JPH04291907A - Induction electromagnetic device and sealed induction electromagnetic apparatus using it - Google Patents

Induction electromagnetic device and sealed induction electromagnetic apparatus using it

Info

Publication number
JPH04291907A
JPH04291907A JP3081415A JP8141591A JPH04291907A JP H04291907 A JPH04291907 A JP H04291907A JP 3081415 A JP3081415 A JP 3081415A JP 8141591 A JP8141591 A JP 8141591A JP H04291907 A JPH04291907 A JP H04291907A
Authority
JP
Japan
Prior art keywords
core
induction electromagnetic
electromagnetic device
magnetic material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3081415A
Other languages
Japanese (ja)
Other versions
JP3195373B2 (en
Inventor
Masaru Saito
賢 齋藤
Yukitaka Sakamoto
幸隆 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP08141591A priority Critical patent/JP3195373B2/en
Publication of JPH04291907A publication Critical patent/JPH04291907A/en
Application granted granted Critical
Publication of JP3195373B2 publication Critical patent/JP3195373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Transformer Cooling (AREA)
  • Regulation Of General Use Transformers (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To enhance an effective permeability and to reduce an iron loss while the feature of a filmlike magnetic material that its eddy-current loss is small is utilized at an induction electromagnetic device such as a transformer or a choke. CONSTITUTION:At an induction electromagnetic device 1, an inside core 2 and an outside core 6 which are formed by winding a film-like magnetic material M to be cylindrical shapes are provided, windings 4, 5 are mounted on the outer circumference of said inside core 2, said outside core 6 is situated at the outside of said windings 4, 5 so as to be arranged to be concentric with said inside core 2 and terminators 7 composed of a magnetic material are installed at end parts of both cores 2, 6 so as to fill a space between the end parts. The induction electromagnetic device 1 is covered with a heat-conductive heat-dissipating cover 35, and the inside of the cover 35 is filled with an electrically insulating cooling liquid 36. Thereby, a heat-dissipating effect is enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、フィルム状の磁性材料
を筒状に巻いてコアを形成したトランスやチョークのよ
うな誘導電磁器、およびこれを放熱カバー内に収納した
封入型誘導電磁器に関するものである。
[Industrial Application Field] The present invention relates to induction electromagnetic devices such as transformers and chokes whose cores are formed by winding a film-like magnetic material into a cylindrical shape, and enclosed type induction electromagnetic devices that house the same in a heat dissipation cover. It is related to.

【0002】0002

【従来の技術】フィルム状の磁性材料は、バルク状の磁
性材料と比較して渦電流損失が少ないという特長があり
、したがって、高周波のトランスやチョークのコアに適
している。そこで、図9に示すように、このようなフィ
ルム状の磁性材料を筒形に巻いたものをコア51として
使用し、このコア51にトロイダル状に巻線52を巻き
付けて高周波用のトランスやチョークとしたものがある
2. Description of the Related Art Film-like magnetic materials have the advantage of having lower eddy current loss than bulk-like magnetic materials, and are therefore suitable for cores of high-frequency transformers and chokes. Therefore, as shown in FIG. 9, a core 51 made of such a film-like magnetic material wound into a cylindrical shape is used, and a winding 52 is wound around the core 51 in a toroidal shape to form a high-frequency transformer or choke. There is something like that.

【0003】0003

【発明が解決しようとする課題】ところが、このような
筒形のコア51にトロイダル状に巻線52を巻き付ける
のは、作業性が極めて悪い。そこで、作業性を改善する
ために、図10に示すように、やはり筒形に巻いたコア
51の外周面にコア51と同心状に螺旋状の巻線52を
装着することも考えられるが、こうすると、筒形のコア
51が、両端開放型となって閉磁路を構成しないから、
磁気がコアの外部へ漏れるので、実効透磁率が低くなる
。そこで、この発明は、フィルム状磁性材料の上記特長
を生かしながら実効透磁率を向上させ、これによってエ
ネルギ効率を向上させるとともに、製造の容易化を実現
することを目的としている。
However, winding the winding 52 around the cylindrical core 51 in a toroidal manner is extremely inefficient. Therefore, in order to improve workability, it is conceivable to attach a spiral winding 52 concentrically with the core 51 on the outer peripheral surface of the cylindrically wound core 51, as shown in FIG. In this way, the cylindrical core 51 becomes open at both ends and does not constitute a closed magnetic path.
Magnetism leaks to the outside of the core, resulting in a lower effective magnetic permeability. Therefore, the present invention aims to improve the effective magnetic permeability while taking advantage of the above-mentioned features of the film-like magnetic material, thereby improving energy efficiency and facilitating manufacturing.

【0004】上記目的を達成するために、この発明の誘
導電磁器は、フィルム状の磁性材料を筒状に巻いてなる
内側コアおよび外側コアを有し、上記内側コアの外周に
巻線が装着され、上記外側コアが上記巻線の外側に位置
して上記内側コアと同心上に配置され、上記両コアの両
端部に、その相対向する端部間の空間に位置する磁性材
料からなるターミネータが設けられている。上記ターミ
ネータは、上記両コアの一端部にのみ設けてもよいし、
省略するこのも可能である。また、この発明の封入型誘
導電磁装置は、上記構成の誘導電磁器を伝熱性の放熱カ
バーで覆い、この放熱カバー内に、電気絶縁性の冷却液
を充填している。上記放熱カバーは導電性もしくは強磁
性またはこれら両特性を備えたものが望ましい。
In order to achieve the above object, the induction electromagnetic device of the present invention has an inner core and an outer core formed by winding a film-like magnetic material into a cylindrical shape, and a winding wire is attached to the outer periphery of the inner core. and the outer core is located outside the winding and is arranged concentrically with the inner core, and terminators made of a magnetic material are located at both ends of the cores and in the space between the opposing ends. is provided. The terminator may be provided only at one end of both cores,
It is also possible to omit this. Further, in the enclosed induction electromagnetic device of the present invention, the induction electromagnetic device having the above-mentioned structure is covered with a heat conductive heat dissipation cover, and the heat dissipation cover is filled with an electrically insulating cooling liquid. The heat dissipation cover is preferably electrically conductive or ferromagnetic, or has both of these characteristics.

