態を有
し、反強誘電性、配向性を損なわずに高速応答性を得る
ことができるものである。
The polymer liquid crystal composition of the present invention has a plurality of distinct stable states and can obtain high-speed response without impairing antiferroelectricity or orientation.

また本発明の液晶光学素子は、この高分子液晶組成物を
用いて配向膜を必要とせず、大面積にわたり均一配向を
得ることが可能なものである。
Further, the liquid crystal optical element of the present invention uses this polymeric liquid crystal composition, does not require an alignment film, and can obtain uniform alignment over a large area.

更に本発明の液晶光学素子の駆動方法は、上記の液晶光
学素子を従来の双安定駆動による不安定な駆動でなく、
第3状態を利用して安定した駆動をすることのできるも
のである。
Furthermore, the method for driving a liquid crystal optical element of the present invention does not involve unstable driving of the above-mentioned liquid crystal optical element by conventional bistable driving.
It is possible to perform stable driving by utilizing the third state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の液晶光学素子の一例を示す断面図で
ある。 第2図は、液晶光学素子内の強誘電性液晶分子の動きを
示す説明図である。 第3図は、第2図に示した液晶分子を上から見た説明図
であり、第3図(a)は第2図のaの状態、第3図(′
b)は第2図のbの状態を表す。 第4図は、反強誘電性液晶を用いた液晶光学素子の電界
がゼロの状態での液晶分子の状態を示す説明図である。 第5図及び第6図は、それぞれ強誘電性液晶を用いた液
晶光学素子、反強誘電性液晶を用いた液晶光学素子の印
加電圧の変化に対する液晶分子の状態を示すグラフであ
る。横軸は印加電圧(V)を示し、縦軸は液晶分子の状
態を示す。 第7図は、液晶分子の各状態における光学軸と偏光板の
偏光軸の方向を示す説明図である。 第8図(a)及び第8図(b)は、液晶光学素子の電極
間に三角波状の電圧を印加したときの透過光強度Tの様
子を示したグラフである。横軸は電圧(■)、縦軸は透
過光強度Tを示す。 第9図は、本発明の液晶光学素子の電極間に印加する駆
動電圧の一例を表すグラフである。横軸は時間(t)、
縦軸は電圧(V)を表す。 第10図は、本発明の液晶光学素子の電極間に印加する
実際的な駆動パルス電圧の一例を表すグラフである。横
軸は時間(t)、縦軸は電圧(■)を表す。 第11図(a)は、双安定性を有する液晶光学素子の透
過光強度Tの様子を示したグラフであり、横軸は電圧(
V)、u軸は透過光強度Tを示す。第11図(b)は、
第11図(a)の液晶光学素子の電極間に印加する実際
的な駆動パルス電圧を表すグラフである。横軸は時間(
t)、If軸は電圧(V)を表す。 第12図は、実施例で使用した駆動電圧を表すグラフで
ある。横軸は時間(t)、N軸は電圧(V)を表す。 第13図、第14図は、それぞれ実施例1の液晶光学素
子の電極間に第12図の電圧を印加したときの透過光強
度Tの様子を示したグラフである。 横軸は時間(L)、縦軸は透過光強度Tを示す。 第15図は、実施例1の液晶光学素子の分極反転電流を
表すグラフである。横軸は時間(1)、縦軸は電流(任
意目盛a、u、)を表す。 第16図は、比較例1の液晶光学素子の電極間に第12
図の電圧を印加したときの透過光強度Tの様子を示した
グラフである。横軸は時間(1)、縦軸は透過光強度T
を示す。 第17図は、実施例3の液晶光学素子に印加した電圧と
、透過光強度Tの様子を示したグラフである。横軸は時
間(t)、縦軸は電圧(V)及び透過光強度Tを示す。 第18図は、実施例3等で液晶光学素子に印加した電圧
を表すグラフである。横軸は時間(1)、縦軸は電圧(
V)を表す。 第19図及び第21図は、それぞれ実施例3.4で使用
した高分子液晶のNMRの測定結果を表すチャートであ
る。 第20図及び第22図は、それぞれ実施例3.4で使用
した高分子液晶のIRの測定結果を表すチャートである
。 符号の説明 1.7 偏光板    2.6 基板 3.5 電極     4 高分子液晶組成物8 液晶
分子     9 ダイポール10 液晶分子8の移動
軌跡を表すコーン11 スメクチンク層 12 光学軸 13.14 偏光軸
FIG. 1 is a sectional view showing an example of the liquid crystal optical element of the present invention. FIG. 2 is an explanatory diagram showing the movement of ferroelectric liquid crystal molecules within a liquid crystal optical element. FIG. 3 is an explanatory view of the liquid crystal molecules shown in FIG. 2 viewed from above, and FIG.
b) represents the state b in FIG. FIG. 4 is an explanatory diagram showing the state of liquid crystal molecules in a state where the electric field of a liquid crystal optical element using antiferroelectric liquid crystal is zero. 5 and 6 are graphs showing the states of liquid crystal molecules with respect to changes in applied voltage in a liquid crystal optical element using ferroelectric liquid crystal and a liquid crystal optical element using antiferroelectric liquid crystal, respectively. The horizontal axis shows the applied voltage (V), and the vertical axis shows the state of the liquid crystal molecules. FIG. 7 is an explanatory diagram