JPH04291019A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH04291019A
JPH04291019A JP8170791A JP8170791A JPH04291019A JP H04291019 A JPH04291019 A JP H04291019A JP 8170791 A JP8170791 A JP 8170791A JP 8170791 A JP8170791 A JP 8170791A JP H04291019 A JPH04291019 A JP H04291019A
Authority
JP
Japan
Prior art keywords
young
modulus
magnetic
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8170791A
Other languages
Japanese (ja)
Other versions
JP2914774B2 (en
Inventor
Fumio Togawa
文夫 戸川
Nobuyasu Ishihara
信康 石原
Kazuo Kinoshita
木下 和雄
Kimihiko Konno
公彦 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP8170791A priority Critical patent/JP2914774B2/en
Publication of JPH04291019A publication Critical patent/JPH04291019A/en
Application granted granted Critical
Publication of JP2914774B2 publication Critical patent/JP2914774B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the mechanical strength sufficient for practical use even if the overall thickness of the magnetic recording medium is below prescribed length mum by specifying the product Et<3> of the Young's modulus E at the time of 1% elongation of the magnetic recording medium and the cube of a total thickness to specific mm or above in either of a longitudinal direction and transverse direction. CONSTITUTION:The mechanical strength sufficient for practical use is obtd. even if the total thickness of the magnetic recording medium is <=15mum by using a polyethylene naphthalate film or aramid film or the like as a base film and incorporating a polyurethane resin having >=-25 deg.C glass transition temp. as a binder component of a magnetic layer into this layer to adjust the glass transition temp. of the magnetic layer to >=40 deg.C, thereby specifying the product Et<3> of the Young's modulus E of the magnetic recording medium having <=15mum total thickness and the cube of the total thickness t to >=1.7g.mm in either of a longitudinal direction and transverse direction.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は磁気テ−プなどの磁気