【0005】[0005]

【作用】この発明の誘導電磁器は、巻線の外側にフィル
ム状の磁性材料からなる外側コアが配置され、両コア間
に、磁性材料からなるターミネータが設けられているか
ら、これら外側コアおよびターミネータが巻線への通電
により生成される磁気の通路の一部となるので、外部へ
の磁気の漏れが少なくなり、コア全体としての透磁率で
ある実効透磁率が向上する。また、内側コアおよび外側
コアはともに筒形であり、かつ同心上に配置されており
、その外周に巻線が装着されているから、これらコアを
通る磁束が一定方向に揃う。他方、両コアはフィルム状
の磁性材料を筒形に巻いたものであるから、その磁化容
易方向をコアの全領域において一定方向に揃えることが
できる。したがって、上記両コアを通る磁束の方向に対
して、コアの全領域において磁化容易方向を最適方向に
設定することができ、これによって、実効透磁率を一層
向上させるとともに、鉄損(ヒステリシス損)を減少さ
せることができる。
[Operation] In the induction electromagnetic device of the present invention, an outer core made of a film-like magnetic material is arranged outside the winding, and a terminator made of a magnetic material is provided between both cores. Since the terminator becomes part of the path of the magnetism generated by energizing the winding, leakage of the magnetism to the outside is reduced, and the effective magnetic permeability, which is the magnetic permeability of the core as a whole, is improved. Further, since both the inner core and the outer core are cylindrical and are arranged concentrically, and the winding is attached to the outer periphery of the inner core, the magnetic flux passing through these cores is aligned in a fixed direction. On the other hand, since both cores are formed by winding a film-like magnetic material into a cylindrical shape, the direction of easy magnetization can be aligned in a constant direction over the entire region of the core. Therefore, with respect to the direction of magnetic flux passing through both cores, the direction of easy magnetization can be set to the optimum direction in the entire region of the core, thereby further improving the effective magnetic permeability and reducing iron loss (hysteresis loss). can be reduced.

【0006】しかも、巻線は筒形の内側コアの外周に装
着されているから、この装着の作業性がよい。加えて、
コアはフィルム状の磁性材料を巻いて作られるから、所
定寸法に裁断した磁性フィルムを1枚1枚重ねてコアを
作る場合と比較して、著しく作業性がよい。また、この
フィルム状の磁性材料は、打ち抜きの板材と比較して機
械歪みが少ないから、コアに加工後の熱処理も不要であ
る。さらに、両コアはフィルム状の磁性材料からなるの
で、渦電流による損失が少ないという従来のフィルム状
磁性材料の特長をそのまま備えている。
Moreover, since the winding wire is attached to the outer periphery of the cylindrical inner core, the workability of this attachment is good. In addition,
Since the core is made by winding a film-like magnetic material, it is much easier to work with than the case where the core is made by stacking magnetic films cut to a predetermined size one by one. Furthermore, since this film-like magnetic material has less mechanical distortion than a punched plate material, heat treatment after processing the core is not necessary. Furthermore, since both cores are made of film-like magnetic material, they still have the advantage of conventional film-like magnetic materials, such as low loss due to eddy currents.

【0007】上記ターミネータは、コアの一端部にのみ
設けるか、または省略してもよい。ターミネータを省略
した場合でも、外側のコアが磁気通路の一部となってい
る分だけ、図10の例と比較して、コアの実効透磁率が
向上する。また、この発明の封入型誘導電磁装置は、上
記構成の誘導電磁器を伝熱性の放熱カバーで覆い、この
放熱カバー内に電気絶縁性の冷却液を充填しているので
、誘導電磁器の放熱が効果的に行われる。上記放熱カバ
ーを導電性とすれば、誘導電磁器からの高周波の磁気が
外部へ漏れて周囲の機器に悪影響を及ぼすのを防止でき
る。また、放熱カバーを強磁性とすれば、外部からの直
流磁界が内部の誘導電磁器に悪影響を及ぼすのを防止で
きる。
[0007] The terminator may be provided only at one end of the core, or may be omitted. Even if the terminator is omitted, the effective magnetic permeability of the core is improved compared to the example of FIG. 10 because the outer core is part of the magnetic path. Furthermore, in the enclosed induction electromagnetic device of the present invention, the induction electromagnetic device having the above structure is covered with a heat conductive heat dissipation cover, and the heat dissipation cover is filled with an electrically insulating cooling liquid, so that the induction electromagnetic device can dissipate heat. is carried out effectively. If the heat dissipation cover is made conductive, high frequency magnetism from the induction electromagnetic device can be prevented from leaking to the outside and adversely affecting surrounding equipment. Moreover, if the heat dissipation cover is made of ferromagnetic material, it is possible to prevent a direct current magnetic field from the outside from having an adverse effect on the induction electromagnetic device inside.

【0008】[0008]

【実施例】以下、この発明の実施例を図面にしたがって
説明する。図1は、誘導電磁器の一種である高周波トラ
ンス1を示し、内側コア2の外周に、絶縁層3を介して
一次巻線4および二次巻線5が装着されている。上記巻
線4,5の外側には、上記内側コア2と同心上に外側コ
ア6が配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows a high frequency transformer 1, which is a type of induction electromagnetic device, in which a primary winding 4 and a secondary winding 5 are attached to the outer periphery of an inner core 2 with an insulating layer 3 in between. Outside the windings 4 and 5, an outer core 6 is arranged concentrically with the inner core 2.