showing the directions of the optical axis of the liquid crystal molecules in each state and the polarization axis of the polarizing plate. FIGS. 8(a) and 8(b) are graphs showing the transmitted light intensity T when a triangular wave voltage is applied between the electrodes of the liquid crystal optical element. The horizontal axis shows the voltage (■), and the vertical axis shows the transmitted light intensity T. FIG. 9 is a graph showing an example of the driving voltage applied between the electrodes of the liquid crystal optical element of the present invention. The horizontal axis is time (t),
The vertical axis represents voltage (V). FIG. 10 is a graph showing an example of a practical driving pulse voltage applied between the electrodes of the liquid crystal optical element of the present invention. The horizontal axis represents time (t), and the vertical axis represents voltage (■). FIG. 11(a) is a graph showing the transmitted light intensity T of a bistable liquid crystal optical element, and the horizontal axis is the voltage (
V), the u-axis indicates the transmitted light intensity T. FIG. 11(b) shows
11 is a graph representing a practical driving pulse voltage applied between the electrodes of the liquid crystal optical element shown in FIG. 11(a). The horizontal axis is time (
t), the If axis represents voltage (V). FIG. 12 is a graph showing the driving voltage used in the example. The horizontal axis represents time (t), and the N axis represents voltage (V). 13 and 14 are graphs showing the transmitted light intensity T when the voltage shown in FIG. 12 is applied between the electrodes of the liquid crystal optical element of Example 1, respectively. The horizontal axis shows time (L), and the vertical axis shows transmitted light intensity T. FIG. 15 is a graph showing the polarization reversal current of the liquid crystal optical element of Example 1. The horizontal axis represents time (1), and the vertical axis represents current (arbitrary scale a, u,). FIG. 16 shows the 12th electrode between the electrodes of the liquid crystal optical element of Comparative Example 1.
It is a graph showing the transmitted light intensity T when the voltage shown in the figure is applied. The horizontal axis is time (1), and the vertical axis is the transmitted light intensity T.
shows. FIG. 17 is a graph showing the voltage applied to the liquid crystal optical element of Example 3 and the transmitted light intensity T. The horizontal axis shows time (t), and the vertical axis shows voltage (V) and transmitted light intensity T. FIG. 18 is a graph showing the voltage applied to the liquid crystal optical element in Example 3 and the like. The horizontal axis is time (1), and the vertical axis is voltage (
V). FIG. 19 and FIG. 21 are charts showing the NMR measurement results of the polymer liquid crystal used in Example 3.4, respectively. FIGS. 20 and 22 are charts showing the IR measurement results of the polymer liquid crystal used in Example 3.4, respectively. Explanation of symbols 1.7 Polarizing plate 2.6 Substrate 3.5 Electrode 4 Polymer liquid crystal composition 8 Liquid crystal molecule 9 Dipole 10 Cone representing the movement locus of liquid crystal molecule 8 11 Smectink layer 12 Optical axis 13.14 Polarization axis