記録媒体に関し、さらに詳しくは全厚が15μm以下の
薄さで充分に実用に耐える機械的強度を有する磁気テ−
プなどの磁気記録媒体に関する。 【0002】 【従来の技術】近年、特にビデオ用磁気テ−プ等におい
てはカ−トリッジケ−スに組み込んだ際の記録、再生時
間をできるだけ長くするため、磁気テ−プの厚みを可及
的に薄くすることが試みられている。しかしながら、磁
気テ−プの厚みを薄くするとテ−プの機械的強度が弱く
なるため、記録再生時、回転ビデオヘッドとの接触状態
が悪化し、正常な再生波形が得られなくなってエンベロ
−プ不良となる。また、記録、再生、早送り、巻き戻し
あるいはロ−ディング、アンロ−ディング時に磁気テ−
プのエッジ部が磁気テ−プの走行を規制するガイド部材
やロ−ディングポストの磁気テ−プ規制用鍔縁に接して
座屈を生じたり、折損したりする場合があり、さらにカ
−ルやしわが生じ易くなる。このため、ポリエステルフ
ィルムなどのプラスチックフィルム製造時に、長手方向
もしくは幅方向に延伸して強化したプラスチック強化フ
ィルムを磁気テ−プのベ−スフィルムに使用するなどし
て、厚みを薄くした磁気テ−プの機械的強度を補強する
ことが試みられている。 【0003】 【発明が解決しようとする課題】ところが、長手方向お
よび幅方向にバランスして延伸強化したものは、1%伸
び時のヤング率(以下ヤング率と略す)が長手方向およ
び幅方向とも550〜600kg/mm2 であり、長
手方向に延伸強化したものは、ヤング率が長手方向で7
50〜850kg/mm2 、幅方向で350〜430
kg/mm2 であって、全厚を15μm以下とすると
、特にVHSタイプおよびVHS−CタイプのVTRに
かけた場合、実用上充分な機械的強度が得られず、磁気
ヘッドとの接触状態でのテ−プ剛性が低下して適正化が
図れず、正常なエンベロ−プ波形や、各種走行モ−ドで
の安定した走行が得られない。 【0004】 【課題を解決するための手段】この発明は、かかる現状
に鑑み種々検討を行った結果なされたもので、ベ−スフ
ィルムとしてポリエチレンナフタレ−トフィルムあるい
はアラミドフィルムなどを使用し、磁性層の結合剤成分
としてガラス転移温度が−25℃以上のポリウレタン樹
脂を含有させ、磁性層のガラス転移温度を40℃以上に
するなどして、全厚が15μm以下の磁気記録媒体のヤ
ング率Eと全厚tの3乗の積Et3 を長手方向および
幅方向いずれにおいても 1.7g・mm以上にするこ
とによって、磁気記録媒体の全厚が15μm以下でも実
用上充分な機械的強度が得られるようにしたものである
。 【0005】この発明において使用するベ−スフィルム
は、長手方向および幅方向のヤング率がいずれも650
kg/mm2 以上で、かつ長手方向のヤング率より幅
方向のヤング率の方が大きなものであることが好ましく
、長手方向および幅方向のヤング率のいずれか一方でも
650kg/mm2 より小さいと、この上に磁性層を
形成しても充分な剛性を有する磁気テ−プなどの磁気記
録媒体が得られず、実用上充分な機械的強度が得られな
い。さらに、長手方向のヤング率より幅方向のヤング率
の方が大きくする方が、剛性が低下せず、実用上充分な
機械的強度を得るためには有利である。 【0006】また、従来のポリエステルフィルムでは強
度に限界があるため、より強度が高いポリエチレンナフ
タレ−トフィルムあるいはアラミドフィルムを使用する
ことが好ましく、長手方向のヤング率より幅方向のヤン
グ率の方が大きくて、長手方向および幅方向のヤング率
がいずれも650kg/mm2以上のポリエチレンナフ
タレ−トフィルムあるいはアラミドフィルムを使用する
ことによって、全厚を15μm以下にしても剛性が低下
されず、実用上充分な機械的強度を有する磁気記録媒体
が得られる。なお、アラミドフィルムはパラ型およびメ
