JPH0429208B2 - - Google Patents

Info

Publication number
JPH0429208B2
JPH0429208B2 JP56207182A JP20718281A JPH0429208B2 JP H0429208 B2 JPH0429208 B2 JP H0429208B2 JP 56207182 A JP56207182 A JP 56207182A JP 20718281 A JP20718281 A JP 20718281A JP H0429208 B2 JPH0429208 B2 JP H0429208B2
Authority
JP
Japan
Prior art keywords
rare earth
ferrite
magnetic
magnet
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56207182A
Other languages
Japanese (ja)
Other versions
JPS58108706A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56207182A priority Critical patent/JPS58108706A/en
Publication of JPS58108706A publication Critical patent/JPS58108706A/en
Publication of JPH0429208B2 publication Critical patent/JPH0429208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Description

【発明の詳細な説明】 本発明は、サマリウム・コバルト磁石を代表と
する希土類と遷移金属との金属間化合物からなる
焼結型の希土類永久磁石材料に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered rare earth permanent magnet material made of an intermetallic compound of a rare earth and a transition metal, typified by samarium-cobalt magnets.

希土類元素およびイツトリウムをRとし、遷移
金属をTで表わすとき、永久磁石材料としては、
TはCo、あるいはCoの一部を他の遷移金属例え
ば、Fe,Mn,Al,NiあるいはCuで置換したも
のが一般的に用いられている。またRとしては、
代表的なものとしてSmがある。
When rare earth elements and yttrium are represented by R and transition metals are represented by T, the permanent magnet material is:
Generally used as T is Co, or one in which a part of Co is replaced with another transition metal such as Fe, Mn, Al, Ni, or Cu. Also, as R,
A typical example is Sm.

一方、希土類と遷移金属特にCoとの合金形態
には、RCo5,R2Co17,R2Co7,RCo3,RCo2
がある。このうち高い磁気特性の磁石材として
は、RCo5,およびR2Co17系が用いられる。これ
はRとCoの量を調節することによつて得られる。
前述のようにCoの一部を他の遷移金属で置換し
たものも良く用いられている。
On the other hand, alloy forms of rare earths and transition metals, particularly Co, include RCo 5, R 2 Co 17, R 2 Co 7 , RCo 3, RCo 2, and the like. Among these, RCo 5 and R 2 Co 17- based magnet materials are used as magnet materials with high magnetic properties. This can be achieved by adjusting the amounts of R and Co.
As mentioned above, materials in which a part of Co is replaced with other transition metals are also often used.

本発明は、このようなRT5あるいはR2T17で表
わされる焼結型の希土類永久磁石の磁気特性を改
善するとともに特性のバラツキを改善することを
目的とする。
The present invention aims to improve the magnetic properties of such a sintered rare earth permanent magnet represented by RT 5 or R 2 T 17 , as well as to reduce the variation in properties.

本発明は、RT5あるいはR2T17で表わされる希
土類磁石合金中にガーネツト構造のフエライト即
ちM3Fe2(FeO43で表わされる(ただしMはイツ
トリムおよび希土類元素)、例えばYIG,YAG,
CVG等の酸化物を1w%以下含有させたものであ
る。
In the present invention, a ferrite with a garnet structure, that is, M 3 Fe 2 (FeO 4 ) 3 (M is yttrium and a rare earth element ) , such as YIG, YAG , is incorporated into a rare earth magnet alloy represented by RT 5 or R 2 T 17. ,
Contains 1w% or less of oxides such as CVG.

フエライトの添加が1wt%以下では、残留磁束
密度Br,保磁力BHCともに向上するので、磁気エ
ネルギー積(BH)naxも向上するが、1wt%を越
えると、添加効果は認められない。
When the addition of ferrite is less than 1wt%, both the residual magnetic flux density Br and the coercive force BHC are improved, and the magnetic energy product (BH) nax is also improved, but when it exceeds 1wt%, no effect of the addition is observed.

次に実施例について詳細に説明する。 Next, examples will be described in detail.