【0009】これら両コア2,6は、図2に示すように
、フィルム状の磁性材料Mを筒状に巻いたものである。 この磁性材料Mとしては、鉄またはコバルトをベースと
するアモルファスの極薄(例えば3μm)のフィルムや
、パーマロイ、鉄、けい素鋼板等の薄いシートの片面ま
たは両面に絶縁膜を形成したものが使用される。この磁
性材料Mには、磁気異方性が付与されており、その磁化
容易方向Aが一定方向に揃えられている。この磁化容易
方向Aを一定方向に揃える技術は従来から知られており
、たとえば、アモルファスのフィルムの場合には、磁界
中でこれを熱処理することにより、このフィルムの磁化
容易方向Aを一定方向に揃えることができ、パーマロイ
、鉄、けい素鋼板等の薄いシートの場合には、このシー
トの素材を圧延で造ったときに、その圧延方向に磁化容
易方向が揃うので、この素材からのシートの切出し方向
を適宜設定することにより、シートの磁化容易方向Aを
所望の方向に揃えることができる。
Both cores 2 and 6 are made by winding a film-like magnetic material M into a cylindrical shape, as shown in FIG. As this magnetic material M, an ultra-thin (e.g. 3 μm) amorphous film based on iron or cobalt, or a thin sheet of permalloy, iron, silicon steel plate, etc. with an insulating film formed on one or both sides is used. be done. This magnetic material M is given magnetic anisotropy, and its easy magnetization direction A is aligned in a certain direction. Techniques for aligning the easy magnetization direction A in a certain direction have been known for a long time. For example, in the case of an amorphous film, by heat-treating it in a magnetic field, the easy magnetization direction A of the film is aligned in a certain direction. In the case of thin sheets such as permalloy, iron, and silicon steel sheets, when the sheet material is rolled, the direction of easy magnetization is aligned with the rolling direction, so the sheet made from this material is By appropriately setting the cutting direction, the easy magnetization direction A of the sheet can be aligned in a desired direction.

【0010】この磁化容易方向Aは、後述するように、
磁性材料Mを巻いてコア2,6を作ったとき、コア2,
6を通る磁束の方向に対し最適な角度をもつように設定
しておくのが望ましい。また、上記両コア2,6は、磁
束密度が同一となるように、ほぼ同一の体積に設定され
ており、したがって、半径の小さい内側コア2は、外側
コア6よりも厚くなるように巻かれている。
This easy magnetization direction A is, as described later,
When cores 2 and 6 are made by winding magnetic material M, cores 2,
It is desirable to set the angle so that it has an optimum angle with respect to the direction of the magnetic flux passing through 6. Further, both the cores 2 and 6 are set to have almost the same volume so that the magnetic flux density is the same, and therefore the inner core 2, which has a smaller radius, is wound so that it is thicker than the outer core 6. ing.

【0011】上記両コア2,6の上下の両端部21,2
2,61,62には、ターミネータ7,7が配置されて
おり、これによって、両コア2,6間のギャップが埋め
られている。これらターミネータ7,7は、フェライト
、センダスト、パーマロイのような磁性材料からなり、
両コア2,6の相対向する一端部21,61間および他
端部22,62間に、接着剤を用いて固定されて、これ
ら端部間の空間を埋めるように位置している。上記ター
ミネータ7は鍔7aを有しており、この鍔7aがコア2
,6の端面8に押し当てられている。
Both upper and lower ends 21, 2 of the cores 2, 6
2, 61, and 62 are provided with terminators 7, 7, thereby filling the gap between both cores 2, 6. These terminators 7, 7 are made of magnetic material such as ferrite, sendust, permalloy,
It is fixed using an adhesive between one end 21 and 61 and the other end 22 and 62 of both cores 2 and 6, which face each other, and is positioned so as to fill the space between these ends. The terminator 7 has a flange 7a, and this flange 7a is used for the core 2.
, 6 are pressed against the end surfaces 8 of the two.

【0012】上記ターミネータ7は、図3に示すように
ドーナツ形であり、空気や油のような冷却用流体を流通
させるために、軸方向の溝10および貫通孔11が多数
設けられている。これらの溝10および貫通孔11は、
巻線4,5の引出し孔としても用いられる。なお、ター
ミネータ7を成形する磁性材料が、コア2,6の材料よ
りも透磁率が低い場合、ターミネータ7での磁気抵抗の
増大を防ぐために、ターミネータ7の体積を大きくして
、その磁気通路面積、つまり、コア2,6と同心の円で
断面したときの断面積を大きくしておくのが好ましい。
The terminator 7 has a donut shape as shown in FIG. 3, and is provided with a large number of axial grooves 10 and through holes 11 to allow a cooling fluid such as air or oil to flow therethrough. These grooves 10 and through holes 11 are
It is also used as an extraction hole for the windings 4 and 5. Note that if the magnetic material used to form the terminator 7 has a lower magnetic permeability than the material of the cores 2 and 6, the volume of the terminator 7 should be increased to prevent an increase in magnetic resistance in the terminator 7, thereby reducing its magnetic path area. In other words, it is preferable to increase the cross-sectional area when taken through a circle concentric with the cores 2 and 6.