タ型のものがいずれも好適に使用される。 【0007】このようなベ−スフィルム上に形成される
磁性層は、結合剤樹脂としてガラス転移温度が−25℃
以上のポリウレタン樹脂を含み、通常使用される硬化剤
で硬化した後の磁性層のガラス転移温度が40℃以上で
あることが好ましく、このような磁性層が前記の高剛性
のベ−スフィルム上に形成されると、全厚が15μm以
下であっても、磁気記録媒体のヤング率Eと全厚tの3
乗の積Et3 を長手方向および幅方向いずれにおいて
も 1.7g・mm以上にすることができ、高剛性で実
用上充分な機械的強度を有する磁気記録媒体が得られる
。 【0008】このようなガラス転移温度が−25℃以上
のポリウレタン樹脂は、ウレタン基濃度を向上させたり
、分子鎖にベンゼン環等を導入したりしてガラス転移温
度を−25℃以上にしたものであればよく、たとえば、
東洋紡社製;UR−8300(ガラス転移温度23℃)
、日本ポリウレタン工業社製;N−2309(ガラス転
移温度26℃)などが好適なものとして使用される。 【0009】また、硬化剤としては、イソシアネ−ト化
合物などが好ましく使用され、たとえば、コロネ−トL
(日本ポリウレタン工業社製;三官能性低分子量イソシ
アネ−ト化合物)等が好適なものとして使用される。こ
の他、これらのポリウレタン樹脂および硬化剤とともに
、一般に磁気記録媒体に使用される結合剤樹脂がいずれ
も好適に併用され、たとえば、繊維素系樹脂、塩化ビニ
ル−酢酸ビニル系共重合体、ポリビニルブチラ−ル樹脂
、ポリエステル系樹脂などが併用される。 【0010】磁性層の形成は、磁性粉末、ガラス転移温
度が−25℃以上のポリウレタン樹脂を含む結合剤樹脂
、イソシアネ−ト化合物などの硬化剤および有機溶剤等
をその他の必要成分とともに混合分散して磁性塗料を調
製し、この磁性塗料を前記の長手方向および幅方向のヤ
ング率がいずれも650kg/mm2 以上で、かつ長
手方向のヤング率より幅方向のヤング率の方が大きなポ
リエチレンナフタレ−トフィルムあるいはアラミドフィ
ルムなどのベ−スフィルム上に、塗布、乾燥して形成さ
れる。 【0011】ここで、磁性粉末としては、γ−Fe2 
O3 粉末、Fe3 O4 粉末、Co含有γ−Fe2
 O3 粉末、Co含有Fe3 O4 粉末、CrO2
 粉末、Fe粉末等の金属磁性粉末など従来公知の磁性
粉末がいずれも使用される。また、有機溶剤としては、
メチルイソブチルケトン、シクロヘキサノン、酢酸エチ
ル、テトラヒドロフラン、ジオキサン、トルエン、キシ
レンなど、一般に磁気記録媒体に使用される有機溶剤が
単独で或いは二種以上混合して使用される。この他、磁
性層中に必要に応じて、充填剤、潤滑剤、帯電防止剤、
分散剤などを含有させてもよい。 【0012】また、磁性層を形成したベ−スフィルムの
裏面に、さらにバックコ−ト層を形成してもよく、この
バックコ−ト層は、非磁性粉末、結合剤樹脂、潤滑剤、
有機溶剤等をその他の必要成分とともに混合分散してバ
ックコ−ト層用塗料を調製し、このバックコ−ト層用塗
料を前記の表面に磁性層を形成したベ−スフィルムの裏
面に塗布、乾燥して形成される。 【0013】このようなバックコ−ト層に使用される非
磁性粉末としては、α−Fe2 O3、TiO2 、C
aCO3 、カ−ボンブラック等、通常、磁気記録媒体
のバックコ−ト層に使用されるものが広く使用され、結
合剤樹脂および有機溶剤としては、一般に磁性層で使用
するものと同じ結合剤樹脂および有機溶剤がいずれも使
用される。 【0014】 【実施例】次に、この発明の実施例について説明する。 実施例1 長手方向のヤング率が700kg/mm2 、幅方向の
ヤング率が740kg/mm2 で、厚さが10.7μ
mのポリエチレンナフタレ−トフィルムの表面に、下記
の組成物からなる磁性塗料を乾燥厚が 3.0μmとな
るように塗布、乾燥して、ガラス転移温度が55℃の磁
性層を形成し、裏面に下記の組成物からなるバックコ−
ト層用塗料を乾燥厚が 0.8μmとなるように塗布、
乾燥してバックコ−ト層を形成した。しかる後、所定の
巾に裁断して、全厚が14.0μmの磁気テ−プをつく
った。 【0015】   磁性塗料     Co含有γ−Fe2 O3 粉末      
                         