Sm26wt%,Cu9.2wt%,Fe15.5wt%,
Zr1.5wt%,Ti0.1wt%,および残部Coとなるよ
うに原料を調整し、アルゴンガス雰囲気中で高周
波加熱により溶解して、合金インゴツトを得た。
この合金を粗粉砕した後、ボールミルで平均粒径
4μm程度に微粉砕した。この粉末に、平均粒径
0.6μm程度のY3Fe5O12で表わされるガーネツト
粉末を0〜0.2wt%の範囲で混合した。こ混合粉
末を公知の方法で焼結処理した。即ち、10KOe
程度の磁場中にて、1.5ton/cm2の圧力で加圧成形
し、この成形物をアルゴン雰囲気中で、1210℃
で、1時間焼結した後、1180℃で1時間溶体化処
理し、急冷した。この焼結体を800℃で1時間熱
処理した後、5℃/分以下の冷却速度で300℃迄
冷却した。こうして得た試料の磁気特性、Br,B
HC,(BH)naxを図に示す。
Sm26wt%, Cu9.2wt%, Fe15.5wt%,
The raw materials were adjusted to contain 1.5 wt% Zr, 0.1 wt% Ti, and the balance Co, and were melted by high-frequency heating in an argon gas atmosphere to obtain an alloy ingot.
After coarsely pulverizing this alloy, the average particle size is
It was finely ground to about 4 μm. This powder has an average particle size of
Garnet powder represented by Y 3 Fe 5 O 12 of about 0.6 μm was mixed in a range of 0 to 0.2 wt%. This mixed powder was sintered using a known method. i.e. 10KOe
Pressure molded at a pressure of 1.5 ton/cm 2 in a magnetic field of
After sintering for 1 hour, solution treatment was performed at 1180°C for 1 hour, and then quenched. This sintered body was heat treated at 800°C for 1 hour and then cooled to 300°C at a cooling rate of 5°C/min or less. The magnetic properties of the sample thus obtained, Br, B
H C , (BH) nax is shown in the figure.

同図から、ガーネツト構造のフエライト1wt%
以下の添加で、Br,BHC,(BH)naxともに改善さ
れることがわかる。
From the same figure, 1wt% ferrite with garnet structure
It can be seen that the addition of the following improves both Br, BHC , and (BH) nax .

なお上記実施例では、Sm2Co17系の磁石であり
Coの一部をCuとFeで置換し、ZrとTiを添加した
ものに、ガーネツト構造のフエライトを添加した
場合について示したが、他の置換物や添加物を用
いたSm2Co17系や、またSmCo5系磁石においても
ガーネツト構造のフエライトの添加による同様の
効果が認められた。
In the above example, the magnet is a Sm 2 Co 17 -based magnet.
The case where a part of Co is replaced with Cu and Fe and Zr and Ti are added and garnet structure ferrite is added is shown, but Sm 2 Co 17 system and Sm 2 Co 17 system using other substitutes and additives are shown. Similar effects were also observed in SmCo 5 -based magnets due to the addition of ferrite with a garnet structure.

このようなガーネツト構造のフエライトの添加
による効果は、次の理由によるものと思われる。
The effect of adding ferrite having a garnet structure is believed to be due to the following reasons.

希土類元素、特にサマリウムは酸化しやすいの
で、焼結磁石中に希土類元素の酸化物が存在する
ことは避けられない。一方、この希土類元素の酸
化物の存在は、磁石特性を悪くするので、従来は
その発生を極力抑えようとしていた。しかしなが
ら、特公昭54−13848に示されるとおり、希土類
元素の酸化物が存在しても、希土類元素が金属と
して所定量存在すれば磁気特性は高く維持され
る。同様の効果が本発明によるガーネツト構造の
フエライトの添加によつて達成されているものと
考えられる。即ち、添加したフエライトはRT5
あるいはR2T17相に固溶体として存在し、希土類
金属との間で酸化還元反応を起し、希土類金属の
量が調整されるものと考えられる。この結果、磁
気特性の改善とバラツキの改善がなされる。
Since rare earth elements, especially samarium, are easily oxidized, the presence of rare earth element oxides in the sintered magnet is unavoidable. On the other hand, since the presence of rare earth element oxides impairs magnetic properties, conventional efforts have been made to suppress their occurrence as much as possible. However, as shown in Japanese Patent Publication No. 54-13848, even if oxides of rare earth elements are present, magnetic properties can be maintained at high levels if a certain amount of rare earth elements are present as metals. It is believed that a similar effect is achieved by the addition of ferrite having a garnet structure according to the present invention. That is, it is considered that the added ferrite exists as a solid solution in the RT 5 phase or the R 2 T 17 phase, causes an oxidation-reduction reaction with the rare earth metal, and adjusts the amount of the rare earth metal. As a result, magnetic properties and variations are improved.