【0013】また、図2に示した磁性材料Mの磁化容易
方向Aは、図4に示すように、コア2,6を通る磁束1
3の方向に対し最適な角度に設定することができる。そ
の理由はつぎのとおりである。すなわち、内側コア2お
よび外側コア6はともに筒形であり、かつ同心上に配置
されており、その外周に巻線4,5が装着されているか
ら、これらコアを通る磁束13が一定方向に揃う。他方
、両コア2,6はフィルム状の磁性材料Mを筒形に巻い
たものであるから、その磁化容易方向Aをコア2,6の
全領域において一定方向に揃えることができる。したが
って、上記両コア2,6を通る磁束13の方向に対して
、コア2,6の全領域において磁化容易方向Aを任意の
角度に設定することができるのである。
Furthermore, as shown in FIG. 4, the easy magnetization direction A of the magnetic material M shown in FIG.
It is possible to set the optimum angle with respect to the direction No. 3. The reason is as follows. That is, since both the inner core 2 and the outer core 6 are cylindrical and are arranged concentrically, and the windings 4 and 5 are attached to the outer periphery of the inner core 2 and the outer core 6, the magnetic flux 13 passing through these cores is directed in a fixed direction. Align. On the other hand, since both cores 2 and 6 are formed by winding a film-like magnetic material M into a cylindrical shape, the direction of easy magnetization A thereof can be aligned in a constant direction over the entire area of the cores 2 and 6. Therefore, the easy magnetization direction A can be set at any angle in the entire area of the cores 2 and 6 with respect to the direction of the magnetic flux 13 passing through both the cores 2 and 6.

【0014】上記磁化容易方向Aの磁束13に対する最
適な角度は、巻線4,5を流れる電流の周波数によって
異なる。たとえば、磁性材料Mがコバルトベースのアモ
ルファスのフィルムである場合、図4(a)に示すよう
に、数十KHzまでの低周波数領域ではほぼゼロ、つま
り、磁束13の方向と磁化容易方向Aとがほぼ平行にな
り、1MHz以上の高周波領域では、図4(b)に示す
ように、90度、つまり、両方向が互いに直交する。こ
のように、最適角度が異なる理由は、交流磁界によるコ
ア2,6の磁化は低周波数領域では磁壁移動により発生
し、高周波数領域では回転磁化により発生するからであ
る。この磁壁移動が発生する周波数帯域および回転磁化
が発生する周波数帯域は、コアの材料によって異なる。
The optimum angle of the easy magnetization direction A with respect to the magnetic flux 13 differs depending on the frequency of the current flowing through the windings 4 and 5. For example, when the magnetic material M is a cobalt-based amorphous film, as shown in FIG. are almost parallel, and in a high frequency region of 1 MHz or higher, as shown in FIG. 4(b), the directions are 90 degrees, that is, both directions are perpendicular to each other. The reason why the optimum angles are different in this way is that the magnetization of the cores 2 and 6 due to the alternating magnetic field occurs due to domain wall movement in the low frequency range, and occurs due to rotational magnetization in the high frequency range. The frequency band in which this domain wall movement occurs and the frequency band in which rotational magnetization occurs differ depending on the material of the core.

【0015】上記構成において、一次巻線4への通電に
より生成された磁束13は、磁性材料からなる内側コア
2、ターミネータ7および外側コア6によって形成され
る磁気通路を通る。したがって、全体としての透磁率、
つまり、実効透磁率が向上する。
In the above configuration, the magnetic flux 13 generated by energizing the primary winding 4 passes through a magnetic path formed by the inner core 2, terminator 7, and outer core 6 made of magnetic material. Therefore, the overall magnetic permeability,
In other words, the effective magnetic permeability is improved.

【0016】また、図2に示した磁性材料Mの磁化容易
方向Aは、前述のとおり、コア2,6を通る磁束13の
方向に対し任意の角度に設定されるから、角度の選び方
で、実効透磁率を向上させ、かつ鉄損を最小にすること
ができる。
Furthermore, since the easy magnetization direction A of the magnetic material M shown in FIG. 2 is set at an arbitrary angle with respect to the direction of the magnetic flux 13 passing through the cores 2 and 6, as described above, Effective magnetic permeability can be improved and iron loss can be minimized.

【0017】さらに、巻線は筒形の内側コアの外周に装
着されているから、この装着の作業性がよい。加えて、
コアはフィルム状の磁性材料を巻いて作られるから、所
定寸法に裁断した磁性フィルムを1枚1枚重ねてコアを
作る場合と比較して、著しく作業性がよい。また、この
フィルム状の磁性材料は、打ち抜きの板材と比較して機
械歪みが少ないから、コアに加工後の熱処理も不要なの
で、製造が一層容易である。さらに、図1の内側コア2
および外側コア6はともに、表面に絶縁膜を持つフィル
ム状の磁性材料Mを巻いたものであるから、渦電流損失
が少ない。
Furthermore, since the winding wire is attached to the outer periphery of the cylindrical inner core, the workability of this attachment is good. In addition,
Since the core is made by winding a film-like magnetic material, it is much easier to work with than the case where the core is made by stacking magnetic films cut to a predetermined size one by one. Furthermore, since this film-like magnetic material has less mechanical distortion than a punched plate material, it does not require heat treatment after processing the core, making it easier to manufacture. Furthermore, the inner core 2 in FIG.
Since both the outer core 6 and the outer core 6 are wound with a film-like magnetic material M having an insulating film on the surface, eddy current loss is small.

【0018】また、ターミネータ7に設けられた多数の
流通用の溝10および貫通孔11を通って、冷却用流体
、たとえば空気が、両コア2,6間の空間12に出入り
するので、巻線4,5およびコア2,6の放熱が効果的
になされる。なお、ターミネータ7が、上記フィルム状
の磁性材料Mと同じ材料または高周波用のフェライト等
からなる粉末を圧縮して造られている場合、渦電流損失
の増大、およびターミネータ7とコア2,6間の接続面
での磁気抵抗の増大が懸念される。しかしながら、ター
ミネータ7の磁気通路面積をコア2,6の通路面積(横
断面積)よりも大きく設定しておけば、ターミネータ7
内の磁束密度が低くなるうえに、上記接触面積の増大に
よって磁気抵抗も小さくなるから、結局、ターミネータ
7によるエネルギ損失を充分抑制できる。
Further, since cooling fluid, such as air, enters and exits the space 12 between the cores 2 and 6 through the large number of flow grooves 10 and through holes 11 provided in the terminator 7, the winding 4, 5 and the cores 2, 6 are effectively radiated. Note that if the terminator 7 is made of the same material as the film-like magnetic material M or compressed powder made of high-frequency ferrite, etc., eddy current loss will increase and the damage between the terminator 7 and the cores 2 and 6 will increase. There is a concern that magnetic resistance will increase on the connection surface. However, if the magnetic passage area of the terminator 7 is set larger than the passage area (cross-sectional area) of the cores 2 and 6, the terminator 7
In addition to lowering the magnetic flux density within, the increased contact area also reduces magnetic resistance, so that energy loss due to the terminator 7 can be sufficiently suppressed.

【0019】つぎに、この発明の第2実施例を説明する
。図5において、ターミネータ7の外周部と外側コア6
との間に、ギャップ25が設けられている。これにより
、磁気抵抗を増大させて、大電流用のトランス1が得ら
れる。なお、巻線4,5は、電気絶縁性のボビン20に
巻かれて内側コア2に装着されているので、図1の絶縁
膜3は省略されている。
Next, a second embodiment of the present invention will be explained. In FIG. 5, the outer periphery of the terminator 7 and the outer core 6
A gap 25 is provided between them. Thereby, the magnetic resistance is increased and a large current transformer 1 is obtained. Note that since the windings 4 and 5 are wound around an electrically insulating bobbin 20 and attached to the inner core 2, the insulating film 3 in FIG. 1 is omitted.

【0020】ここで、図6に示すように、ギャップ26
をターミネータ7の内周部と内側コア2との間に設ける
こともできる。しかしながら、こうすると、内側コア2
とターミネータ7との間に磁気抵抗の大きいギャップ2
6が存在するから、一次巻線4の電流によって生成され
た磁束13の一部が、上記ギャップ26を通らないで、
矢印Dで示すように、斜めにターミネータ7に入る。そ
の結果、二次巻線5を通過する磁束が少なくなるので、
一次巻線4と二次巻線5の結合係数が小さくなる。した
がって、ギャップは、図5の第2実施例のように、ター
ミネータ7の外周側に設ける方が好ましい。
Here, as shown in FIG. 6, the gap 26
can also be provided between the inner peripheral part of the terminator 7 and the inner core 2. However, when doing this, the inner core 2
Gap 2 with large magnetic resistance between and terminator 7
6 exists, a part of the magnetic flux 13 generated by the current in the primary winding 4 does not pass through the gap 26,
Enter terminator 7 diagonally as shown by arrow D. As a result, less magnetic flux passes through the secondary winding 5, so
The coupling coefficient between the primary winding 4 and the secondary winding 5 becomes smaller. Therefore, it is preferable to provide the gap on the outer peripheral side of the terminator 7, as in the second embodiment shown in FIG.

【0021】図7に、この発明の第3実施例による封入
形誘導電磁装置31を示す。この封入形誘導電磁装置3
1は、内部に上記図1に示した構造のトランス1を収納
したものである。このトランス1の下側のターミネータ
7には、その下面に金属または樹脂からなる封止板32
が取り付けられる一方、巻線4,5に接続された端子3
3が、ターミネータ7の貫通孔11を通過し、さらに、
上記封止板32に設けた挿通孔34を通って、外部に引
き出されている。トランス1は、パーマロイのような伝
熱性に優れ、かつ導電性の強磁性体からなる伝熱カバー
35で覆われており、この伝熱カバー35の下端部が、
下側のターミネータ7および上記封止板32に固定され
ている。さらに、上記伝熱カバー35内には、たとえば
アルキルベンゼンを主成分とする混合油のような、電気
絶縁性の冷却液36が充填されている。
FIG. 7 shows an encapsulated induction electromagnetic device 31 according to a third embodiment of the present invention. This enclosed induction electromagnetic device 3
1 houses the transformer 1 having the structure shown in FIG. 1 above. The terminator 7 on the lower side of the transformer 1 has a sealing plate 32 made of metal or resin on its lower surface.
is attached, while the terminal 3 connected to the windings 4, 5
3 passes through the through hole 11 of the terminator 7, and further,
It passes through an insertion hole 34 provided in the sealing plate 32 and is drawn out to the outside. The transformer 1 is covered with a heat transfer cover 35 made of a ferromagnetic material with excellent heat conductivity and conductivity such as permalloy, and the lower end of the heat transfer cover 35 is
It is fixed to the lower terminator 7 and the sealing plate 32. Further, the heat transfer cover 35 is filled with an electrically insulating cooling liquid 36, such as a mixed oil containing alkylbenzene as a main component.

【0022】この第3実施例において、主として巻線4
,5からの放熱によって加熱された冷却液36は、自然
対流によって、ターミネータ7の溝10および貫通孔1
1を通って、矢印で示すように流れる。したがって、両
コア2,6を冷却するのに加えて、両コア2,6間の空
間12に位置する巻線4,5も冷却したのち、伝熱カバ
ー35を介して放熱する。これにより、トランス1の放
熱が効果的になされるので、小型で大容量のトランスが
得られる。さらに、伝熱カバー35が導電性であること
から、トランス1からの高周波の磁気が外部へ漏れて周
囲の機器に悪影響を及ぼすのを防止できる。また、放熱
カバー35は強磁性であるから、外部からの直流磁界が
内部のトランス1に悪影響を及ぼすのを防止でき、トラ
ンス1のノイズ防止に効果的である。
In this third embodiment, mainly the winding 4
, 5, the coolant 36 is heated by the heat dissipated from the terminator 7 and the through hole 1 by natural convection.
1 and flows as indicated by the arrow. Therefore, in addition to cooling the cores 2 and 6, the windings 4 and 5 located in the space 12 between the cores 2 and 6 are also cooled, and then the heat is radiated through the heat transfer cover 35. This effectively radiates heat from the transformer 1, resulting in a compact and large-capacity transformer. Furthermore, since the heat transfer cover 35 is conductive, it is possible to prevent high frequency magnetism from the transformer 1 from leaking to the outside and adversely affecting surrounding equipment. Further, since the heat dissipation cover 35 is ferromagnetic, it can prevent a direct current magnetic field from the outside from having an adverse effect on the internal transformer 1, and is effective in preventing noise in the transformer 1.

【0023】なお、上記伝熱カバー35の外周に冷却フ
ィンを取り付ければ、放熱能力が向上する。また、上記
トランス1から外部へ漏れる磁界による悪影響を考慮す
る必要がない場合、放熱カバー35は導電性でなくても
よい。他方、外部磁界によるトランス1への悪影響を考
慮する必要がない場合、伝熱カバー35は強磁性でなく
てもよく、この場合、伝熱カバー35は、伝熱性および
導電性に優れた材料、たとえば、銅またはアルミニウム
で形成することができる。トランス1から外部へ漏れる
磁界も、外部からトランス1内へ入る磁界も考慮する必
要がない場合には、伝熱カバー35を、導電性でも強磁
性でもない材料、たとえば樹脂で形成することも可能で
ある。また、トランス1のパワーが充分小さい場合のよ
うに、発熱が少なく、自然空冷で充分放熱される場合に
は、伝熱カバー35のない、図1、5に示したような構
造でよい。
Note that if cooling fins are attached to the outer periphery of the heat transfer cover 35, the heat dissipation ability will be improved. Furthermore, if there is no need to consider the adverse effects of the magnetic field leaking from the transformer 1 to the outside, the heat dissipation cover 35 may not be electrically conductive. On the other hand, if there is no need to consider the adverse effects of external magnetic fields on the transformer 1, the heat transfer cover 35 may not be ferromagnetic, and in this case, the heat transfer cover 35 may be made of a material with excellent heat transfer and electrical conductivity. For example, it can be made of copper or aluminum. If there is no need to consider the magnetic field leaking from the transformer 1 to the outside or the magnetic field entering the transformer 1 from the outside, the heat transfer cover 35 may be made of a material that is neither conductive nor ferromagnetic, such as resin. It is. Further, when the power of the transformer 1 is sufficiently small, in which heat generation is small and the heat is sufficiently dissipated by natural air cooling, a structure as shown in FIGS. 1 and 5 without the heat transfer cover 35 may be used.

【0024】なお、上記第1ないし第3実施例において
は、ターミネータ7をコア2,6の両端部21,22,
61,62に設けたが、一端部21,61にのみ設けて
もよい。また、図8に示す第4実施例のように、ターミ
ネータを省略してもよい。この場合でも、外側コア6の
存在により、磁気の漏れが少なくなるので、それだけ図
10の例と比較して、実効透磁率が向上する。ここで、
コア2,6間の広い空間は一種のギャップとして作用す
る。なお、この発明は、上記トランス1のみでなく、チ
ョークにも適用できることは言うまでもない。
In the first to third embodiments described above, the terminator 7 is connected to both ends 21, 22 of the cores 2, 6,
Although it is provided at 61 and 62, it may be provided only at one end portion 21 and 61. Further, as in the fourth embodiment shown in FIG. 8, the terminator may be omitted. Even in this case, magnetic leakage is reduced due to the presence of the outer core 6, so the effective magnetic permeability is improved accordingly compared to the example of FIG. here,
The wide space between the cores 2 and 6 acts as a kind of gap. It goes without saying that the present invention can be applied not only to the transformer 1 but also to chokes.

【0025】[0025]

【発明の効果】この発明の誘導電磁器は、内側のコアに
加えて、外側コアおよびターミネータが、巻線への通電
により生成される磁気の通路の一部となるので、外部へ
の磁気の漏れが少なくなり、コア全体としての透磁率で
ある実効透磁率が向上する。結果、誘導電磁器のエネル
ギ損失が少なくなり、効率が向上する。また、内側コア
および外側コアを通る磁束の方向に対して、コアの全領
域においてコアの磁化容易方向を最適方向に設定するこ
とができ、これによって、鉄損(ヒステリシス損)を減
少させることができる。このような実効透磁率の向上お
よび鉄損の減少は、誘導電磁器のエネルギ損失を少なく
し、効率を向上させる。
[Effects of the Invention] In the induction electromagnetic device of the present invention, in addition to the inner core, the outer core and the terminator become part of the magnetic path generated by energizing the winding, so that the magnetic field is not transmitted to the outside. Leakage is reduced and the effective magnetic permeability, which is the magnetic permeability of the entire core, is improved. As a result, energy loss in the induction electromagnetic device is reduced and efficiency is improved. In addition, the direction of easy magnetization of the core can be set to the optimum direction in the entire region of the core with respect to the direction of magnetic flux passing through the inner and outer cores, thereby reducing iron loss (hysteresis loss). can. Such improvement in effective magnetic permeability and reduction in iron loss reduces energy loss in the induction electromagnetic device and improves efficiency.

【0026】しかも、巻線は筒形の内側コアの外周に装
着されているから、この装着の作業性がよい。加えて、
コアはフィルム状の磁性材料を巻いて作られるから、所
定寸法に裁断した磁性フィルムを1枚1枚重ねてコアを
作る場合と比較して、著しく作業性がよい。また、この
フィルム状の磁性材料は、薄くなればなるほど打ち抜き
の板材と比較して機械歪みが少ないから、コアに加工後
の熱処理も不要なので、この面からも作業性がよい。さ
らに、両コアはフィルム状の磁性材料からなるので、渦
電流による損失が少ないという従来のフィルム状磁性材
料の特長をそのまま備えている。
Moreover, since the winding wire is attached to the outer periphery of the cylindrical inner core, the workability of this attachment is good. In addition,
Since the core is made by winding a film-like magnetic material, it is much easier to work with than the case where the core is made by stacking magnetic films cut to a predetermined size one by one. In addition, the thinner the film-like magnetic material is, the less mechanical distortion there is compared to a punched plate material, so there is no need for heat treatment after processing the core, which also improves workability. Furthermore, since both cores are made of film-like magnetic material, they still have the advantage of conventional film-like magnetic materials, such as low loss due to eddy currents.

【0027】上記ターミネータは、コアの一端部にのみ
設けるか、または省略された場合でも、少なくとも外側
のコアは磁気通路の一部となるから、その分だけコアの
実効透磁率が向上する。
Even if the terminator is provided only at one end of the core or is omitted, at least the outer core becomes a part of the magnetic path, so the effective magnetic permeability of the core is improved accordingly.

【0028】また、この発明の封入型誘導電磁装置は、
上記構成の誘導電磁器を伝熱性の放熱カバーで覆い、こ
の放熱カバー内に電気絶縁性の冷却液を充填しているの
で、誘導電磁器の放熱が効果的に行われる。上記放熱カ
バーを導電性とすれば、誘導電磁器からの高周波の磁気
が外部へ漏れて周囲の機器に悪影響を及ぼすのを防止で
きる。また、放熱カバーを強磁性とすれば、外部からの
直流磁界が内部の誘導電磁器に悪影響を及ぼすのを防止
できるので、誘導電磁器のノイズ防止に効果的である。
[0028] Furthermore, the enclosed induction electromagnetic device of the present invention includes:
Since the induction electromagnetic device having the above structure is covered with a heat conductive heat dissipation cover and the heat dissipation cover is filled with an electrically insulating coolant, heat of the induction electromagnetic device is effectively radiated. If the heat dissipation cover is made conductive, high frequency magnetism from the induction electromagnetic device can be prevented from leaking to the outside and adversely affecting surrounding equipment. Furthermore, if the heat dissipation cover is made of ferromagnetic material, it is possible to prevent a direct current magnetic field from the outside from having an adverse effect on the internal induction electromagnetic device, which is effective in preventing noise in the induction electromagnetic device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の第1実施例に係るトランスを示す縦
断面図である。
FIG. 1 is a longitudinal sectional view showing a transformer according to a first embodiment of the invention.

【図2】図1のトランスのコアを形成するフィルム状の
磁性材料を示す斜視図である。
FIG. 2 is a perspective view showing a film-like magnetic material forming the core of the transformer in FIG. 1;

【図3】図1のトランスの上側のターミネータを示す斜
視図である。
FIG. 3 is a perspective view showing an upper terminator of the transformer in FIG. 1;

【図4】図1のトランスのコアにおける磁化容易方向と
磁束の方向との関係を示す斜視図である。
4 is a perspective view showing the relationship between the direction of easy magnetization and the direction of magnetic flux in the core of the transformer shown in FIG. 1. FIG.

【図5】この発明の第2実施例に係るトランスを示す縦
断面図である。
FIG. 5 is a longitudinal sectional view showing a transformer according to a second embodiment of the invention.

【図6】図6のトランスの変形例を示す要部の縦断面図
である。
FIG. 6 is a vertical cross-sectional view of essential parts showing a modification of the transformer shown in FIG. 6;

【図7】この発明の第3実施例に係る封入型トランスを
示す縦断面図である。
FIG. 7 is a longitudinal sectional view showing an enclosed transformer according to a third embodiment of the invention.

【図8】この発明の第4実施例に係るトランスを示す縦
断面図である。
FIG. 8 is a longitudinal sectional view showing a transformer according to a fourth embodiment of the invention.

【図9】フィルム状の磁性材料を巻いてなるコアを使用
した従来のトランスを示す斜視図である。
FIG. 9 is a perspective view showing a conventional transformer using a core formed by winding a film-like magnetic material.

【図10】フィルム状の磁性材料を巻いてなるコアを使
用したトランスとして考えられる一例を示す斜視図であ
る。
FIG. 10 is a perspective view showing one possible example of a transformer using a core formed by winding a film-like magnetic material.

【符号の説明】[Explanation of symbols]