Claims (1)

【特許請求の範囲】 1、1種又は2種以上の低分子液晶と1種又は2種以上
の高分子液晶からなり、少なくとも1種の低分子液晶又
は高分子液晶が反強誘電性を示すことを特徴とする高分
子液晶組成物。 2、請求項1記載の高分子液晶組成物を対向する2枚の
電極間に挟持してなることを特徴とする液晶光学素子。 3、請求項2記載の液晶光学素子の電極間に、高分子液
晶組成物が反強誘電相を示す温度範囲で正負2種のバイ
アスのかかったパルス波形状の電圧を印加することを特
徴とする液晶光学素子の駆動方法。
[Scope of Claims] Consisting of one or more types of low molecular liquid crystals and one or more types of polymer liquid crystals, at least one type of low molecular liquid crystal or polymer liquid crystal exhibits antiferroelectricity. A polymer liquid crystal composition characterized by: 2. A liquid crystal optical element comprising the polymer liquid crystal composition according to claim 1 sandwiched between two opposing electrodes. 3. A voltage in the form of a pulse wave with two positive and negative biases is applied between the electrodes of the liquid crystal optical element according to claim 2 in a temperature range in which the polymeric liquid crystal composition exhibits an antiferroelectric phase. A method for driving liquid crystal optical elements.
JP2134030A 1990-05-25 1990-05-25 Polymer liquid crystal composition, liquid crystal optical element using the same, and method of driving liquid crystal optical element Expired - Fee Related JP2788667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2134030A JP2788667B2 (en) 1990-05-25 1990-05-25 Polymer liquid crystal composition, liquid crystal optical element using the same, and method of driving liquid crystal optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2134030A JP2788667B2 (en) 1990-05-25 1990-05-25 Polymer liquid crystal composition, liquid crystal optical element using the same, and method of driving liquid crystal optical element

Publications (2)

Publication Number Publication Date
JPH0429219A true JPH0429219A (en) 1992-01-31
JP2788667B2 JP2788667B2 (en) 1998-08-20

Family

ID=15118738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2134030A Expired - Fee Related JP2788667B2 (en) 1990-05-25 1990-05-25 Polymer liquid crystal composition, liquid crystal optical element using the same, and method of driving liquid crystal optical element

Country Status (1)