もちろん、RT5相やR2T17相に固溶したフエラ
イトが磁性を有することによつても、RT5磁石、
R2T17磁石の磁気特性が向上するものと考えられ
る。
Of course, RT 5 magnet ,
It is believed that the magnetic properties of the R 2 T 17 magnet are improved.

以上説明したように、本発明の希土類永久磁石
材料においては、希土類磁石合金に強磁性物質の
ガーネツト構造のフエライトが添加されるので、
磁場による配向処理中に添加粉末が磁石粉末と同
様に磁場によつて移動し、添加物が分散される。
添加物が非磁性物質の場合は、上記磁場による添
加物の分散は低下するとともに、添加物の混在量
にほぼ比例した残留磁束密度Brの減少を示し、
また、磁石中の反磁界も増加し、エネルギー積
(BH)naxの低下が顕著となる。
As explained above, in the rare earth permanent magnet material of the present invention, garnet structure ferrite, which is a ferromagnetic substance, is added to the rare earth magnet alloy.
During the orientation treatment using the magnetic field, the additive powder is moved by the magnetic field in the same way as the magnet powder, and the additive is dispersed.
When the additive is a non-magnetic substance, the dispersion of the additive by the above magnetic field decreases, and the residual magnetic flux density Br decreases approximately in proportion to the amount of the additive mixed.
In addition, the demagnetizing field in the magnet increases, and the energy product (BH) nax decreases significantly.

本発明では、上述のように、強磁性物質が添加
されるので、固有の磁化を有し、希土類磁石中に
分散していても、Brの増加及びエネルギー積の
増加が達成できる。
In the present invention, as described above, since a ferromagnetic substance is added, an increase in Br and an increase in energy product can be achieved even if the substance has inherent magnetization and is dispersed in a rare earth magnet.

なお本発明において、RT5系あるいはR2T17
の金属間化合物の組成は化学量論的な値と同じ
か、あるいは希土類金属が多少富んだものである
ことが好ましい。
In the present invention, it is preferable that the composition of the RT 5 -based or R 2 T 17- based intermetallic compound be the same as the stoichiometric value, or be somewhat rich in rare earth metals.

以上説明したように、本発明の希土類永久磁石
材料においては、希土類磁石合金に強磁性物質の
ガーネツト構造のフエライトが添加することを特
徴とし、係る添加物は、非磁性酸化物と異なり、
磁性粉末と同様に磁場に対して反応する特性を有
する。このため、磁性粉末とガーネツト構造のフ
エライトとの混合粉末に、磁場による配向処理を
施した場合、磁性粉末と共同してガーネツト構造
のフエライトは移動することから、その結果、ガ
ーネツト構造のフエライトが取り残されて偏るこ
とがなく、均一な分散を維持することができる効
果がある。
As explained above, the rare earth permanent magnet material of the present invention is characterized by the addition of garnet structure ferrite, which is a ferromagnetic substance, to the rare earth magnet alloy.
Like magnetic powder, it has the property of reacting to magnetic fields. Therefore, when a mixed powder of magnetic powder and garnet-structured ferrite is subjected to orientation treatment using a magnetic field, the garnet-structured ferrite moves together with the magnetic powder, and as a result, the garnet-structured ferrite is left behind. This has the effect of maintaining uniform dispersion without being biased.

即ち本発明によれば、磁性粉末中の均一分散性
に優れ、しかも、残留磁束密度Br及びエネルギ
ー積(BH)MAXの増加が得られる。
That is, according to the present invention, it is possible to obtain excellent uniform dispersibility in magnetic powder, and increase in residual magnetic flux density Br and energy product (BH) MAX.