82 重量部    塩化ビニル−酢酸ビニル−ビニル
アルコ−ル共重合体         10   〃 
   ポリウレタン樹脂(ガラス転移温度10℃)  
                6   〃    
イソシアネ−ト化合物               
                       2 
  〃    カ−ボンブラック          
                         
       5   〃    α−Al2 O3 
粉末                       
                 4   〃   
 ミリスチン酸                  
                         
   0.7 〃    ステアリン酸−n−ブチル 
                         
        1.0 〃    シクロヘキサノン
                         
                83.5 〃   
 トルエン                    
                         
    83.5 〃  【0016】   バックコ−ト層用塗料     カ−ボンブラック             
                         
   60 重量部    α−Fe2 O3 粉末 
                         
              7   〃    ニト
ロセルロ−ス                   
                      18 
  〃    ポリウレタン樹脂          
                         
      12   〃    イソシアネ−ト化合
物                        
              5   〃    シク
ロヘキサノン                   
                     150 
  〃    トルエン              
                         
         150   〃  【0017】実
施例2 実施例1において、長手方向のヤング率が700kg/
mm2 、幅方向のヤング率が740kg/mm2 で
、厚さが10.7μmのポリエチレンナフタレ−トフィ
ルムに代えて、長手方向のヤング率が1430kg/m
m2 、幅方向のヤング率が1650kg/mm2 で
、厚さが 7.7μmのアラミドフィルムを使用した以
外は、実施例1と同様にして全厚が11.5μmの磁気
テ−プをつくった。 【0018】比較例1 実施例1において、長手方向のヤング率が700kg/
mm2 、幅方向のヤング率が740kg/mm2 で
、厚さが10.7μmのポリエチレンナフタレ−トフィ
ルムに代えて、長手方向のヤング率が620kg/mm
2 、幅方向のヤング率が580kg/mm2 で、厚
さが10.7μmのポリエチレンテレフタレ−トフィル
ムを使用した以外は、実施例1と同様にして全厚が14
.5μmの磁気テ−プをつくった。 【0019】比較例2 実施例1において、長手方向のヤング率が700kg/
mm2 、幅方向のヤング率が740kg/mm2 で
、厚さが10.7μmのポリエチレンナフタレ−トフィ
ルムに代えて、長手方向のヤング率が700kg/mm
2 、幅方向のヤング率が740kg/mm2 で、厚
さが 9.7μmのポリエチレンナフタレ−トフィルム
を使用した以外は、実施例1と同様にして全厚が13.
5μmの磁気テ−プをつくった。 【0020】比較例3 実施例1において、長手方向のヤング率が700kg/
mm2 、幅方向のヤング率が740kg/mm2 で
、厚さが10.7μmのポリエチレンナフタレ−トフィ
ルムに代えて、長手方向のヤング率が850kg/mm
2 、幅方向のヤング率が700kg/mm2 で、厚
さが10.7μmのポリエチレンナフタレ−トフィルム
を使用した以外は、実施例1と同様にして全厚が14.
5μmの磁気テ−プをつくった。 【0021】比較例4 実施例1において、長手方向のヤング率が700kg/
mm2 、幅方向のヤング率が740kg/mm2 で
、厚さが10.7μmのポリエチレンナフタレ−トフィ
ルムに代えて、長手方向のヤング率が620kg/mm
2 、幅方向のヤング率が580kg/mm2 で、厚
さが11.7μmのポリエチレンテレフタレ−トフィル
ムを使用した以外は、実施例1と同様にして全厚が15
.5μmの磁気テ−プをつくった。 【0022】比較例5 実施例1において、長手方向のヤング率が700kg/
mm2 、幅方向のヤング率が740kg/mm2 で
、厚さが10.7μmのポリエチレンナフタレ−トフィ
ルムに代えて、長手方向のヤング率が550kg/mm
2 、幅方向のヤング率が450kg/mm2 で、厚
さが14.7μmのポリエチレンテレフタレ−トフィル
ムを使用した以外は、実施例1と同様にして全厚が18
.5μmの磁気テ−プをつくった。 【0023】比較例6 実施例1における磁性塗料の組成において、ガラス転移
温度が10℃のポリウレタン樹脂に代えて、ガラス転移
温度が−30℃のポリウレタン樹脂を使用し、ガラス転
移温度が30℃の磁性層を形成した以外は、実施例1と
同様にして磁気テ−プをつくった。 【0024】各実施例および各比較例で得られた磁気テ
−プについて、1%伸び時の長手方向および幅方向のヤ
ング率Eを測定し、この長手方向および幅方向ヤング率
Eと全厚tの3乗の積Et3 を求めた。また、得られ
た磁気テ−プをVHSビデオテ−プレコ−ダに装填して
RF出力を測定し、ビデオ信号の再生エンベロ−プ波形
の平坦度の評価(エンベロ−プ)、ロ−ド/アンロ−ド
傷付き試験、Cue/Rev 傷付き試験を行った。R
F出力は、6MHz の単一信号を記録再生して基準テ
−プとの出力比で表し、エンベロ−プは、ビデオ信号出
力波形の最大値と最小値の比を百分率で表した。また、
ロ−ド/アンロ−ド傷付き試験は、磁気テ−プのカセッ
ト巻終わりに近い部分の同一個所でロ−ド/アンロ−ド
を10回繰り返し、磁気テ−プの傷付きを目視で判定し
て5点満点で評価した。さらに、Cue/Rev 傷付
き試験は、同様に磁気テ−プのカセット巻終わりに近い
部分の同一個所で約5秒間のCue/Rev を10回
繰り返し、磁気テ−プの傷付きを目視で判定して5点満
点で評価した。下記表1はその結果である。 【0025】 【0026】 【発明の効果】上記表1から明らかなように、実施例1
および2で得られた磁気テ−プは、RF出力、エンベロ
−プ、ロ−ド/アンロ−ド傷付き試験、Cue/Rev
 傷付き試験の結果がいずれも良好で、このことからこ
の発明によって得られる磁気テ−プは全厚15μm以下
でも、優れた電気的特性を有するとともに、高剛性で実
用上充分な機械的強度を有していることがわかる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetic recording media such as magnetic tapes, and more particularly, to magnetic recording media such as magnetic tapes, which have a total thickness of 15 μm or less and are sufficiently thin for practical use. Strong magnetic tape
related to magnetic recording media such as discs. [0002] In recent years, especially in magnetic tapes for video, etc., in order to lengthen the recording and playback time as much as possible when incorporated into a cartridge case, the thickness of the magnetic tape has been reduced as much as possible. Attempts are being made to make it thinner. However, reducing the thickness of the magnetic tape weakens the tape's mechanical strength, which deteriorates the contact with the rotating video head during recording and playback, making it impossible to obtain a normal playback waveform and causing the envelope to deteriorate. It becomes defective. Also, when recording, playing, fast forwarding, rewinding, or loading and unloading, magnetic tape
The edge of the magnetic tape may come into contact with the guide member that regulates the running of the magnetic tape or the magnetic tape regulating flange of the loading post, causing buckling or breakage. It becomes easy to form wrinkles and wrinkles. For this reason, when manufacturing plastic films such as polyester films, a reinforced plastic film that has been stretched and strengthened in the longitudinal or width direction is used as the base film of the magnetic tape, resulting in thinner magnetic tapes. Attempts have been made to strengthen the mechanical strength of the [Problems to be Solved by the Invention] However, in a product that is stretched and strengthened in a balanced manner in the longitudinal direction and the width direction, the Young's modulus (hereinafter abbreviated as Young's modulus) at 1% elongation is lower in both the longitudinal direction and the width direction. 550 to 600 kg/mm2, and the Young's modulus is 7 in the longitudinal direction when stretched and strengthened in the longitudinal direction.
50~850kg/mm2, 350~430 in width direction
kg/mm2, and if the total thickness is 15 μm or less, it will not have sufficient mechanical strength for practical use, especially when applied to VHS type and VHS-C type VTRs, and the test material will not be able to withstand contact with the magnetic head. - The envelope rigidity decreases and cannot be optimized, making it impossible to obtain a normal envelope waveform or stable running in various running modes. [Means for Solving the Problems] This invention was made as a result of various studies in view of the current situation, and uses a polyethylene naphthalate film or an aramid film as a base film, and magnetically The Young's modulus E of a magnetic recording medium with a total thickness of 15 μm or less is achieved by incorporating a polyurethane resin with a glass transition temperature of -25°C or higher as a binder component in the layer and making the glass transition temperature of the magnetic layer 40°C or higher. By setting the product Et3 of t and total thickness t to the third power to 1.7 g/mm or more in both the longitudinal and width directions, a practically sufficient mechanical strength can be obtained even if the total thickness of the magnetic recording medium is 15 μm or less. This is how it was done. The base film used in this invention has a Young's modulus of 650 in both the longitudinal direction and the width direction.
kg/mm2 or more, and the Young's modulus in the width direction is preferably larger than the Young's modulus in the longitudinal direction.If either the Young's modulus in the longitudinal direction or the width direction is less than 650 kg/mm2, this Even if a magnetic layer is formed thereon, a magnetic recording medium such as a magnetic tape with sufficient rigidity cannot be obtained, and practically sufficient mechanical strength cannot be obtained. Furthermore, it is advantageous to make the Young's modulus in the width direction larger than the Young's modulus in the longitudinal direction in order to prevent the rigidity from decreasing and to obtain a practically sufficient mechanical strength. Furthermore, since conventional polyester films have limited strength, it is preferable to use polyethylene naphthalate films or aramid films, which have higher strength, and whose Young's modulus in the width direction is higher than that in the longitudinal direction. By using a large polyethylene naphthalate film or aramid film with a Young's modulus of 650 kg/mm2 or more in both the longitudinal and width directions, the rigidity will not decrease even if the total thickness is reduced to 15 μm or less, which is sufficient for practical use. A magnetic recording medium having high mechanical strength can be obtained. Note that both para-type and meta-type aramid films are preferably used. The magnetic layer formed on such a base film has a binder resin with a glass transition temperature of -25°C.
It is preferable that the magnetic layer contains the above polyurethane resin and has a glass transition temperature of 40°C or higher after being cured with a commonly used curing agent, and such a magnetic layer is formed on the above-mentioned highly rigid base film. Even if the total thickness is 15 μm or less, the Young's modulus E of the magnetic recording medium and the total thickness t are 3
The product Et3 can be set to 1.7 g·mm or more in both the longitudinal and width directions, and a magnetic recording medium with high rigidity and mechanical strength sufficient for practical use can be obtained. [0008] Such polyurethane resins with a glass transition temperature of -25°C or higher have a glass transition temperature of -25°C or higher by increasing the urethane group concentration or introducing a benzene ring or the like into the molecular chain. For example,
Manufactured by Toyobo; UR-8300 (glass transition temperature 23°C)
, manufactured by Nippon Polyurethane Kogyo Co., Ltd.; N-2309 (glass transition temperature: 26°C), etc. are preferably used. [0009] Further, as the curing agent, isocyanate compounds are preferably used. For example, Coronate L
(manufactured by Nippon Polyurethane Kogyo Co., Ltd.; trifunctional low molecular weight isocyanate compound) and the like are preferably used. In addition, binder resins generally used in magnetic recording media are preferably used in combination with these polyurethane resins and curing agents, such as cellulose resins, vinyl chloride-vinyl acetate copolymers, polyvinyl butyl Ral resin, polyester resin, etc. are used in combination. The magnetic layer is formed by mixing and dispersing magnetic powder, a binder resin containing a polyurethane resin with a glass transition temperature of -25° C. or higher, a hardening agent such as an isocyanate compound, an organic solvent, and other necessary components. A magnetic paint was prepared by using the magnetic paint, and this magnetic paint was coated with polyethylene naphthalene having a Young's modulus in both the longitudinal direction and the width direction of 650 kg/mm2 or more, and a Young's modulus in the width direction being larger than the Young's modulus in the longitudinal direction. It is formed by coating and drying on a base film such as a base film or an aramid film. [0011] Here, as the magnetic powder, γ-Fe2
O3 powder, Fe3 O4 powder, Co-containing γ-Fe2
O3 powder, Co-containing Fe3 O4 powder, CrO2
Any conventionally known magnetic powder such as powder or metal magnetic powder such as Fe powder may be used. In addition, as an organic solvent,
Organic solvents commonly used in magnetic recording media, such as methyl isobutyl ketone, cyclohexanone, ethyl acetate, tetrahydrofuran, dioxane, toluene, and xylene, may be used alone or in a mixture of two or more. In addition, fillers, lubricants, antistatic agents,
A dispersant or the like may also be included. [0012] Further, a back coat layer may be further formed on the back surface of the base film on which the magnetic layer is formed, and this back coat layer contains non-magnetic powder, binder resin, lubricant,
A paint for the back coat layer is prepared by mixing and dispersing an organic solvent etc. with other necessary ingredients, and this paint for the back coat layer is applied to the back side of the base film on which the magnetic layer is formed and dried. It is formed by Nonmagnetic powders used for such a back coat layer include α-Fe2O3, TiO2, C
ACO3, carbon black, etc., which are normally used in the back coat layer of magnetic recording media, are widely used.As the binder resin and organic solvent, the same binder resin and organic solvent as those used in the magnetic layer are generally used. Any organic solvent is used. [Example] Next, an example of the present invention will be described. Example 1 The Young's modulus in the longitudinal direction is 700 kg/mm2, the Young's modulus in the width direction is 740 kg/mm2, and the thickness is 10.7μ.
A magnetic coating consisting of the following composition was applied to the surface of a polyethylene naphthalate film of 3.0 mm to a dry thickness of 3.0 μm, and dried to form a magnetic layer with a glass transition temperature of 55° C. A back coat consisting of the following composition is added to
Apply the paint for the second layer to a dry thickness of 0.8 μm.
It was dried to form a back coat layer. Thereafter, it was cut into a predetermined width to produce a magnetic tape with a total thickness of 14.0 μm. Magnetic paint Co-containing γ-Fe2 O3 powder

82 parts by weight Vinyl chloride-vinyl acetate-vinyl alcohol copolymer 10
Polyurethane resin (glass transition temperature 10℃)
6 〃
isocyanate compound
2
〃 Carbon black

5 〃 α-Al2 O3
powder
4 〃
myristic acid

0.7 n-butyl stearate

1.0 〃 Cyclohexanone
83.5 〃
toluene

83.5〃0016 Back coat layer paint carbon black

60 parts by weight α-Fe2 O3 powder

7 Nitrocellulose
18
〃 Polyurethane resin

12 Isocyanate compound
5 〃 Cyclohexanone
150
〃 Toluene

150 Example 2 In Example 1, the Young's modulus in the longitudinal direction was 700 kg/
mm2, Young's modulus in the width direction is 740 kg/mm2, and the thickness is 10.7 μm.
A magnetic tape having a total thickness of 11.5 .mu.m was prepared in the same manner as in Example 1, except that an aramid film having a width of 7.7 .mu.m and a Young's modulus in the width direction of 1650 kg/mm 2 was used. Comparative Example 1 In Example 1, the Young's modulus in the longitudinal direction was 700 kg/
mm2, the Young's modulus in the width direction is 740 kg/mm2, and the thickness is 10.7 μm. Instead, the Young's modulus in the longitudinal direction is 620 kg/mm
2. A polyethylene terephthalate film having a Young's modulus in the width direction of 580 kg/mm2 and a thickness of 10.7 μm was used in the same manner as in Example 1, except that the total thickness was 14 μm.
.. A 5 μm magnetic tape was made. Comparative Example 2 In Example 1, the Young's modulus in the longitudinal direction was 700 kg/
mm2, Young's modulus in the width direction is 740 kg/mm2, and the thickness is 10.7 μm.
2. The entire thickness was 13.2 mm in the same manner as in Example 1, except that a polyethylene naphthalate film having a Young's modulus in the width direction of 740 kg/mm2 and a thickness of 9.7 μm was used.
A 5 μm magnetic tape was made. Comparative Example 3 In Example 1, the Young's modulus in the longitudinal direction was 700 kg/
mm2, the Young's modulus in the width direction is 740 kg/mm2, and the thickness is 10.7 μm. Instead, the Young's modulus in the longitudinal direction is 850 kg/mm
2. The entire thickness was 14.2 mm in the same manner as in Example 1, except that a polyethylene naphthalate film having a Young's modulus in the width direction of 700 kg/mm2 and a thickness of 10.7 μm was used.
A 5 μm magnetic tape was made. Comparative Example 4 In Example 1, Young's modulus in the longitudinal direction was 700 kg/
mm2, the Young's modulus in the width direction is 740 kg/mm2, and the thickness is 10.7 μm. Instead, the Young's modulus in the longitudinal direction is 620 kg/mm
2. A polyethylene terephthalate film having a Young's modulus in the width direction of 580 kg/mm2 and a thickness of 11.7 μm was used in the same manner as in Example 1, but the total thickness was 15 μm.
.. A 5 μm magnetic tape was made. Comparative Example 5 In Example 1, Young's modulus in the longitudinal direction was 700 kg/
mm2, the Young's modulus in the width direction is 740 kg/mm2, and the thickness is 10.7 μm. Instead, the Young's modulus in the longitudinal direction is 550 kg/mm.
2. A polyethylene terephthalate film having a Young's modulus in the width direction of 450 kg/mm2 and a thickness of 14.7 μm was used in the same manner as in Example 1, except that the total thickness was 18 μm.
.. A 5 μm magnetic tape was made. Comparative Example 6 In the composition of the magnetic paint in Example 1, a polyurethane resin with a glass transition temperature of -30°C was used instead of a polyurethane resin with a glass transition temperature of 10°C. A magnetic tape was produced in the same manner as in Example 1 except that the magnetic layer was formed. The Young's modulus E in the longitudinal direction and the width direction at 1% elongation was measured for the magnetic tape obtained in each example and each comparative example, and the Young's modulus E in the longitudinal direction and the width direction and the total thickness were measured. The product Et3 of the cube of t was calculated. In addition, the obtained magnetic tape was loaded into a VHS video tape recorder and the RF output was measured, and the flatness of the reproduced envelope waveform of the video signal (envelope) was evaluated, and the loading/unloading A Cue/Rev scratch test and a Cue/Rev scratch test were conducted. R
The F output is expressed as the output ratio of a 6 MHz single signal recorded and reproduced with respect to a reference tape, and the envelope is expressed as a percentage of the ratio between the maximum value and the minimum value of the video signal output waveform. Also,
In the loading/unloading scratch test, the magnetic tape is loaded/unloaded 10 times at the same location near the end of the cassette winding, and scratches on the magnetic tape are visually determined. and evaluated on a 5-point scale. Furthermore, in the Cue/Rev scratch test, Cue/Rev is repeated 10 times for about 5 seconds at the same location near the end of the magnetic tape cassette winding, and scratches on the magnetic tape are visually determined. and evaluated on a 5-point scale. Table 1 below shows the results. [0025] Effect of the invention: As is clear from Table 1 above, Example 1
The magnetic tape obtained in 2 and 2 was tested for RF output, envelope, load/unload scratch test,
All of the scratch test results were good, indicating that the magnetic tape obtained by this invention has excellent electrical properties even with a total thickness of 15 μm or less, as well as high rigidity and sufficient mechanical strength for practical use. It can be seen that it has.

Claims (1)

【特許請求の範囲】 【請求項1】  ベ−スフィルム上に磁性層を有する全
厚が15μm以下で、1%伸び時のヤング率Eと全厚t
の3乗の積Et3 が長手方向および幅方向いずれにお
いても 1.7g・mm以上である磁気記録媒体【請求
項2】  長手方向および幅方向の1%伸び時のヤング
率がいずれも650kg/mm2 以上で、長手方向の
ヤング率より幅方向のヤング率が大きいベ−スフィルム
を用いた請求項1記載の磁気記録媒体 【請求項3】  ベ−スフィルムが、ポリエチレンナフ
タレ−トからなるベ−スフィルムである請求項1および
2記載の磁気記録媒体 【請求項4】  ベ−スフィルムが、アラミドからなる
ベ−スフィルムである請求項1および2記載の磁気記録
媒体 【請求項5】  磁性層が、結合剤成分としてガラス転
移温度が−25℃以上のポリウレタン樹脂を含んでなる
ガラス転移温度が40℃以上の磁性層である請求項1な
いし4記載の磁気記録媒体
[Scope of Claims] [Claim 1] The total thickness of the magnetic layer on the base film is 15 μm or less, and the Young's modulus E at 1% elongation and the total thickness t
A magnetic recording medium in which the product Et3 of the cube of Et3 is 1.7 g/mm or more in both the longitudinal direction and the width direction.Claim 2: Young's modulus at 1% elongation in both the longitudinal direction and the width direction is 650 kg/mm2 3. The magnetic recording medium according to claim 1, wherein the base film has a Young's modulus in the width direction that is larger than the Young's modulus in the longitudinal direction. - The magnetic recording medium according to claims 1 and 2, wherein the base film is a base film.Claim 4: The magnetic recording medium according to claims 1 and 2, wherein the base film is a base film made of aramid.Claim 5: 5. The magnetic recording medium according to claim 1, wherein the magnetic layer is a magnetic layer having a glass transition temperature of 40° C. or higher and comprising a polyurethane resin having a glass transition temperature of −25° C. or higher as a binder component.
JP8170791A 1991-03-19 1991-03-19 Magnetic recording media Expired - Fee Related JP2914774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8170791A JP2914774B2 (en) 1991-03-19 1991-03-19 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8170791A JP2914774B2 (en) 1991-03-19 1991-03-19 Magnetic recording media

Publications (2)

Publication Number Publication Date
JPH04291019A true JPH04291019A (en) 1992-10-15
JP2914774B2 JP2914774B2 (en) 1999-07-05

Family

ID=13753858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8170791A Expired - Fee Related JP2914774B2 (en) 1991-03-19 1991-03-19 Magnetic recording media

Country Status (1)

Country Link
JP (1) JP2914774B2 (en)

Also Published As

Publication number Publication date
JP2914774B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
EP0074410A1 (en) Magnetic recording medium
JPS595424A (en) Magnetic recording medium
US3941911A (en) Thermally resistant magnetic tape
US4409291A (en) Magnetic recording medium
JPH04255910A (en) Magnetic recording tape
JPS58159228A (en) Magnetic recording medium
JPS5891528A (en) Magnetic recording medium
JPH04291019A (en) Magnetic recording medium
US4568613A (en) Copolymer binder for a magnetic recording medium
EP0417758B1 (en) Magnetic recording medium
JPH02282925A (en) Magnetic recording medium
JP2507196B2 (en) Method for manufacturing tape-shaped magnetic recording medium
JP2701303B2 (en) Magnetic recording media
JP3033877B2 (en) Magnetic recording media
US5415928A (en) Magnetic recording tape
JPH01241019A (en) Magnetic recording medium
JPS60150230A (en) Magnetic recording body
JPH05128487A (en) Magnetic recording medium
JP3421815B2 (en) Magnetic recording medium and evaluation method thereof
JPS5911530A (en) Magnetic recording medium
JPS62243117A (en) Magnetic recording medium
JPH0547140A (en) Magnetic tape cartridge
JPS5891524A (en) Magnetic recording medium
JPS5880131A (en) Magnetic recording body
US20070020488A1 (en) Magnetic recording medium having a single, thin, high-coercivity magnetic recording layer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990309

LAPS Cancellation because of no payment of annual fees