1…トランス(誘導電磁器)、2…内側コア、4…一次
巻線、5…二次巻線、6…外側コア、7…ターミネータ
、21,22…内側コアの両端部、31…封入型誘導電
磁装置、35…放熱カバー、36…冷却液、61,62
…外側コアの両端部、A…磁化容易方向、M…フィルム
状の磁性材料。
1...Transformer (induction electromagnetic device), 2...Inner core, 4...Primary winding, 5...Secondary winding, 6...Outer core, 7...Terminator, 21, 22...Both ends of inner core, 31...Enclosed type Induction electromagnetic device, 35... Heat radiation cover, 36... Coolant, 61, 62
...both ends of the outer core, A...direction of easy magnetization, M...film-like magnetic material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  フィルム状の磁性材料Mを筒状に巻い
てなる内側コア2および外側コア6を有し、上記内側コ
ア2の外周に巻線4,5が装着され、上記外側コア6が
上記巻線4,5の外側に位置して上記内側コア2と同心
上に配置され、磁性材料からなるターミネータ7が、上
記両コア2,6の両端部21,22,61,62に設け
られて、その相対向する端部21ー61,22ー62間
の空間に位置していることを特徴とする誘導電磁器。
1. An inner core 2 and an outer core 6 each formed by winding a film-like magnetic material M into a cylindrical shape, windings 4 and 5 are attached to the outer periphery of the inner core 2, and the outer core 6 is A terminator 7 made of a magnetic material is provided at both ends 21, 22, 61, 62 of the cores 2, 6, and is located outside the windings 4, 5 and concentrically with the inner core 2. An induction electromagnetic device characterized in that it is located in a space between its opposing ends 21-61 and 22-62.
【請求項2】  フィルム状の磁性材料Mを筒状に巻い
てなる内側コア2および外側コア6を有し、上記内側コ
ア2の外周に巻線4,5が装着され、上記外側コア6が
上記巻線4,5の外側に位置して上記内側コア2と同心
上に配置され、磁性材料からなるターミネータ7が、上
記両コア2,6の一端部21,61(22,62)に設
けられて、その相対向する端部21ー61(22ー62
)間の空間に位置していることを特徴とする誘導電磁器
2. An inner core 2 and an outer core 6 each formed by winding a film-like magnetic material M into a cylindrical shape, windings 4 and 5 are attached to the outer periphery of the inner core 2, and the outer core 6 is A terminator 7 made of a magnetic material is disposed outside the windings 4 and 5 and concentrically with the inner core 2, and is provided at one end portions 21 and 61 (22 and 62) of both the cores 2 and 6. and its opposite ends 21-61 (22-62
) An induction electromagnetic device characterized by being located in the space between
【請求項3】  フィルム状の磁性材料Mを筒状に巻い
てなる内側コア2および外側コア6を有し、上記内側コ
ア2の外周に巻線4,5が装着され、上記外側コア6が
上記巻線4,5の外側に位置して上記内側コア2と同心
上に配置されてなることを特徴とする誘導電磁器。
3. It has an inner core 2 and an outer core 6 made of a film-like magnetic material M wound into a cylindrical shape, windings 4 and 5 are attached to the outer periphery of the inner core 2, and the outer core 6 is An induction electromagnetic device characterized in that it is arranged outside the windings 4 and 5 and concentrically with the inner core 2.
【請求項4】  請求項1ないし3のいずれかに記載の
誘導電磁器が伝熱性の放熱カバーで覆われて、この放熱
カバー内に、電気絶縁性の冷却液が充填されていること
を特徴とする封入型誘導電磁装置。
4. The induction electromagnetic device according to claim 1, wherein the induction electromagnetic device is covered with a heat conductive heat dissipation cover, and the heat dissipation cover is filled with an electrically insulating cooling liquid. Enclosed type induction electromagnetic device.
【請求項5】  請求項4において、上記放熱カバーが
導電性および強磁性のうち少なくとも一方の特性を有し
ている封入型誘導電磁装置。
5. The enclosed induction electromagnetic device according to claim 4, wherein the heat dissipation cover has at least one of conductivity and ferromagnetism.
JP08141591A 1991-03-20 1991-03-20 Induction electromagnetic device and encapsulated induction electromagnetic device using the same Expired - Lifetime JP3195373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08141591A JP3195373B2 (en) 1991-03-20 1991-03-20 Induction electromagnetic device and encapsulated induction electromagnetic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08141591A JP3195373B2 (en) 1991-03-20 1991-03-20 Induction electromagnetic device and encapsulated induction electromagnetic device using the same

Publications (2)

Publication Number Publication Date
JPH04291907A true JPH04291907A (en) 1992-10-16
JP3195373B2 JP3195373B2 (en) 2001-08-06

Family

ID=13745717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08141591A Expired - Lifetime JP3195373B2 (en) 1991-03-20 1991-03-20 Induction electromagnetic device and encapsulated induction electromagnetic device using the same

Country Status (1)

Country Link
JP (1) JP3195373B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218660A (en) * 2007-03-02 2008-09-18 Hitachi Industrial Equipment Systems Co Ltd Reactor apparatus
JP2010258244A (en) * 2009-04-27 2010-11-11 Toyota Industries Corp Induction device
CN114334375A (en) * 2022-01-13 2022-04-12 深圳市铭昱达电子有限公司 Heat dissipation system and heat dissipation method of transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218660A (en) * 2007-03-02 2008-09-18 Hitachi Industrial Equipment Systems Co Ltd Reactor apparatus
JP2010258244A (en) * 2009-04-27 2010-11-11 Toyota Industries Corp Induction device
CN114334375A (en) * 2022-01-13 2022-04-12 深圳市铭昱达电子有限公司 Heat dissipation system and heat dissipation method of transformer

Also Published As

Publication number Publication date
JP3195373B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
EP2584574B1 (en) Reactor
US20240087797A1 (en) Inductive device
WO2016170927A1 (en) Surface-mounted reactor and manufacturing method therefor
BRPI0014061B1 (en) Transformer and inductor for low frequency applications using isotropic composite magnetic materials
US12046409B2 (en) Transformer and switch-mode power supply
WO2012011276A1 (en) Reactor
JP2012099739A (en) Core segment, annular coil core and annular coil
JP2005005287A (en) Inductance component and electronic apparatus employing it
US20180005749A1 (en) Coupled inductor
US20160372248A1 (en) Electromagnetic Induction Device
US11621113B2 (en) Electromagnetic device with thermally conductive former
JP2004266120A (en) Choke coil and electronic apparatus employing the same
Sato et al. Reducing the alternating current resistance and heat generation in a single‐wire coil using a magnetic tape
JP7488824B2 (en) Wound core
JP3195373B2 (en) Induction electromagnetic device and encapsulated induction electromagnetic device using the same
JPH11345724A (en) Magnetic leakage type high-frequency transformer and inverter circuit using the same
JP6857494B2 (en) Static induction electric device
JP2011138939A (en) Reactor
JP6060206B2 (en) Annular coil
TW201814742A (en) Coil components providing a coil component capable of suppressing magnetic saturation and having excellent DC superposition characteristics
JPS5941297B2 (en) power transformer
KR102555275B1 (en) iron core structure of transformer
KR102536831B1 (en) Transformer and method for manufacturing the same
Asahina et al. Structure of air-core power inductor with high energy density and low copper loss
WO2019044835A1 (en) Heat-sink-mounted inductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10