なお、添加物に非磁性物質を用いる場合は、当
然に、磁場に対して反応することがないことか
ら、磁場配向を施したとしても、単に磁性粉末の
磁場による移動に巻込まれて動く程度に過ぎず、
その結果、非磁性物質の不均一な分布を招くこと
により、非磁性物質の混在量にほぼ比例した残留
磁束密度Brの減少が生じ、また、磁石中の反磁
界も増加し、エネルギー積(BH)MAXの低下
も顕著となるという欠陥がある。
Note that when non-magnetic substances are used as additives, they naturally do not react to magnetic fields, so even if magnetic field orientation is applied, they will simply be caught up in the movement of the magnetic powder and move. Not too much,
As a result, by causing non-uniform distribution of non-magnetic substances, the residual magnetic flux density Br decreases in proportion to the amount of non-magnetic substances mixed in, and the demagnetizing field in the magnet also increases, resulting in an energy product (BH ) The defect is that the MAX decrease is also noticeable.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明によるガーネツト構造のフエライ
ト添加量と残留磁束密度Br、保磁力BHC、エネル
ギー積(BH)naxとの関係を示したグラフである。
The figure is a graph showing the relationship between the amount of ferrite added in a garnet structure according to the present invention, residual magnetic flux density Br, coercive force BHC , and energy product (BH) nax .

Claims (1)

【特許請求の範囲】[Claims] 1 RT5あるいはR2T17(ただしRはイツトリウ
ム及び希土類元素、Tは遷移金属を表す。)で表
わされる希土類磁石合金にガーネツト構造のフエ
ライトを1wt%以下含有させ、前記フエライト及
び希土類磁石合金が磁場配向により均一に分散し
て成ることを特徴とする希土類永久磁石材料。
1 RT 5 or R 2 T 17 (where R represents yttrium and a rare earth element, and T represents a transition metal) contains 1 wt% or less of ferrite with a garnet structure, and the ferrite and rare earth magnet alloy are A rare earth permanent magnet material characterized by being uniformly dispersed by magnetic field orientation.
JP56207182A 1981-12-23 1981-12-23 Rare earth permanent magnet material Granted JPS58108706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56207182A JPS58108706A (en) 1981-12-23 1981-12-23 Rare earth permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56207182A JPS58108706A (en) 1981-12-23 1981-12-23 Rare earth permanent magnet material

Publications (2)

Publication Number Publication Date
JPS58108706A JPS58108706A (en) 1983-06-28
JPH0429208B2 true JPH0429208B2 (en) 1992-05-18

Family

ID=16535597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207182A Granted JPS58108706A (en) 1981-12-23 1981-12-23 Rare earth permanent magnet material

Country Status (1)

Country Link
JP (1) JPS58108706A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19633453C2 (en) * 1996-08-20 1998-07-02 Evt Energie & Verfahrenstech Method and combustion system for burning dusty fuel

Also Published As

Publication number Publication date
JPS58108706A (en) 1983-06-28

Similar Documents

Publication Publication Date Title
US4762574A (en) Rare earth-iron-boron premanent magnets
US4747874A (en) Rare earth-iron-boron permanent magnets with enhanced coercivity
US4221613A (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
US4601754A (en) Rare earth-containing magnets
JP3524941B2 (en) Method for producing permanent magnet containing NdFeB as a main component
US4954186A (en) Rear earth-iron-boron permanent magnets containing aluminum
JPH11251125A (en) Rare-earth-iron-boron sintered magnet and its manufacture
US4952252A (en) Rare earth-iron-boron-permanent magnets
US4776902A (en) Method for making rare earth-containing magnets
JPH0252412B2 (en)
JPH02266503A (en) Manufacture of rare earth permanent magnet
JPS61221353A (en) Material for permanent magnet
JPH0429208B2 (en)
EP0583041B1 (en) Method of manufacturing a permanent magnet on the basis of NdFeB
US4878958A (en) Method for preparing rare earth-iron-boron permanent magnets
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JP2000331810A (en) R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
JPH01274401A (en) Permanent magnet
JPH0252410B2 (en)
US4933009A (en) Composition for preparing rare earth-iron-boron-permanent magnets
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JPH0252411B2 (en)
JPH0533095A (en) Permanent magnet alloy and its production
JPS62257704A (en) Permanent magnet