Country Link
JP (1) JP2788667B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586014A1 (en) * 1992-09-01 1994-03-09 Koninklijke Philips Electronics N.V. Optical modulation device
JPH06289367A (en) * 1992-03-04 1994-10-18 Shunsuke Kobayashi Liquid crystal display device
US5589959A (en) * 1992-09-01 1996-12-31 U.S. Philips Corporation Optical modulation device having a polymer network containing free molecules of a chiral liquid crystalline material
JP2006194993A (en) * 2005-01-11 2006-07-27 Fujitsu Ltd Optical element and optical switch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812302B (en) * 2009-12-30 2013-06-05 福州华映视讯有限公司 Liquid crystal composition for optical compensation bending mode liquid crystal display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222930A (en) * 1988-11-09 1990-09-05 Mitsubishi Gas Chem Co Inc Ferroelectric liquid crystal element
JPH03223390A (en) * 1989-10-11 1991-10-02 Sharp Corp Liquid crystal element
JPH03237188A (en) * 1990-02-14 1991-10-23 Nippon Oil Co Ltd Liquid crystal polyester
JPH03239788A (en) * 1990-02-16 1991-10-25 Nippon Oil Co Ltd Liquid crystal compound and liquid crystal composition containing it
JPH03291270A (en) * 1990-04-09 1991-12-20 Mitsubishi Petrochem Co Ltd Optically active compound and utilization thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222930A (en) * 1988-11-09 1990-09-05 Mitsubishi Gas Chem Co Inc Ferroelectric liquid crystal element
JPH03223390A (en) * 1989-10-11 1991-10-02 Sharp Corp Liquid crystal element
JPH03237188A (en) * 1990-02-14 1991-10-23 Nippon Oil Co Ltd Liquid crystal polyester
JPH03239788A (en) * 1990-02-16 1991-10-25 Nippon Oil Co Ltd Liquid crystal compound and liquid crystal composition containing it
JPH03291270A (en) * 1990-04-09 1991-12-20 Mitsubishi Petrochem Co Ltd Optically active compound and utilization thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289367A (en) * 1992-03-04 1994-10-18 Shunsuke Kobayashi Liquid crystal display device
EP0586014A1 (en) * 1992-09-01 1994-03-09 Koninklijke Philips Electronics N.V. Optical modulation device
US5589959A (en) * 1992-09-01 1996-12-31 U.S. Philips Corporation Optical modulation device having a polymer network containing free molecules of a chiral liquid crystalline material
JP2006194993A (en) * 2005-01-11 2006-07-27 Fujitsu Ltd Optical element and optical switch
JP4621506B2 (en) * 2005-01-11 2011-01-26 富士通株式会社 Optical element and optical switch

Also Published As

Publication number Publication date
JP2788667B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
EP0467662B1 (en) Liquid crystal racemic mixture, liquid crystal composition and liquid crystal element, process for manufacturing and uses thereof
EP0571278B1 (en) Antiferroelectric liquid crystal compound and process for producing the same
JPH0429219A (en) High-polymer liquid crystal composition, liquid crystal optical element formed by using this composition and method for driving liquid crystal optical element
KR100354351B1 (en) Liquid crystal compositions and liquid crystal elements containing them
JPH10279534A (en) Racemic compound and antiferroelectric liquid crystal composition containing the same
JPH0588186A (en) Liquid crystal orientation controlled film and liquid crystal element using same
JPS63182395A (en) Liquid-crystal composition and liquid-crystal element
EP0413989A2 (en) Liquid crystal compounds
JP3185967B2 (en) Antiferroelectric liquid crystal composition
JPS63246346A (en) Liquid crystal compound and liquid crystal composition containing said compound
JP3636522B2 (en) Phenylpyrimidine compound having ether group, liquid crystal material, liquid crystal composition, and liquid crystal element
JP3249602B2 (en) Antiferroelectric liquid crystal compound
JP3176546B2 (en) Novel liquid crystal compound, antiferroelectric liquid crystal composition and antiferroelectric liquid crystal display device using the same
JP3333078B2 (en) Antiferroelectric liquid crystal compound with excellent temperature dependence of response speed
JPH03134092A (en) Thin film of organic polymeric liquid crystal and information recording method
JPH08253441A (en) Liquid crystal compound having asymmetric carbon in 5-membered ring and liquid crystal composition containing the same
JPH02272088A (en) Liquid crystal composition and liquid crystal element containing the same
KR19990072773A (en) Ferrielectric liquid crystal compound
JPH08291138A (en) Antiferroelectric liquid crystal compound and liquid crystal composition containing the same
JPH08295666A (en) Liquid crystal compound and liquid crystal composition containing the same
JPH08311017A (en) Liquid crystal compound and liquid crystal composition containing same
JPH02191240A (en) Optically active naphthyl ester compound
JPH08127777A (en) Property improver for liquid crystal
JPH0632764A (en) Optically active compound and display element
JPH08113784A (en) Improver for liquid crystal characteristic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees